xref: /illumos-gate/usr/src/uts/common/fs/zfs/zap_micro.c (revision af9cbda568b929fc35782877e1d8bb0c2a856802)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/zio.h>
26 #include <sys/spa.h>
27 #include <sys/dmu.h>
28 #include <sys/zfs_context.h>
29 #include <sys/zap.h>
30 #include <sys/refcount.h>
31 #include <sys/zap_impl.h>
32 #include <sys/zap_leaf.h>
33 #include <sys/avl.h>
34 #include <sys/arc.h>
35 
36 #ifdef _KERNEL
37 #include <sys/sunddi.h>
38 #endif
39 
40 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
41 
42 uint64_t
43 zap_getflags(zap_t *zap)
44 {
45 	if (zap->zap_ismicro)
46 		return (0);
47 	return (zap->zap_u.zap_fat.zap_phys->zap_flags);
48 }
49 
50 int
51 zap_hashbits(zap_t *zap)
52 {
53 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
54 		return (48);
55 	else
56 		return (28);
57 }
58 
59 uint32_t
60 zap_maxcd(zap_t *zap)
61 {
62 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
63 		return ((1<<16)-1);
64 	else
65 		return (-1U);
66 }
67 
68 static uint64_t
69 zap_hash(zap_name_t *zn)
70 {
71 	zap_t *zap = zn->zn_zap;
72 	uint64_t h = 0;
73 
74 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
75 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
76 		h = *(uint64_t *)zn->zn_key_orig;
77 	} else {
78 		h = zap->zap_salt;
79 		ASSERT(h != 0);
80 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
81 
82 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
83 			int i;
84 			const uint64_t *wp = zn->zn_key_norm;
85 
86 			ASSERT(zn->zn_key_intlen == 8);
87 			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
88 				int j;
89 				uint64_t word = *wp;
90 
91 				for (j = 0; j < zn->zn_key_intlen; j++) {
92 					h = (h >> 8) ^
93 					    zfs_crc64_table[(h ^ word) & 0xFF];
94 					word >>= NBBY;
95 				}
96 			}
97 		} else {
98 			int i, len;
99 			const uint8_t *cp = zn->zn_key_norm;
100 
101 			/*
102 			 * We previously stored the terminating null on
103 			 * disk, but didn't hash it, so we need to
104 			 * continue to not hash it.  (The
105 			 * zn_key_*_numints includes the terminating
106 			 * null for non-binary keys.)
107 			 */
108 			len = zn->zn_key_norm_numints - 1;
109 
110 			ASSERT(zn->zn_key_intlen == 1);
111 			for (i = 0; i < len; cp++, i++) {
112 				h = (h >> 8) ^
113 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
114 			}
115 		}
116 	}
117 	/*
118 	 * Don't use all 64 bits, since we need some in the cookie for
119 	 * the collision differentiator.  We MUST use the high bits,
120 	 * since those are the ones that we first pay attention to when
121 	 * chosing the bucket.
122 	 */
123 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
124 
125 	return (h);
126 }
127 
128 static int
129 zap_normalize(zap_t *zap, const char *name, char *namenorm)
130 {
131 	size_t inlen, outlen;
132 	int err;
133 
134 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
135 
136 	inlen = strlen(name) + 1;
137 	outlen = ZAP_MAXNAMELEN;
138 
139 	err = 0;
140 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
141 	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
142 	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
143 
144 	return (err);
145 }
146 
147 boolean_t
148 zap_match(zap_name_t *zn, const char *matchname)
149 {
150 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
151 
152 	if (zn->zn_matchtype == MT_FIRST) {
153 		char norm[ZAP_MAXNAMELEN];
154 
155 		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
156 			return (B_FALSE);
157 
158 		return (strcmp(zn->zn_key_norm, norm) == 0);
159 	} else {
160 		/* MT_BEST or MT_EXACT */
161 		return (strcmp(zn->zn_key_orig, matchname) == 0);
162 	}
163 }
164 
165 void
166 zap_name_free(zap_name_t *zn)
167 {
168 	kmem_free(zn, sizeof (zap_name_t));
169 }
170 
171 zap_name_t *
172 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
173 {
174 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
175 
176 	zn->zn_zap = zap;
177 	zn->zn_key_intlen = sizeof (*key);
178 	zn->zn_key_orig = key;
179 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
180 	zn->zn_matchtype = mt;
181 	if (zap->zap_normflags) {
182 		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
183 			zap_name_free(zn);
184 			return (NULL);
185 		}
186 		zn->zn_key_norm = zn->zn_normbuf;
187 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
188 	} else {
189 		if (mt != MT_EXACT) {
190 			zap_name_free(zn);
191 			return (NULL);
192 		}
193 		zn->zn_key_norm = zn->zn_key_orig;
194 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
195 	}
196 
197 	zn->zn_hash = zap_hash(zn);
198 	return (zn);
199 }
200 
201 zap_name_t *
202 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
203 {
204 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
205 
206 	ASSERT(zap->zap_normflags == 0);
207 	zn->zn_zap = zap;
208 	zn->zn_key_intlen = sizeof (*key);
209 	zn->zn_key_orig = zn->zn_key_norm = key;
210 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
211 	zn->zn_matchtype = MT_EXACT;
212 
213 	zn->zn_hash = zap_hash(zn);
214 	return (zn);
215 }
216 
217 static void
218 mzap_byteswap(mzap_phys_t *buf, size_t size)
219 {
220 	int i, max;
221 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
222 	buf->mz_salt = BSWAP_64(buf->mz_salt);
223 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
224 	max = (size / MZAP_ENT_LEN) - 1;
225 	for (i = 0; i < max; i++) {
226 		buf->mz_chunk[i].mze_value =
227 		    BSWAP_64(buf->mz_chunk[i].mze_value);
228 		buf->mz_chunk[i].mze_cd =
229 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
230 	}
231 }
232 
233 void
234 zap_byteswap(void *buf, size_t size)
235 {
236 	uint64_t block_type;
237 
238 	block_type = *(uint64_t *)buf;
239 
240 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
241 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
242 		mzap_byteswap(buf, size);
243 	} else {
244 		fzap_byteswap(buf, size);
245 	}
246 }
247 
248 static int
249 mze_compare(const void *arg1, const void *arg2)
250 {
251 	const mzap_ent_t *mze1 = arg1;
252 	const mzap_ent_t *mze2 = arg2;
253 
254 	if (mze1->mze_hash > mze2->mze_hash)
255 		return (+1);
256 	if (mze1->mze_hash < mze2->mze_hash)
257 		return (-1);
258 	if (mze1->mze_cd > mze2->mze_cd)
259 		return (+1);
260 	if (mze1->mze_cd < mze2->mze_cd)
261 		return (-1);
262 	return (0);
263 }
264 
265 static void
266 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
267 {
268 	mzap_ent_t *mze;
269 
270 	ASSERT(zap->zap_ismicro);
271 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
272 
273 	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
274 	mze->mze_chunkid = chunkid;
275 	mze->mze_hash = hash;
276 	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
277 	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
278 	avl_add(&zap->zap_m.zap_avl, mze);
279 }
280 
281 static mzap_ent_t *
282 mze_find(zap_name_t *zn)
283 {
284 	mzap_ent_t mze_tofind;
285 	mzap_ent_t *mze;
286 	avl_index_t idx;
287 	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
288 
289 	ASSERT(zn->zn_zap->zap_ismicro);
290 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
291 
292 	mze_tofind.mze_hash = zn->zn_hash;
293 	mze_tofind.mze_cd = 0;
294 
295 again:
296 	mze = avl_find(avl, &mze_tofind, &idx);
297 	if (mze == NULL)
298 		mze = avl_nearest(avl, idx, AVL_AFTER);
299 	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
300 		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
301 		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
302 			return (mze);
303 	}
304 	if (zn->zn_matchtype == MT_BEST) {
305 		zn->zn_matchtype = MT_FIRST;
306 		goto again;
307 	}
308 	return (NULL);
309 }
310 
311 static uint32_t
312 mze_find_unused_cd(zap_t *zap, uint64_t hash)
313 {
314 	mzap_ent_t mze_tofind;
315 	mzap_ent_t *mze;
316 	avl_index_t idx;
317 	avl_tree_t *avl = &zap->zap_m.zap_avl;
318 	uint32_t cd;
319 
320 	ASSERT(zap->zap_ismicro);
321 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
322 
323 	mze_tofind.mze_hash = hash;
324 	mze_tofind.mze_cd = 0;
325 
326 	cd = 0;
327 	for (mze = avl_find(avl, &mze_tofind, &idx);
328 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
329 		if (mze->mze_cd != cd)
330 			break;
331 		cd++;
332 	}
333 
334 	return (cd);
335 }
336 
337 static void
338 mze_remove(zap_t *zap, mzap_ent_t *mze)
339 {
340 	ASSERT(zap->zap_ismicro);
341 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
342 
343 	avl_remove(&zap->zap_m.zap_avl, mze);
344 	kmem_free(mze, sizeof (mzap_ent_t));
345 }
346 
347 static void
348 mze_destroy(zap_t *zap)
349 {
350 	mzap_ent_t *mze;
351 	void *avlcookie = NULL;
352 
353 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
354 		kmem_free(mze, sizeof (mzap_ent_t));
355 	avl_destroy(&zap->zap_m.zap_avl);
356 }
357 
358 static zap_t *
359 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
360 {
361 	zap_t *winner;
362 	zap_t *zap;
363 	int i;
364 
365 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
366 
367 	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
368 	rw_init(&zap->zap_rwlock, 0, 0, 0);
369 	rw_enter(&zap->zap_rwlock, RW_WRITER);
370 	zap->zap_objset = os;
371 	zap->zap_object = obj;
372 	zap->zap_dbuf = db;
373 
374 	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
375 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
376 		zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
377 	} else {
378 		zap->zap_ismicro = TRUE;
379 	}
380 
381 	/*
382 	 * Make sure that zap_ismicro is set before we let others see
383 	 * it, because zap_lockdir() checks zap_ismicro without the lock
384 	 * held.
385 	 */
386 	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
387 
388 	if (winner != NULL) {
389 		rw_exit(&zap->zap_rwlock);
390 		rw_destroy(&zap->zap_rwlock);
391 		if (!zap->zap_ismicro)
392 			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
393 		kmem_free(zap, sizeof (zap_t));
394 		return (winner);
395 	}
396 
397 	if (zap->zap_ismicro) {
398 		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
399 		zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
400 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
401 		avl_create(&zap->zap_m.zap_avl, mze_compare,
402 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
403 
404 		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
405 			mzap_ent_phys_t *mze =
406 			    &zap->zap_m.zap_phys->mz_chunk[i];
407 			if (mze->mze_name[0]) {
408 				zap_name_t *zn;
409 
410 				zap->zap_m.zap_num_entries++;
411 				zn = zap_name_alloc(zap, mze->mze_name,
412 				    MT_EXACT);
413 				mze_insert(zap, i, zn->zn_hash);
414 				zap_name_free(zn);
415 			}
416 		}
417 	} else {
418 		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
419 		zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
420 
421 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
422 		    2*ZAP_LEAF_CHUNKSIZE);
423 
424 		/*
425 		 * The embedded pointer table should not overlap the
426 		 * other members.
427 		 */
428 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
429 		    &zap->zap_f.zap_phys->zap_salt);
430 
431 		/*
432 		 * The embedded pointer table should end at the end of
433 		 * the block
434 		 */
435 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
436 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
437 		    (uintptr_t)zap->zap_f.zap_phys, ==,
438 		    zap->zap_dbuf->db_size);
439 	}
440 	rw_exit(&zap->zap_rwlock);
441 	return (zap);
442 }
443 
444 int
445 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
446     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
447 {
448 	zap_t *zap;
449 	dmu_buf_t *db;
450 	krw_t lt;
451 	int err;
452 
453 	*zapp = NULL;
454 
455 	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
456 	if (err)
457 		return (err);
458 
459 #ifdef ZFS_DEBUG
460 	{
461 		dmu_object_info_t doi;
462 		dmu_object_info_from_db(db, &doi);
463 		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
464 	}
465 #endif
466 
467 	zap = dmu_buf_get_user(db);
468 	if (zap == NULL)
469 		zap = mzap_open(os, obj, db);
470 
471 	/*
472 	 * We're checking zap_ismicro without the lock held, in order to
473 	 * tell what type of lock we want.  Once we have some sort of
474 	 * lock, see if it really is the right type.  In practice this
475 	 * can only be different if it was upgraded from micro to fat,
476 	 * and micro wanted WRITER but fat only needs READER.
477 	 */
478 	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
479 	rw_enter(&zap->zap_rwlock, lt);
480 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
481 		/* it was upgraded, now we only need reader */
482 		ASSERT(lt == RW_WRITER);
483 		ASSERT(RW_READER ==
484 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
485 		rw_downgrade(&zap->zap_rwlock);
486 		lt = RW_READER;
487 	}
488 
489 	zap->zap_objset = os;
490 
491 	if (lt == RW_WRITER)
492 		dmu_buf_will_dirty(db, tx);
493 
494 	ASSERT3P(zap->zap_dbuf, ==, db);
495 
496 	ASSERT(!zap->zap_ismicro ||
497 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
498 	if (zap->zap_ismicro && tx && adding &&
499 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
500 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
501 		if (newsz > MZAP_MAX_BLKSZ) {
502 			dprintf("upgrading obj %llu: num_entries=%u\n",
503 			    obj, zap->zap_m.zap_num_entries);
504 			*zapp = zap;
505 			return (mzap_upgrade(zapp, tx, 0));
506 		}
507 		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
508 		ASSERT3U(err, ==, 0);
509 		zap->zap_m.zap_num_chunks =
510 		    db->db_size / MZAP_ENT_LEN - 1;
511 	}
512 
513 	*zapp = zap;
514 	return (0);
515 }
516 
517 void
518 zap_unlockdir(zap_t *zap)
519 {
520 	rw_exit(&zap->zap_rwlock);
521 	dmu_buf_rele(zap->zap_dbuf, NULL);
522 }
523 
524 static int
525 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
526 {
527 	mzap_phys_t *mzp;
528 	int i, sz, nchunks;
529 	int err = 0;
530 	zap_t *zap = *zapp;
531 
532 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
533 
534 	sz = zap->zap_dbuf->db_size;
535 	mzp = kmem_alloc(sz, KM_SLEEP);
536 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
537 	nchunks = zap->zap_m.zap_num_chunks;
538 
539 	if (!flags) {
540 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
541 		    1ULL << fzap_default_block_shift, 0, tx);
542 		if (err) {
543 			kmem_free(mzp, sz);
544 			return (err);
545 		}
546 	}
547 
548 	dprintf("upgrading obj=%llu with %u chunks\n",
549 	    zap->zap_object, nchunks);
550 	/* XXX destroy the avl later, so we can use the stored hash value */
551 	mze_destroy(zap);
552 
553 	fzap_upgrade(zap, tx, flags);
554 
555 	for (i = 0; i < nchunks; i++) {
556 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
557 		zap_name_t *zn;
558 		if (mze->mze_name[0] == 0)
559 			continue;
560 		dprintf("adding %s=%llu\n",
561 		    mze->mze_name, mze->mze_value);
562 		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
563 		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
564 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
565 		zap_name_free(zn);
566 		if (err)
567 			break;
568 	}
569 	kmem_free(mzp, sz);
570 	*zapp = zap;
571 	return (err);
572 }
573 
574 static void
575 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
576     dmu_tx_t *tx)
577 {
578 	dmu_buf_t *db;
579 	mzap_phys_t *zp;
580 
581 	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
582 
583 #ifdef ZFS_DEBUG
584 	{
585 		dmu_object_info_t doi;
586 		dmu_object_info_from_db(db, &doi);
587 		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
588 	}
589 #endif
590 
591 	dmu_buf_will_dirty(db, tx);
592 	zp = db->db_data;
593 	zp->mz_block_type = ZBT_MICRO;
594 	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
595 	zp->mz_normflags = normflags;
596 	dmu_buf_rele(db, FTAG);
597 
598 	if (flags != 0) {
599 		zap_t *zap;
600 		/* Only fat zap supports flags; upgrade immediately. */
601 		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
602 		    B_FALSE, B_FALSE, &zap));
603 		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
604 		zap_unlockdir(zap);
605 	}
606 }
607 
608 int
609 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
610     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
611 {
612 	return (zap_create_claim_norm(os, obj,
613 	    0, ot, bonustype, bonuslen, tx));
614 }
615 
616 int
617 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
618     dmu_object_type_t ot,
619     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
620 {
621 	int err;
622 
623 	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
624 	if (err != 0)
625 		return (err);
626 	mzap_create_impl(os, obj, normflags, 0, tx);
627 	return (0);
628 }
629 
630 uint64_t
631 zap_create(objset_t *os, dmu_object_type_t ot,
632     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
633 {
634 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
635 }
636 
637 uint64_t
638 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
639     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
640 {
641 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
642 
643 	mzap_create_impl(os, obj, normflags, 0, tx);
644 	return (obj);
645 }
646 
647 uint64_t
648 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
649     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
650     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
651 {
652 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
653 
654 	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
655 	    leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
656 	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
657 	    indirect_blockshift <= SPA_MAXBLOCKSHIFT);
658 
659 	VERIFY(dmu_object_set_blocksize(os, obj,
660 	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
661 
662 	mzap_create_impl(os, obj, normflags, flags, tx);
663 	return (obj);
664 }
665 
666 int
667 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
668 {
669 	/*
670 	 * dmu_object_free will free the object number and free the
671 	 * data.  Freeing the data will cause our pageout function to be
672 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
673 	 */
674 
675 	return (dmu_object_free(os, zapobj, tx));
676 }
677 
678 _NOTE(ARGSUSED(0))
679 void
680 zap_evict(dmu_buf_t *db, void *vzap)
681 {
682 	zap_t *zap = vzap;
683 
684 	rw_destroy(&zap->zap_rwlock);
685 
686 	if (zap->zap_ismicro)
687 		mze_destroy(zap);
688 	else
689 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
690 
691 	kmem_free(zap, sizeof (zap_t));
692 }
693 
694 int
695 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
696 {
697 	zap_t *zap;
698 	int err;
699 
700 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
701 	if (err)
702 		return (err);
703 	if (!zap->zap_ismicro) {
704 		err = fzap_count(zap, count);
705 	} else {
706 		*count = zap->zap_m.zap_num_entries;
707 	}
708 	zap_unlockdir(zap);
709 	return (err);
710 }
711 
712 /*
713  * zn may be NULL; if not specified, it will be computed if needed.
714  * See also the comment above zap_entry_normalization_conflict().
715  */
716 static boolean_t
717 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
718 {
719 	mzap_ent_t *other;
720 	int direction = AVL_BEFORE;
721 	boolean_t allocdzn = B_FALSE;
722 
723 	if (zap->zap_normflags == 0)
724 		return (B_FALSE);
725 
726 again:
727 	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
728 	    other && other->mze_hash == mze->mze_hash;
729 	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
730 
731 		if (zn == NULL) {
732 			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
733 			    MT_FIRST);
734 			allocdzn = B_TRUE;
735 		}
736 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
737 			if (allocdzn)
738 				zap_name_free(zn);
739 			return (B_TRUE);
740 		}
741 	}
742 
743 	if (direction == AVL_BEFORE) {
744 		direction = AVL_AFTER;
745 		goto again;
746 	}
747 
748 	if (allocdzn)
749 		zap_name_free(zn);
750 	return (B_FALSE);
751 }
752 
753 /*
754  * Routines for manipulating attributes.
755  */
756 
757 int
758 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
759     uint64_t integer_size, uint64_t num_integers, void *buf)
760 {
761 	return (zap_lookup_norm(os, zapobj, name, integer_size,
762 	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
763 }
764 
765 int
766 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
767     uint64_t integer_size, uint64_t num_integers, void *buf,
768     matchtype_t mt, char *realname, int rn_len,
769     boolean_t *ncp)
770 {
771 	zap_t *zap;
772 	int err;
773 	mzap_ent_t *mze;
774 	zap_name_t *zn;
775 
776 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
777 	if (err)
778 		return (err);
779 	zn = zap_name_alloc(zap, name, mt);
780 	if (zn == NULL) {
781 		zap_unlockdir(zap);
782 		return (ENOTSUP);
783 	}
784 
785 	if (!zap->zap_ismicro) {
786 		err = fzap_lookup(zn, integer_size, num_integers, buf,
787 		    realname, rn_len, ncp);
788 	} else {
789 		mze = mze_find(zn);
790 		if (mze == NULL) {
791 			err = ENOENT;
792 		} else {
793 			if (num_integers < 1) {
794 				err = EOVERFLOW;
795 			} else if (integer_size != 8) {
796 				err = EINVAL;
797 			} else {
798 				*(uint64_t *)buf =
799 				    MZE_PHYS(zap, mze)->mze_value;
800 				(void) strlcpy(realname,
801 				    MZE_PHYS(zap, mze)->mze_name, rn_len);
802 				if (ncp) {
803 					*ncp = mzap_normalization_conflict(zap,
804 					    zn, mze);
805 				}
806 			}
807 		}
808 	}
809 	zap_name_free(zn);
810 	zap_unlockdir(zap);
811 	return (err);
812 }
813 
814 int
815 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
816     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
817 {
818 	zap_t *zap;
819 	int err;
820 	zap_name_t *zn;
821 
822 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
823 	if (err)
824 		return (err);
825 	zn = zap_name_alloc_uint64(zap, key, key_numints);
826 	if (zn == NULL) {
827 		zap_unlockdir(zap);
828 		return (ENOTSUP);
829 	}
830 
831 	err = fzap_lookup(zn, integer_size, num_integers, buf,
832 	    NULL, 0, NULL);
833 	zap_name_free(zn);
834 	zap_unlockdir(zap);
835 	return (err);
836 }
837 
838 int
839 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
840 {
841 	int err = (zap_lookup_norm(os, zapobj, name, 0,
842 	    0, NULL, MT_EXACT, NULL, 0, NULL));
843 	if (err == EOVERFLOW || err == EINVAL)
844 		err = 0; /* found, but skipped reading the value */
845 	return (err);
846 }
847 
848 int
849 zap_length(objset_t *os, uint64_t zapobj, const char *name,
850     uint64_t *integer_size, uint64_t *num_integers)
851 {
852 	zap_t *zap;
853 	int err;
854 	mzap_ent_t *mze;
855 	zap_name_t *zn;
856 
857 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
858 	if (err)
859 		return (err);
860 	zn = zap_name_alloc(zap, name, MT_EXACT);
861 	if (zn == NULL) {
862 		zap_unlockdir(zap);
863 		return (ENOTSUP);
864 	}
865 	if (!zap->zap_ismicro) {
866 		err = fzap_length(zn, integer_size, num_integers);
867 	} else {
868 		mze = mze_find(zn);
869 		if (mze == NULL) {
870 			err = ENOENT;
871 		} else {
872 			if (integer_size)
873 				*integer_size = 8;
874 			if (num_integers)
875 				*num_integers = 1;
876 		}
877 	}
878 	zap_name_free(zn);
879 	zap_unlockdir(zap);
880 	return (err);
881 }
882 
883 int
884 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
885     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
886 {
887 	zap_t *zap;
888 	int err;
889 	zap_name_t *zn;
890 
891 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
892 	if (err)
893 		return (err);
894 	zn = zap_name_alloc_uint64(zap, key, key_numints);
895 	if (zn == NULL) {
896 		zap_unlockdir(zap);
897 		return (ENOTSUP);
898 	}
899 	err = fzap_length(zn, integer_size, num_integers);
900 	zap_name_free(zn);
901 	zap_unlockdir(zap);
902 	return (err);
903 }
904 
905 static void
906 mzap_addent(zap_name_t *zn, uint64_t value)
907 {
908 	int i;
909 	zap_t *zap = zn->zn_zap;
910 	int start = zap->zap_m.zap_alloc_next;
911 	uint32_t cd;
912 
913 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
914 
915 #ifdef ZFS_DEBUG
916 	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
917 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
918 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
919 	}
920 #endif
921 
922 	cd = mze_find_unused_cd(zap, zn->zn_hash);
923 	/* given the limited size of the microzap, this can't happen */
924 	ASSERT(cd < zap_maxcd(zap));
925 
926 again:
927 	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
928 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
929 		if (mze->mze_name[0] == 0) {
930 			mze->mze_value = value;
931 			mze->mze_cd = cd;
932 			(void) strcpy(mze->mze_name, zn->zn_key_orig);
933 			zap->zap_m.zap_num_entries++;
934 			zap->zap_m.zap_alloc_next = i+1;
935 			if (zap->zap_m.zap_alloc_next ==
936 			    zap->zap_m.zap_num_chunks)
937 				zap->zap_m.zap_alloc_next = 0;
938 			mze_insert(zap, i, zn->zn_hash);
939 			return;
940 		}
941 	}
942 	if (start != 0) {
943 		start = 0;
944 		goto again;
945 	}
946 	ASSERT(!"out of entries!");
947 }
948 
949 int
950 zap_add(objset_t *os, uint64_t zapobj, const char *key,
951     int integer_size, uint64_t num_integers,
952     const void *val, dmu_tx_t *tx)
953 {
954 	zap_t *zap;
955 	int err;
956 	mzap_ent_t *mze;
957 	const uint64_t *intval = val;
958 	zap_name_t *zn;
959 
960 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
961 	if (err)
962 		return (err);
963 	zn = zap_name_alloc(zap, key, MT_EXACT);
964 	if (zn == NULL) {
965 		zap_unlockdir(zap);
966 		return (ENOTSUP);
967 	}
968 	if (!zap->zap_ismicro) {
969 		err = fzap_add(zn, integer_size, num_integers, val, tx);
970 		zap = zn->zn_zap;	/* fzap_add() may change zap */
971 	} else if (integer_size != 8 || num_integers != 1 ||
972 	    strlen(key) >= MZAP_NAME_LEN) {
973 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
974 		if (err == 0)
975 			err = fzap_add(zn, integer_size, num_integers, val, tx);
976 		zap = zn->zn_zap;	/* fzap_add() may change zap */
977 	} else {
978 		mze = mze_find(zn);
979 		if (mze != NULL) {
980 			err = EEXIST;
981 		} else {
982 			mzap_addent(zn, *intval);
983 		}
984 	}
985 	ASSERT(zap == zn->zn_zap);
986 	zap_name_free(zn);
987 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
988 		zap_unlockdir(zap);
989 	return (err);
990 }
991 
992 int
993 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
994     int key_numints, int integer_size, uint64_t num_integers,
995     const void *val, dmu_tx_t *tx)
996 {
997 	zap_t *zap;
998 	int err;
999 	zap_name_t *zn;
1000 
1001 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1002 	if (err)
1003 		return (err);
1004 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1005 	if (zn == NULL) {
1006 		zap_unlockdir(zap);
1007 		return (ENOTSUP);
1008 	}
1009 	err = fzap_add(zn, integer_size, num_integers, val, tx);
1010 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1011 	zap_name_free(zn);
1012 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1013 		zap_unlockdir(zap);
1014 	return (err);
1015 }
1016 
1017 int
1018 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1019     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1020 {
1021 	zap_t *zap;
1022 	mzap_ent_t *mze;
1023 	uint64_t oldval;
1024 	const uint64_t *intval = val;
1025 	zap_name_t *zn;
1026 	int err;
1027 
1028 #ifdef ZFS_DEBUG
1029 	/*
1030 	 * If there is an old value, it shouldn't change across the
1031 	 * lockdir (eg, due to bprewrite's xlation).
1032 	 */
1033 	if (integer_size == 8 && num_integers == 1)
1034 		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1035 #endif
1036 
1037 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1038 	if (err)
1039 		return (err);
1040 	zn = zap_name_alloc(zap, name, MT_EXACT);
1041 	if (zn == NULL) {
1042 		zap_unlockdir(zap);
1043 		return (ENOTSUP);
1044 	}
1045 	if (!zap->zap_ismicro) {
1046 		err = fzap_update(zn, integer_size, num_integers, val, tx);
1047 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1048 	} else if (integer_size != 8 || num_integers != 1 ||
1049 	    strlen(name) >= MZAP_NAME_LEN) {
1050 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1051 		    zapobj, integer_size, num_integers, name);
1052 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1053 		if (err == 0)
1054 			err = fzap_update(zn, integer_size, num_integers,
1055 			    val, tx);
1056 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1057 	} else {
1058 		mze = mze_find(zn);
1059 		if (mze != NULL) {
1060 			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1061 			MZE_PHYS(zap, mze)->mze_value = *intval;
1062 		} else {
1063 			mzap_addent(zn, *intval);
1064 		}
1065 	}
1066 	ASSERT(zap == zn->zn_zap);
1067 	zap_name_free(zn);
1068 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1069 		zap_unlockdir(zap);
1070 	return (err);
1071 }
1072 
1073 int
1074 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1075     int key_numints,
1076     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1077 {
1078 	zap_t *zap;
1079 	zap_name_t *zn;
1080 	int err;
1081 
1082 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1083 	if (err)
1084 		return (err);
1085 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1086 	if (zn == NULL) {
1087 		zap_unlockdir(zap);
1088 		return (ENOTSUP);
1089 	}
1090 	err = fzap_update(zn, integer_size, num_integers, val, tx);
1091 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1092 	zap_name_free(zn);
1093 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1094 		zap_unlockdir(zap);
1095 	return (err);
1096 }
1097 
1098 int
1099 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1100 {
1101 	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1102 }
1103 
1104 int
1105 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1106     matchtype_t mt, dmu_tx_t *tx)
1107 {
1108 	zap_t *zap;
1109 	int err;
1110 	mzap_ent_t *mze;
1111 	zap_name_t *zn;
1112 
1113 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1114 	if (err)
1115 		return (err);
1116 	zn = zap_name_alloc(zap, name, mt);
1117 	if (zn == NULL) {
1118 		zap_unlockdir(zap);
1119 		return (ENOTSUP);
1120 	}
1121 	if (!zap->zap_ismicro) {
1122 		err = fzap_remove(zn, tx);
1123 	} else {
1124 		mze = mze_find(zn);
1125 		if (mze == NULL) {
1126 			err = ENOENT;
1127 		} else {
1128 			zap->zap_m.zap_num_entries--;
1129 			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1130 			    sizeof (mzap_ent_phys_t));
1131 			mze_remove(zap, mze);
1132 		}
1133 	}
1134 	zap_name_free(zn);
1135 	zap_unlockdir(zap);
1136 	return (err);
1137 }
1138 
1139 int
1140 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1141     int key_numints, dmu_tx_t *tx)
1142 {
1143 	zap_t *zap;
1144 	int err;
1145 	zap_name_t *zn;
1146 
1147 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1148 	if (err)
1149 		return (err);
1150 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1151 	if (zn == NULL) {
1152 		zap_unlockdir(zap);
1153 		return (ENOTSUP);
1154 	}
1155 	err = fzap_remove(zn, tx);
1156 	zap_name_free(zn);
1157 	zap_unlockdir(zap);
1158 	return (err);
1159 }
1160 
1161 /*
1162  * Routines for iterating over the attributes.
1163  */
1164 
1165 void
1166 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1167     uint64_t serialized)
1168 {
1169 	zc->zc_objset = os;
1170 	zc->zc_zap = NULL;
1171 	zc->zc_leaf = NULL;
1172 	zc->zc_zapobj = zapobj;
1173 	zc->zc_serialized = serialized;
1174 	zc->zc_hash = 0;
1175 	zc->zc_cd = 0;
1176 }
1177 
1178 void
1179 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1180 {
1181 	zap_cursor_init_serialized(zc, os, zapobj, 0);
1182 }
1183 
1184 void
1185 zap_cursor_fini(zap_cursor_t *zc)
1186 {
1187 	if (zc->zc_zap) {
1188 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1189 		zap_unlockdir(zc->zc_zap);
1190 		zc->zc_zap = NULL;
1191 	}
1192 	if (zc->zc_leaf) {
1193 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1194 		zap_put_leaf(zc->zc_leaf);
1195 		zc->zc_leaf = NULL;
1196 	}
1197 	zc->zc_objset = NULL;
1198 }
1199 
1200 uint64_t
1201 zap_cursor_serialize(zap_cursor_t *zc)
1202 {
1203 	if (zc->zc_hash == -1ULL)
1204 		return (-1ULL);
1205 	if (zc->zc_zap == NULL)
1206 		return (zc->zc_serialized);
1207 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1208 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1209 
1210 	/*
1211 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1212 	 * that 32-bit programs can access this.  So usually use a small
1213 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1214 	 * of the cursor.
1215 	 *
1216 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1217 	 */
1218 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1219 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1220 }
1221 
1222 int
1223 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1224 {
1225 	int err;
1226 	avl_index_t idx;
1227 	mzap_ent_t mze_tofind;
1228 	mzap_ent_t *mze;
1229 
1230 	if (zc->zc_hash == -1ULL)
1231 		return (ENOENT);
1232 
1233 	if (zc->zc_zap == NULL) {
1234 		int hb;
1235 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1236 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1237 		if (err)
1238 			return (err);
1239 
1240 		/*
1241 		 * To support zap_cursor_init_serialized, advance, retrieve,
1242 		 * we must add to the existing zc_cd, which may already
1243 		 * be 1 due to the zap_cursor_advance.
1244 		 */
1245 		ASSERT(zc->zc_hash == 0);
1246 		hb = zap_hashbits(zc->zc_zap);
1247 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1248 		zc->zc_cd += zc->zc_serialized >> hb;
1249 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1250 			zc->zc_cd = 0;
1251 	} else {
1252 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1253 	}
1254 	if (!zc->zc_zap->zap_ismicro) {
1255 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1256 	} else {
1257 		err = ENOENT;
1258 
1259 		mze_tofind.mze_hash = zc->zc_hash;
1260 		mze_tofind.mze_cd = zc->zc_cd;
1261 
1262 		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1263 		if (mze == NULL) {
1264 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1265 			    idx, AVL_AFTER);
1266 		}
1267 		if (mze) {
1268 			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1269 			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1270 			za->za_normalization_conflict =
1271 			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1272 			za->za_integer_length = 8;
1273 			za->za_num_integers = 1;
1274 			za->za_first_integer = mzep->mze_value;
1275 			(void) strcpy(za->za_name, mzep->mze_name);
1276 			zc->zc_hash = mze->mze_hash;
1277 			zc->zc_cd = mze->mze_cd;
1278 			err = 0;
1279 		} else {
1280 			zc->zc_hash = -1ULL;
1281 		}
1282 	}
1283 	rw_exit(&zc->zc_zap->zap_rwlock);
1284 	return (err);
1285 }
1286 
1287 void
1288 zap_cursor_advance(zap_cursor_t *zc)
1289 {
1290 	if (zc->zc_hash == -1ULL)
1291 		return;
1292 	zc->zc_cd++;
1293 }
1294 
1295 int
1296 zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1297 {
1298 	int err = 0;
1299 	mzap_ent_t *mze;
1300 	zap_name_t *zn;
1301 
1302 	if (zc->zc_zap == NULL) {
1303 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1304 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1305 		if (err)
1306 			return (err);
1307 	} else {
1308 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1309 	}
1310 
1311 	zn = zap_name_alloc(zc->zc_zap, name, mt);
1312 	if (zn == NULL) {
1313 		rw_exit(&zc->zc_zap->zap_rwlock);
1314 		return (ENOTSUP);
1315 	}
1316 
1317 	if (!zc->zc_zap->zap_ismicro) {
1318 		err = fzap_cursor_move_to_key(zc, zn);
1319 	} else {
1320 		mze = mze_find(zn);
1321 		if (mze == NULL) {
1322 			err = ENOENT;
1323 			goto out;
1324 		}
1325 		zc->zc_hash = mze->mze_hash;
1326 		zc->zc_cd = mze->mze_cd;
1327 	}
1328 
1329 out:
1330 	zap_name_free(zn);
1331 	rw_exit(&zc->zc_zap->zap_rwlock);
1332 	return (err);
1333 }
1334 
1335 int
1336 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1337 {
1338 	int err;
1339 	zap_t *zap;
1340 
1341 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1342 	if (err)
1343 		return (err);
1344 
1345 	bzero(zs, sizeof (zap_stats_t));
1346 
1347 	if (zap->zap_ismicro) {
1348 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1349 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1350 		zs->zs_num_blocks = 1;
1351 	} else {
1352 		fzap_get_stats(zap, zs);
1353 	}
1354 	zap_unlockdir(zap);
1355 	return (0);
1356 }
1357 
1358 int
1359 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1360     uint64_t *towrite, uint64_t *tooverwrite)
1361 {
1362 	zap_t *zap;
1363 	int err = 0;
1364 
1365 
1366 	/*
1367 	 * Since, we don't have a name, we cannot figure out which blocks will
1368 	 * be affected in this operation. So, account for the worst case :
1369 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1370 	 * - 4 new blocks written if adding:
1371 	 * 	- 2 blocks for possibly split leaves,
1372 	 * 	- 2 grown ptrtbl blocks
1373 	 *
1374 	 * This also accomodates the case where an add operation to a fairly
1375 	 * large microzap results in a promotion to fatzap.
1376 	 */
1377 	if (name == NULL) {
1378 		*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1379 		return (err);
1380 	}
1381 
1382 	/*
1383 	 * We lock the zap with adding ==  FALSE. Because, if we pass
1384 	 * the actual value of add, it could trigger a mzap_upgrade().
1385 	 * At present we are just evaluating the possibility of this operation
1386 	 * and hence we donot want to trigger an upgrade.
1387 	 */
1388 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1389 	if (err)
1390 		return (err);
1391 
1392 	if (!zap->zap_ismicro) {
1393 		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1394 		if (zn) {
1395 			err = fzap_count_write(zn, add, towrite,
1396 			    tooverwrite);
1397 			zap_name_free(zn);
1398 		} else {
1399 			/*
1400 			 * We treat this case as similar to (name == NULL)
1401 			 */
1402 			*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1403 		}
1404 	} else {
1405 		/*
1406 		 * We are here if (name != NULL) and this is a micro-zap.
1407 		 * We account for the header block depending on whether it
1408 		 * is freeable.
1409 		 *
1410 		 * Incase of an add-operation it is hard to find out
1411 		 * if this add will promote this microzap to fatzap.
1412 		 * Hence, we consider the worst case and account for the
1413 		 * blocks assuming this microzap would be promoted to a
1414 		 * fatzap.
1415 		 *
1416 		 * 1 block overwritten  : header block
1417 		 * 4 new blocks written : 2 new split leaf, 2 grown
1418 		 *			ptrtbl blocks
1419 		 */
1420 		if (dmu_buf_freeable(zap->zap_dbuf))
1421 			*tooverwrite += SPA_MAXBLOCKSIZE;
1422 		else
1423 			*towrite += SPA_MAXBLOCKSIZE;
1424 
1425 		if (add) {
1426 			*towrite += 4 * SPA_MAXBLOCKSIZE;
1427 		}
1428 	}
1429 
1430 	zap_unlockdir(zap);
1431 	return (err);
1432 }
1433