1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 #include <sys/zio.h> 28 #include <sys/spa.h> 29 #include <sys/dmu.h> 30 #include <sys/zfs_context.h> 31 #include <sys/zap.h> 32 #include <sys/refcount.h> 33 #include <sys/zap_impl.h> 34 #include <sys/zap_leaf.h> 35 #include <sys/avl.h> 36 #include <sys/arc.h> 37 #include <sys/dmu_objset.h> 38 39 #ifdef _KERNEL 40 #include <sys/sunddi.h> 41 #endif 42 43 extern inline mzap_phys_t *zap_m_phys(zap_t *zap); 44 45 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags); 46 47 uint64_t 48 zap_getflags(zap_t *zap) 49 { 50 if (zap->zap_ismicro) 51 return (0); 52 return (zap_f_phys(zap)->zap_flags); 53 } 54 55 int 56 zap_hashbits(zap_t *zap) 57 { 58 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 59 return (48); 60 else 61 return (28); 62 } 63 64 uint32_t 65 zap_maxcd(zap_t *zap) 66 { 67 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 68 return ((1<<16)-1); 69 else 70 return (-1U); 71 } 72 73 static uint64_t 74 zap_hash(zap_name_t *zn) 75 { 76 zap_t *zap = zn->zn_zap; 77 uint64_t h = 0; 78 79 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 80 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 81 h = *(uint64_t *)zn->zn_key_orig; 82 } else { 83 h = zap->zap_salt; 84 ASSERT(h != 0); 85 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 86 87 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 88 int i; 89 const uint64_t *wp = zn->zn_key_norm; 90 91 ASSERT(zn->zn_key_intlen == 8); 92 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) { 93 int j; 94 uint64_t word = *wp; 95 96 for (j = 0; j < zn->zn_key_intlen; j++) { 97 h = (h >> 8) ^ 98 zfs_crc64_table[(h ^ word) & 0xFF]; 99 word >>= NBBY; 100 } 101 } 102 } else { 103 int i, len; 104 const uint8_t *cp = zn->zn_key_norm; 105 106 /* 107 * We previously stored the terminating null on 108 * disk, but didn't hash it, so we need to 109 * continue to not hash it. (The 110 * zn_key_*_numints includes the terminating 111 * null for non-binary keys.) 112 */ 113 len = zn->zn_key_norm_numints - 1; 114 115 ASSERT(zn->zn_key_intlen == 1); 116 for (i = 0; i < len; cp++, i++) { 117 h = (h >> 8) ^ 118 zfs_crc64_table[(h ^ *cp) & 0xFF]; 119 } 120 } 121 } 122 /* 123 * Don't use all 64 bits, since we need some in the cookie for 124 * the collision differentiator. We MUST use the high bits, 125 * since those are the ones that we first pay attention to when 126 * chosing the bucket. 127 */ 128 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 129 130 return (h); 131 } 132 133 static int 134 zap_normalize(zap_t *zap, const char *name, char *namenorm) 135 { 136 size_t inlen, outlen; 137 int err; 138 139 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 140 141 inlen = strlen(name) + 1; 142 outlen = ZAP_MAXNAMELEN; 143 144 err = 0; 145 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 146 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL | 147 U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err); 148 149 return (err); 150 } 151 152 boolean_t 153 zap_match(zap_name_t *zn, const char *matchname) 154 { 155 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 156 157 if (zn->zn_matchtype == MT_FIRST) { 158 char norm[ZAP_MAXNAMELEN]; 159 160 if (zap_normalize(zn->zn_zap, matchname, norm) != 0) 161 return (B_FALSE); 162 163 return (strcmp(zn->zn_key_norm, norm) == 0); 164 } else { 165 /* MT_BEST or MT_EXACT */ 166 return (strcmp(zn->zn_key_orig, matchname) == 0); 167 } 168 } 169 170 void 171 zap_name_free(zap_name_t *zn) 172 { 173 kmem_free(zn, sizeof (zap_name_t)); 174 } 175 176 zap_name_t * 177 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) 178 { 179 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 180 181 zn->zn_zap = zap; 182 zn->zn_key_intlen = sizeof (*key); 183 zn->zn_key_orig = key; 184 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; 185 zn->zn_matchtype = mt; 186 if (zap->zap_normflags) { 187 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) { 188 zap_name_free(zn); 189 return (NULL); 190 } 191 zn->zn_key_norm = zn->zn_normbuf; 192 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 193 } else { 194 if (mt != MT_EXACT) { 195 zap_name_free(zn); 196 return (NULL); 197 } 198 zn->zn_key_norm = zn->zn_key_orig; 199 zn->zn_key_norm_numints = zn->zn_key_orig_numints; 200 } 201 202 zn->zn_hash = zap_hash(zn); 203 return (zn); 204 } 205 206 zap_name_t * 207 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 208 { 209 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 210 211 ASSERT(zap->zap_normflags == 0); 212 zn->zn_zap = zap; 213 zn->zn_key_intlen = sizeof (*key); 214 zn->zn_key_orig = zn->zn_key_norm = key; 215 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; 216 zn->zn_matchtype = MT_EXACT; 217 218 zn->zn_hash = zap_hash(zn); 219 return (zn); 220 } 221 222 static void 223 mzap_byteswap(mzap_phys_t *buf, size_t size) 224 { 225 int i, max; 226 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 227 buf->mz_salt = BSWAP_64(buf->mz_salt); 228 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 229 max = (size / MZAP_ENT_LEN) - 1; 230 for (i = 0; i < max; i++) { 231 buf->mz_chunk[i].mze_value = 232 BSWAP_64(buf->mz_chunk[i].mze_value); 233 buf->mz_chunk[i].mze_cd = 234 BSWAP_32(buf->mz_chunk[i].mze_cd); 235 } 236 } 237 238 void 239 zap_byteswap(void *buf, size_t size) 240 { 241 uint64_t block_type; 242 243 block_type = *(uint64_t *)buf; 244 245 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 246 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 247 mzap_byteswap(buf, size); 248 } else { 249 fzap_byteswap(buf, size); 250 } 251 } 252 253 static int 254 mze_compare(const void *arg1, const void *arg2) 255 { 256 const mzap_ent_t *mze1 = arg1; 257 const mzap_ent_t *mze2 = arg2; 258 259 if (mze1->mze_hash > mze2->mze_hash) 260 return (+1); 261 if (mze1->mze_hash < mze2->mze_hash) 262 return (-1); 263 if (mze1->mze_cd > mze2->mze_cd) 264 return (+1); 265 if (mze1->mze_cd < mze2->mze_cd) 266 return (-1); 267 return (0); 268 } 269 270 static void 271 mze_insert(zap_t *zap, int chunkid, uint64_t hash) 272 { 273 mzap_ent_t *mze; 274 275 ASSERT(zap->zap_ismicro); 276 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 277 278 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 279 mze->mze_chunkid = chunkid; 280 mze->mze_hash = hash; 281 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd; 282 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0); 283 avl_add(&zap->zap_m.zap_avl, mze); 284 } 285 286 static mzap_ent_t * 287 mze_find(zap_name_t *zn) 288 { 289 mzap_ent_t mze_tofind; 290 mzap_ent_t *mze; 291 avl_index_t idx; 292 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; 293 294 ASSERT(zn->zn_zap->zap_ismicro); 295 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 296 297 mze_tofind.mze_hash = zn->zn_hash; 298 mze_tofind.mze_cd = 0; 299 300 again: 301 mze = avl_find(avl, &mze_tofind, &idx); 302 if (mze == NULL) 303 mze = avl_nearest(avl, idx, AVL_AFTER); 304 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { 305 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); 306 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) 307 return (mze); 308 } 309 if (zn->zn_matchtype == MT_BEST) { 310 zn->zn_matchtype = MT_FIRST; 311 goto again; 312 } 313 return (NULL); 314 } 315 316 static uint32_t 317 mze_find_unused_cd(zap_t *zap, uint64_t hash) 318 { 319 mzap_ent_t mze_tofind; 320 mzap_ent_t *mze; 321 avl_index_t idx; 322 avl_tree_t *avl = &zap->zap_m.zap_avl; 323 uint32_t cd; 324 325 ASSERT(zap->zap_ismicro); 326 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 327 328 mze_tofind.mze_hash = hash; 329 mze_tofind.mze_cd = 0; 330 331 cd = 0; 332 for (mze = avl_find(avl, &mze_tofind, &idx); 333 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 334 if (mze->mze_cd != cd) 335 break; 336 cd++; 337 } 338 339 return (cd); 340 } 341 342 static void 343 mze_remove(zap_t *zap, mzap_ent_t *mze) 344 { 345 ASSERT(zap->zap_ismicro); 346 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 347 348 avl_remove(&zap->zap_m.zap_avl, mze); 349 kmem_free(mze, sizeof (mzap_ent_t)); 350 } 351 352 static void 353 mze_destroy(zap_t *zap) 354 { 355 mzap_ent_t *mze; 356 void *avlcookie = NULL; 357 358 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 359 kmem_free(mze, sizeof (mzap_ent_t)); 360 avl_destroy(&zap->zap_m.zap_avl); 361 } 362 363 static zap_t * 364 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 365 { 366 zap_t *winner; 367 zap_t *zap; 368 int i; 369 370 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 371 372 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 373 rw_init(&zap->zap_rwlock, 0, 0, 0); 374 rw_enter(&zap->zap_rwlock, RW_WRITER); 375 zap->zap_objset = os; 376 zap->zap_object = obj; 377 zap->zap_dbuf = db; 378 379 if (*(uint64_t *)db->db_data != ZBT_MICRO) { 380 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 381 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; 382 } else { 383 zap->zap_ismicro = TRUE; 384 } 385 386 /* 387 * Make sure that zap_ismicro is set before we let others see 388 * it, because zap_lockdir() checks zap_ismicro without the lock 389 * held. 390 */ 391 dmu_buf_init_user(&zap->zap_dbu, zap_evict, &zap->zap_dbuf); 392 winner = dmu_buf_set_user(db, &zap->zap_dbu); 393 394 if (winner != NULL) { 395 rw_exit(&zap->zap_rwlock); 396 rw_destroy(&zap->zap_rwlock); 397 if (!zap->zap_ismicro) 398 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 399 kmem_free(zap, sizeof (zap_t)); 400 return (winner); 401 } 402 403 if (zap->zap_ismicro) { 404 zap->zap_salt = zap_m_phys(zap)->mz_salt; 405 zap->zap_normflags = zap_m_phys(zap)->mz_normflags; 406 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 407 avl_create(&zap->zap_m.zap_avl, mze_compare, 408 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 409 410 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 411 mzap_ent_phys_t *mze = 412 &zap_m_phys(zap)->mz_chunk[i]; 413 if (mze->mze_name[0]) { 414 zap_name_t *zn; 415 416 zap->zap_m.zap_num_entries++; 417 zn = zap_name_alloc(zap, mze->mze_name, 418 MT_EXACT); 419 mze_insert(zap, i, zn->zn_hash); 420 zap_name_free(zn); 421 } 422 } 423 } else { 424 zap->zap_salt = zap_f_phys(zap)->zap_salt; 425 zap->zap_normflags = zap_f_phys(zap)->zap_normflags; 426 427 ASSERT3U(sizeof (struct zap_leaf_header), ==, 428 2*ZAP_LEAF_CHUNKSIZE); 429 430 /* 431 * The embedded pointer table should not overlap the 432 * other members. 433 */ 434 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 435 &zap_f_phys(zap)->zap_salt); 436 437 /* 438 * The embedded pointer table should end at the end of 439 * the block 440 */ 441 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 442 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 443 (uintptr_t)zap_f_phys(zap), ==, 444 zap->zap_dbuf->db_size); 445 } 446 rw_exit(&zap->zap_rwlock); 447 return (zap); 448 } 449 450 int 451 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 452 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 453 { 454 zap_t *zap; 455 dmu_buf_t *db; 456 krw_t lt; 457 int err; 458 459 *zapp = NULL; 460 461 err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH); 462 if (err) 463 return (err); 464 465 #ifdef ZFS_DEBUG 466 { 467 dmu_object_info_t doi; 468 dmu_object_info_from_db(db, &doi); 469 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 470 } 471 #endif 472 473 zap = dmu_buf_get_user(db); 474 if (zap == NULL) 475 zap = mzap_open(os, obj, db); 476 477 /* 478 * We're checking zap_ismicro without the lock held, in order to 479 * tell what type of lock we want. Once we have some sort of 480 * lock, see if it really is the right type. In practice this 481 * can only be different if it was upgraded from micro to fat, 482 * and micro wanted WRITER but fat only needs READER. 483 */ 484 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 485 rw_enter(&zap->zap_rwlock, lt); 486 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 487 /* it was upgraded, now we only need reader */ 488 ASSERT(lt == RW_WRITER); 489 ASSERT(RW_READER == 490 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 491 rw_downgrade(&zap->zap_rwlock); 492 lt = RW_READER; 493 } 494 495 zap->zap_objset = os; 496 497 if (lt == RW_WRITER) 498 dmu_buf_will_dirty(db, tx); 499 500 ASSERT3P(zap->zap_dbuf, ==, db); 501 502 ASSERT(!zap->zap_ismicro || 503 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 504 if (zap->zap_ismicro && tx && adding && 505 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 506 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 507 if (newsz > MZAP_MAX_BLKSZ) { 508 dprintf("upgrading obj %llu: num_entries=%u\n", 509 obj, zap->zap_m.zap_num_entries); 510 *zapp = zap; 511 return (mzap_upgrade(zapp, tx, 0)); 512 } 513 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); 514 ASSERT0(err); 515 zap->zap_m.zap_num_chunks = 516 db->db_size / MZAP_ENT_LEN - 1; 517 } 518 519 *zapp = zap; 520 return (0); 521 } 522 523 void 524 zap_unlockdir(zap_t *zap) 525 { 526 rw_exit(&zap->zap_rwlock); 527 dmu_buf_rele(zap->zap_dbuf, NULL); 528 } 529 530 static int 531 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags) 532 { 533 mzap_phys_t *mzp; 534 int i, sz, nchunks; 535 int err = 0; 536 zap_t *zap = *zapp; 537 538 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 539 540 sz = zap->zap_dbuf->db_size; 541 mzp = kmem_alloc(sz, KM_SLEEP); 542 bcopy(zap->zap_dbuf->db_data, mzp, sz); 543 nchunks = zap->zap_m.zap_num_chunks; 544 545 if (!flags) { 546 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 547 1ULL << fzap_default_block_shift, 0, tx); 548 if (err) { 549 kmem_free(mzp, sz); 550 return (err); 551 } 552 } 553 554 dprintf("upgrading obj=%llu with %u chunks\n", 555 zap->zap_object, nchunks); 556 /* XXX destroy the avl later, so we can use the stored hash value */ 557 mze_destroy(zap); 558 559 fzap_upgrade(zap, tx, flags); 560 561 for (i = 0; i < nchunks; i++) { 562 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 563 zap_name_t *zn; 564 if (mze->mze_name[0] == 0) 565 continue; 566 dprintf("adding %s=%llu\n", 567 mze->mze_name, mze->mze_value); 568 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); 569 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx); 570 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 571 zap_name_free(zn); 572 if (err) 573 break; 574 } 575 kmem_free(mzp, sz); 576 *zapp = zap; 577 return (err); 578 } 579 580 void 581 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, 582 dmu_tx_t *tx) 583 { 584 dmu_buf_t *db; 585 mzap_phys_t *zp; 586 587 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); 588 589 #ifdef ZFS_DEBUG 590 { 591 dmu_object_info_t doi; 592 dmu_object_info_from_db(db, &doi); 593 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 594 } 595 #endif 596 597 dmu_buf_will_dirty(db, tx); 598 zp = db->db_data; 599 zp->mz_block_type = ZBT_MICRO; 600 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; 601 zp->mz_normflags = normflags; 602 dmu_buf_rele(db, FTAG); 603 604 if (flags != 0) { 605 zap_t *zap; 606 /* Only fat zap supports flags; upgrade immediately. */ 607 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER, 608 B_FALSE, B_FALSE, &zap)); 609 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags)); 610 zap_unlockdir(zap); 611 } 612 } 613 614 int 615 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 616 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 617 { 618 return (zap_create_claim_norm(os, obj, 619 0, ot, bonustype, bonuslen, tx)); 620 } 621 622 int 623 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 624 dmu_object_type_t ot, 625 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 626 { 627 int err; 628 629 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); 630 if (err != 0) 631 return (err); 632 mzap_create_impl(os, obj, normflags, 0, tx); 633 return (0); 634 } 635 636 uint64_t 637 zap_create(objset_t *os, dmu_object_type_t ot, 638 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 639 { 640 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 641 } 642 643 uint64_t 644 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 645 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 646 { 647 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 648 649 mzap_create_impl(os, obj, normflags, 0, tx); 650 return (obj); 651 } 652 653 uint64_t 654 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 655 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 656 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 657 { 658 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 659 660 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT && 661 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT && 662 indirect_blockshift >= SPA_MINBLOCKSHIFT && 663 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT); 664 665 VERIFY(dmu_object_set_blocksize(os, obj, 666 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0); 667 668 mzap_create_impl(os, obj, normflags, flags, tx); 669 return (obj); 670 } 671 672 int 673 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 674 { 675 /* 676 * dmu_object_free will free the object number and free the 677 * data. Freeing the data will cause our pageout function to be 678 * called, which will destroy our data (zap_leaf_t's and zap_t). 679 */ 680 681 return (dmu_object_free(os, zapobj, tx)); 682 } 683 684 void 685 zap_evict(void *dbu) 686 { 687 zap_t *zap = dbu; 688 689 rw_destroy(&zap->zap_rwlock); 690 691 if (zap->zap_ismicro) 692 mze_destroy(zap); 693 else 694 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 695 696 kmem_free(zap, sizeof (zap_t)); 697 } 698 699 int 700 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 701 { 702 zap_t *zap; 703 int err; 704 705 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 706 if (err) 707 return (err); 708 if (!zap->zap_ismicro) { 709 err = fzap_count(zap, count); 710 } else { 711 *count = zap->zap_m.zap_num_entries; 712 } 713 zap_unlockdir(zap); 714 return (err); 715 } 716 717 /* 718 * zn may be NULL; if not specified, it will be computed if needed. 719 * See also the comment above zap_entry_normalization_conflict(). 720 */ 721 static boolean_t 722 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) 723 { 724 mzap_ent_t *other; 725 int direction = AVL_BEFORE; 726 boolean_t allocdzn = B_FALSE; 727 728 if (zap->zap_normflags == 0) 729 return (B_FALSE); 730 731 again: 732 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction); 733 other && other->mze_hash == mze->mze_hash; 734 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { 735 736 if (zn == NULL) { 737 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name, 738 MT_FIRST); 739 allocdzn = B_TRUE; 740 } 741 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 742 if (allocdzn) 743 zap_name_free(zn); 744 return (B_TRUE); 745 } 746 } 747 748 if (direction == AVL_BEFORE) { 749 direction = AVL_AFTER; 750 goto again; 751 } 752 753 if (allocdzn) 754 zap_name_free(zn); 755 return (B_FALSE); 756 } 757 758 /* 759 * Routines for manipulating attributes. 760 */ 761 762 int 763 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 764 uint64_t integer_size, uint64_t num_integers, void *buf) 765 { 766 return (zap_lookup_norm(os, zapobj, name, integer_size, 767 num_integers, buf, MT_EXACT, NULL, 0, NULL)); 768 } 769 770 int 771 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 772 uint64_t integer_size, uint64_t num_integers, void *buf, 773 matchtype_t mt, char *realname, int rn_len, 774 boolean_t *ncp) 775 { 776 zap_t *zap; 777 int err; 778 mzap_ent_t *mze; 779 zap_name_t *zn; 780 781 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 782 if (err) 783 return (err); 784 zn = zap_name_alloc(zap, name, mt); 785 if (zn == NULL) { 786 zap_unlockdir(zap); 787 return (SET_ERROR(ENOTSUP)); 788 } 789 790 if (!zap->zap_ismicro) { 791 err = fzap_lookup(zn, integer_size, num_integers, buf, 792 realname, rn_len, ncp); 793 } else { 794 mze = mze_find(zn); 795 if (mze == NULL) { 796 err = SET_ERROR(ENOENT); 797 } else { 798 if (num_integers < 1) { 799 err = SET_ERROR(EOVERFLOW); 800 } else if (integer_size != 8) { 801 err = SET_ERROR(EINVAL); 802 } else { 803 *(uint64_t *)buf = 804 MZE_PHYS(zap, mze)->mze_value; 805 (void) strlcpy(realname, 806 MZE_PHYS(zap, mze)->mze_name, rn_len); 807 if (ncp) { 808 *ncp = mzap_normalization_conflict(zap, 809 zn, mze); 810 } 811 } 812 } 813 } 814 zap_name_free(zn); 815 zap_unlockdir(zap); 816 return (err); 817 } 818 819 int 820 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 821 int key_numints) 822 { 823 zap_t *zap; 824 int err; 825 zap_name_t *zn; 826 827 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 828 if (err) 829 return (err); 830 zn = zap_name_alloc_uint64(zap, key, key_numints); 831 if (zn == NULL) { 832 zap_unlockdir(zap); 833 return (SET_ERROR(ENOTSUP)); 834 } 835 836 fzap_prefetch(zn); 837 zap_name_free(zn); 838 zap_unlockdir(zap); 839 return (err); 840 } 841 842 int 843 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 844 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 845 { 846 zap_t *zap; 847 int err; 848 zap_name_t *zn; 849 850 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 851 if (err) 852 return (err); 853 zn = zap_name_alloc_uint64(zap, key, key_numints); 854 if (zn == NULL) { 855 zap_unlockdir(zap); 856 return (SET_ERROR(ENOTSUP)); 857 } 858 859 err = fzap_lookup(zn, integer_size, num_integers, buf, 860 NULL, 0, NULL); 861 zap_name_free(zn); 862 zap_unlockdir(zap); 863 return (err); 864 } 865 866 int 867 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 868 { 869 int err = zap_lookup_norm(os, zapobj, name, 0, 870 0, NULL, MT_EXACT, NULL, 0, NULL); 871 if (err == EOVERFLOW || err == EINVAL) 872 err = 0; /* found, but skipped reading the value */ 873 return (err); 874 } 875 876 int 877 zap_length(objset_t *os, uint64_t zapobj, const char *name, 878 uint64_t *integer_size, uint64_t *num_integers) 879 { 880 zap_t *zap; 881 int err; 882 mzap_ent_t *mze; 883 zap_name_t *zn; 884 885 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 886 if (err) 887 return (err); 888 zn = zap_name_alloc(zap, name, MT_EXACT); 889 if (zn == NULL) { 890 zap_unlockdir(zap); 891 return (SET_ERROR(ENOTSUP)); 892 } 893 if (!zap->zap_ismicro) { 894 err = fzap_length(zn, integer_size, num_integers); 895 } else { 896 mze = mze_find(zn); 897 if (mze == NULL) { 898 err = SET_ERROR(ENOENT); 899 } else { 900 if (integer_size) 901 *integer_size = 8; 902 if (num_integers) 903 *num_integers = 1; 904 } 905 } 906 zap_name_free(zn); 907 zap_unlockdir(zap); 908 return (err); 909 } 910 911 int 912 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 913 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 914 { 915 zap_t *zap; 916 int err; 917 zap_name_t *zn; 918 919 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 920 if (err) 921 return (err); 922 zn = zap_name_alloc_uint64(zap, key, key_numints); 923 if (zn == NULL) { 924 zap_unlockdir(zap); 925 return (SET_ERROR(ENOTSUP)); 926 } 927 err = fzap_length(zn, integer_size, num_integers); 928 zap_name_free(zn); 929 zap_unlockdir(zap); 930 return (err); 931 } 932 933 static void 934 mzap_addent(zap_name_t *zn, uint64_t value) 935 { 936 int i; 937 zap_t *zap = zn->zn_zap; 938 int start = zap->zap_m.zap_alloc_next; 939 uint32_t cd; 940 941 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 942 943 #ifdef ZFS_DEBUG 944 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 945 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 946 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 947 } 948 #endif 949 950 cd = mze_find_unused_cd(zap, zn->zn_hash); 951 /* given the limited size of the microzap, this can't happen */ 952 ASSERT(cd < zap_maxcd(zap)); 953 954 again: 955 for (i = start; i < zap->zap_m.zap_num_chunks; i++) { 956 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 957 if (mze->mze_name[0] == 0) { 958 mze->mze_value = value; 959 mze->mze_cd = cd; 960 (void) strcpy(mze->mze_name, zn->zn_key_orig); 961 zap->zap_m.zap_num_entries++; 962 zap->zap_m.zap_alloc_next = i+1; 963 if (zap->zap_m.zap_alloc_next == 964 zap->zap_m.zap_num_chunks) 965 zap->zap_m.zap_alloc_next = 0; 966 mze_insert(zap, i, zn->zn_hash); 967 return; 968 } 969 } 970 if (start != 0) { 971 start = 0; 972 goto again; 973 } 974 ASSERT(!"out of entries!"); 975 } 976 977 int 978 zap_add(objset_t *os, uint64_t zapobj, const char *key, 979 int integer_size, uint64_t num_integers, 980 const void *val, dmu_tx_t *tx) 981 { 982 zap_t *zap; 983 int err; 984 mzap_ent_t *mze; 985 const uint64_t *intval = val; 986 zap_name_t *zn; 987 988 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 989 if (err) 990 return (err); 991 zn = zap_name_alloc(zap, key, MT_EXACT); 992 if (zn == NULL) { 993 zap_unlockdir(zap); 994 return (SET_ERROR(ENOTSUP)); 995 } 996 if (!zap->zap_ismicro) { 997 err = fzap_add(zn, integer_size, num_integers, val, tx); 998 zap = zn->zn_zap; /* fzap_add() may change zap */ 999 } else if (integer_size != 8 || num_integers != 1 || 1000 strlen(key) >= MZAP_NAME_LEN) { 1001 err = mzap_upgrade(&zn->zn_zap, tx, 0); 1002 if (err == 0) 1003 err = fzap_add(zn, integer_size, num_integers, val, tx); 1004 zap = zn->zn_zap; /* fzap_add() may change zap */ 1005 } else { 1006 mze = mze_find(zn); 1007 if (mze != NULL) { 1008 err = SET_ERROR(EEXIST); 1009 } else { 1010 mzap_addent(zn, *intval); 1011 } 1012 } 1013 ASSERT(zap == zn->zn_zap); 1014 zap_name_free(zn); 1015 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1016 zap_unlockdir(zap); 1017 return (err); 1018 } 1019 1020 int 1021 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1022 int key_numints, int integer_size, uint64_t num_integers, 1023 const void *val, dmu_tx_t *tx) 1024 { 1025 zap_t *zap; 1026 int err; 1027 zap_name_t *zn; 1028 1029 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1030 if (err) 1031 return (err); 1032 zn = zap_name_alloc_uint64(zap, key, key_numints); 1033 if (zn == NULL) { 1034 zap_unlockdir(zap); 1035 return (SET_ERROR(ENOTSUP)); 1036 } 1037 err = fzap_add(zn, integer_size, num_integers, val, tx); 1038 zap = zn->zn_zap; /* fzap_add() may change zap */ 1039 zap_name_free(zn); 1040 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1041 zap_unlockdir(zap); 1042 return (err); 1043 } 1044 1045 int 1046 zap_update(objset_t *os, uint64_t zapobj, const char *name, 1047 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1048 { 1049 zap_t *zap; 1050 mzap_ent_t *mze; 1051 uint64_t oldval; 1052 const uint64_t *intval = val; 1053 zap_name_t *zn; 1054 int err; 1055 1056 #ifdef ZFS_DEBUG 1057 /* 1058 * If there is an old value, it shouldn't change across the 1059 * lockdir (eg, due to bprewrite's xlation). 1060 */ 1061 if (integer_size == 8 && num_integers == 1) 1062 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval); 1063 #endif 1064 1065 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1066 if (err) 1067 return (err); 1068 zn = zap_name_alloc(zap, name, MT_EXACT); 1069 if (zn == NULL) { 1070 zap_unlockdir(zap); 1071 return (SET_ERROR(ENOTSUP)); 1072 } 1073 if (!zap->zap_ismicro) { 1074 err = fzap_update(zn, integer_size, num_integers, val, tx); 1075 zap = zn->zn_zap; /* fzap_update() may change zap */ 1076 } else if (integer_size != 8 || num_integers != 1 || 1077 strlen(name) >= MZAP_NAME_LEN) { 1078 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1079 zapobj, integer_size, num_integers, name); 1080 err = mzap_upgrade(&zn->zn_zap, tx, 0); 1081 if (err == 0) 1082 err = fzap_update(zn, integer_size, num_integers, 1083 val, tx); 1084 zap = zn->zn_zap; /* fzap_update() may change zap */ 1085 } else { 1086 mze = mze_find(zn); 1087 if (mze != NULL) { 1088 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval); 1089 MZE_PHYS(zap, mze)->mze_value = *intval; 1090 } else { 1091 mzap_addent(zn, *intval); 1092 } 1093 } 1094 ASSERT(zap == zn->zn_zap); 1095 zap_name_free(zn); 1096 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1097 zap_unlockdir(zap); 1098 return (err); 1099 } 1100 1101 int 1102 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1103 int key_numints, 1104 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1105 { 1106 zap_t *zap; 1107 zap_name_t *zn; 1108 int err; 1109 1110 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1111 if (err) 1112 return (err); 1113 zn = zap_name_alloc_uint64(zap, key, key_numints); 1114 if (zn == NULL) { 1115 zap_unlockdir(zap); 1116 return (SET_ERROR(ENOTSUP)); 1117 } 1118 err = fzap_update(zn, integer_size, num_integers, val, tx); 1119 zap = zn->zn_zap; /* fzap_update() may change zap */ 1120 zap_name_free(zn); 1121 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1122 zap_unlockdir(zap); 1123 return (err); 1124 } 1125 1126 int 1127 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1128 { 1129 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx)); 1130 } 1131 1132 int 1133 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1134 matchtype_t mt, dmu_tx_t *tx) 1135 { 1136 zap_t *zap; 1137 int err; 1138 mzap_ent_t *mze; 1139 zap_name_t *zn; 1140 1141 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1142 if (err) 1143 return (err); 1144 zn = zap_name_alloc(zap, name, mt); 1145 if (zn == NULL) { 1146 zap_unlockdir(zap); 1147 return (SET_ERROR(ENOTSUP)); 1148 } 1149 if (!zap->zap_ismicro) { 1150 err = fzap_remove(zn, tx); 1151 } else { 1152 mze = mze_find(zn); 1153 if (mze == NULL) { 1154 err = SET_ERROR(ENOENT); 1155 } else { 1156 zap->zap_m.zap_num_entries--; 1157 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid], 1158 sizeof (mzap_ent_phys_t)); 1159 mze_remove(zap, mze); 1160 } 1161 } 1162 zap_name_free(zn); 1163 zap_unlockdir(zap); 1164 return (err); 1165 } 1166 1167 int 1168 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1169 int key_numints, dmu_tx_t *tx) 1170 { 1171 zap_t *zap; 1172 int err; 1173 zap_name_t *zn; 1174 1175 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1176 if (err) 1177 return (err); 1178 zn = zap_name_alloc_uint64(zap, key, key_numints); 1179 if (zn == NULL) { 1180 zap_unlockdir(zap); 1181 return (SET_ERROR(ENOTSUP)); 1182 } 1183 err = fzap_remove(zn, tx); 1184 zap_name_free(zn); 1185 zap_unlockdir(zap); 1186 return (err); 1187 } 1188 1189 /* 1190 * Routines for iterating over the attributes. 1191 */ 1192 1193 void 1194 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1195 uint64_t serialized) 1196 { 1197 zc->zc_objset = os; 1198 zc->zc_zap = NULL; 1199 zc->zc_leaf = NULL; 1200 zc->zc_zapobj = zapobj; 1201 zc->zc_serialized = serialized; 1202 zc->zc_hash = 0; 1203 zc->zc_cd = 0; 1204 } 1205 1206 void 1207 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1208 { 1209 zap_cursor_init_serialized(zc, os, zapobj, 0); 1210 } 1211 1212 void 1213 zap_cursor_fini(zap_cursor_t *zc) 1214 { 1215 if (zc->zc_zap) { 1216 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1217 zap_unlockdir(zc->zc_zap); 1218 zc->zc_zap = NULL; 1219 } 1220 if (zc->zc_leaf) { 1221 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1222 zap_put_leaf(zc->zc_leaf); 1223 zc->zc_leaf = NULL; 1224 } 1225 zc->zc_objset = NULL; 1226 } 1227 1228 uint64_t 1229 zap_cursor_serialize(zap_cursor_t *zc) 1230 { 1231 if (zc->zc_hash == -1ULL) 1232 return (-1ULL); 1233 if (zc->zc_zap == NULL) 1234 return (zc->zc_serialized); 1235 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1236 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1237 1238 /* 1239 * We want to keep the high 32 bits of the cursor zero if we can, so 1240 * that 32-bit programs can access this. So usually use a small 1241 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1242 * of the cursor. 1243 * 1244 * [ collision differentiator | zap_hashbits()-bit hash value ] 1245 */ 1246 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1247 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1248 } 1249 1250 int 1251 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1252 { 1253 int err; 1254 avl_index_t idx; 1255 mzap_ent_t mze_tofind; 1256 mzap_ent_t *mze; 1257 1258 if (zc->zc_hash == -1ULL) 1259 return (SET_ERROR(ENOENT)); 1260 1261 if (zc->zc_zap == NULL) { 1262 int hb; 1263 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1264 RW_READER, TRUE, FALSE, &zc->zc_zap); 1265 if (err) 1266 return (err); 1267 1268 /* 1269 * To support zap_cursor_init_serialized, advance, retrieve, 1270 * we must add to the existing zc_cd, which may already 1271 * be 1 due to the zap_cursor_advance. 1272 */ 1273 ASSERT(zc->zc_hash == 0); 1274 hb = zap_hashbits(zc->zc_zap); 1275 zc->zc_hash = zc->zc_serialized << (64 - hb); 1276 zc->zc_cd += zc->zc_serialized >> hb; 1277 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1278 zc->zc_cd = 0; 1279 } else { 1280 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1281 } 1282 if (!zc->zc_zap->zap_ismicro) { 1283 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1284 } else { 1285 mze_tofind.mze_hash = zc->zc_hash; 1286 mze_tofind.mze_cd = zc->zc_cd; 1287 1288 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 1289 if (mze == NULL) { 1290 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 1291 idx, AVL_AFTER); 1292 } 1293 if (mze) { 1294 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); 1295 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); 1296 za->za_normalization_conflict = 1297 mzap_normalization_conflict(zc->zc_zap, NULL, mze); 1298 za->za_integer_length = 8; 1299 za->za_num_integers = 1; 1300 za->za_first_integer = mzep->mze_value; 1301 (void) strcpy(za->za_name, mzep->mze_name); 1302 zc->zc_hash = mze->mze_hash; 1303 zc->zc_cd = mze->mze_cd; 1304 err = 0; 1305 } else { 1306 zc->zc_hash = -1ULL; 1307 err = SET_ERROR(ENOENT); 1308 } 1309 } 1310 rw_exit(&zc->zc_zap->zap_rwlock); 1311 return (err); 1312 } 1313 1314 void 1315 zap_cursor_advance(zap_cursor_t *zc) 1316 { 1317 if (zc->zc_hash == -1ULL) 1318 return; 1319 zc->zc_cd++; 1320 } 1321 1322 int 1323 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1324 { 1325 int err; 1326 zap_t *zap; 1327 1328 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1329 if (err) 1330 return (err); 1331 1332 bzero(zs, sizeof (zap_stats_t)); 1333 1334 if (zap->zap_ismicro) { 1335 zs->zs_blocksize = zap->zap_dbuf->db_size; 1336 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1337 zs->zs_num_blocks = 1; 1338 } else { 1339 fzap_get_stats(zap, zs); 1340 } 1341 zap_unlockdir(zap); 1342 return (0); 1343 } 1344 1345 int 1346 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add, 1347 uint64_t *towrite, uint64_t *tooverwrite) 1348 { 1349 zap_t *zap; 1350 int err = 0; 1351 1352 /* 1353 * Since, we don't have a name, we cannot figure out which blocks will 1354 * be affected in this operation. So, account for the worst case : 1355 * - 3 blocks overwritten: target leaf, ptrtbl block, header block 1356 * - 4 new blocks written if adding: 1357 * - 2 blocks for possibly split leaves, 1358 * - 2 grown ptrtbl blocks 1359 * 1360 * This also accomodates the case where an add operation to a fairly 1361 * large microzap results in a promotion to fatzap. 1362 */ 1363 if (name == NULL) { 1364 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE; 1365 return (err); 1366 } 1367 1368 /* 1369 * We lock the zap with adding == FALSE. Because, if we pass 1370 * the actual value of add, it could trigger a mzap_upgrade(). 1371 * At present we are just evaluating the possibility of this operation 1372 * and hence we donot want to trigger an upgrade. 1373 */ 1374 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1375 if (err) 1376 return (err); 1377 1378 if (!zap->zap_ismicro) { 1379 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT); 1380 if (zn) { 1381 err = fzap_count_write(zn, add, towrite, 1382 tooverwrite); 1383 zap_name_free(zn); 1384 } else { 1385 /* 1386 * We treat this case as similar to (name == NULL) 1387 */ 1388 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE; 1389 } 1390 } else { 1391 /* 1392 * We are here if (name != NULL) and this is a micro-zap. 1393 * We account for the header block depending on whether it 1394 * is freeable. 1395 * 1396 * Incase of an add-operation it is hard to find out 1397 * if this add will promote this microzap to fatzap. 1398 * Hence, we consider the worst case and account for the 1399 * blocks assuming this microzap would be promoted to a 1400 * fatzap. 1401 * 1402 * 1 block overwritten : header block 1403 * 4 new blocks written : 2 new split leaf, 2 grown 1404 * ptrtbl blocks 1405 */ 1406 if (dmu_buf_freeable(zap->zap_dbuf)) 1407 *tooverwrite += MZAP_MAX_BLKSZ; 1408 else 1409 *towrite += MZAP_MAX_BLKSZ; 1410 1411 if (add) { 1412 *towrite += 4 * MZAP_MAX_BLKSZ; 1413 } 1414 } 1415 1416 zap_unlockdir(zap); 1417 return (err); 1418 } 1419