1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 #include <sys/zio.h> 31 #include <sys/spa.h> 32 #include <sys/dmu.h> 33 #include <sys/zfs_context.h> 34 #include <sys/zap.h> 35 #include <sys/refcount.h> 36 #include <sys/zap_impl.h> 37 #include <sys/zap_leaf.h> 38 #include <sys/avl.h> 39 #include <sys/arc.h> 40 #include <sys/dmu_objset.h> 41 42 #ifdef _KERNEL 43 #include <sys/sunddi.h> 44 #endif 45 46 extern inline mzap_phys_t *zap_m_phys(zap_t *zap); 47 48 static int mzap_upgrade(zap_t **zapp, 49 void *tag, dmu_tx_t *tx, zap_flags_t flags); 50 51 uint64_t 52 zap_getflags(zap_t *zap) 53 { 54 if (zap->zap_ismicro) 55 return (0); 56 return (zap_f_phys(zap)->zap_flags); 57 } 58 59 int 60 zap_hashbits(zap_t *zap) 61 { 62 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 63 return (48); 64 else 65 return (28); 66 } 67 68 uint32_t 69 zap_maxcd(zap_t *zap) 70 { 71 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 72 return ((1<<16)-1); 73 else 74 return (-1U); 75 } 76 77 static uint64_t 78 zap_hash(zap_name_t *zn) 79 { 80 zap_t *zap = zn->zn_zap; 81 uint64_t h = 0; 82 83 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 84 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 85 h = *(uint64_t *)zn->zn_key_orig; 86 } else { 87 h = zap->zap_salt; 88 ASSERT(h != 0); 89 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 90 91 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 92 const uint64_t *wp = zn->zn_key_norm; 93 94 ASSERT(zn->zn_key_intlen == 8); 95 for (int i = 0; i < zn->zn_key_norm_numints; 96 wp++, i++) { 97 uint64_t word = *wp; 98 99 for (int j = 0; j < zn->zn_key_intlen; j++) { 100 h = (h >> 8) ^ 101 zfs_crc64_table[(h ^ word) & 0xFF]; 102 word >>= NBBY; 103 } 104 } 105 } else { 106 const uint8_t *cp = zn->zn_key_norm; 107 108 /* 109 * We previously stored the terminating null on 110 * disk, but didn't hash it, so we need to 111 * continue to not hash it. (The 112 * zn_key_*_numints includes the terminating 113 * null for non-binary keys.) 114 */ 115 int len = zn->zn_key_norm_numints - 1; 116 117 ASSERT(zn->zn_key_intlen == 1); 118 for (int i = 0; i < len; cp++, i++) { 119 h = (h >> 8) ^ 120 zfs_crc64_table[(h ^ *cp) & 0xFF]; 121 } 122 } 123 } 124 /* 125 * Don't use all 64 bits, since we need some in the cookie for 126 * the collision differentiator. We MUST use the high bits, 127 * since those are the ones that we first pay attention to when 128 * chosing the bucket. 129 */ 130 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 131 132 return (h); 133 } 134 135 static int 136 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags) 137 { 138 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 139 140 size_t inlen = strlen(name) + 1; 141 size_t outlen = ZAP_MAXNAMELEN; 142 143 int err = 0; 144 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 145 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID, 146 U8_UNICODE_LATEST, &err); 147 148 return (err); 149 } 150 151 boolean_t 152 zap_match(zap_name_t *zn, const char *matchname) 153 { 154 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 155 156 if (zn->zn_matchtype & MT_NORMALIZE) { 157 char norm[ZAP_MAXNAMELEN]; 158 159 if (zap_normalize(zn->zn_zap, matchname, norm, 160 zn->zn_normflags) != 0) 161 return (B_FALSE); 162 163 return (strcmp(zn->zn_key_norm, norm) == 0); 164 } else { 165 return (strcmp(zn->zn_key_orig, matchname) == 0); 166 } 167 } 168 169 void 170 zap_name_free(zap_name_t *zn) 171 { 172 kmem_free(zn, sizeof (zap_name_t)); 173 } 174 175 zap_name_t * 176 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) 177 { 178 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 179 180 zn->zn_zap = zap; 181 zn->zn_key_intlen = sizeof (*key); 182 zn->zn_key_orig = key; 183 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; 184 zn->zn_matchtype = mt; 185 zn->zn_normflags = zap->zap_normflags; 186 187 /* 188 * If we're dealing with a case sensitive lookup on a mixed or 189 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup 190 * will fold case to all caps overriding the lookup request. 191 */ 192 if (mt & MT_MATCH_CASE) 193 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER; 194 195 if (zap->zap_normflags) { 196 /* 197 * We *must* use zap_normflags because this normalization is 198 * what the hash is computed from. 199 */ 200 if (zap_normalize(zap, key, zn->zn_normbuf, 201 zap->zap_normflags) != 0) { 202 zap_name_free(zn); 203 return (NULL); 204 } 205 zn->zn_key_norm = zn->zn_normbuf; 206 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 207 } else { 208 if (mt != 0) { 209 zap_name_free(zn); 210 return (NULL); 211 } 212 zn->zn_key_norm = zn->zn_key_orig; 213 zn->zn_key_norm_numints = zn->zn_key_orig_numints; 214 } 215 216 zn->zn_hash = zap_hash(zn); 217 218 if (zap->zap_normflags != zn->zn_normflags) { 219 /* 220 * We *must* use zn_normflags because this normalization is 221 * what the matching is based on. (Not the hash!) 222 */ 223 if (zap_normalize(zap, key, zn->zn_normbuf, 224 zn->zn_normflags) != 0) { 225 zap_name_free(zn); 226 return (NULL); 227 } 228 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 229 } 230 231 return (zn); 232 } 233 234 zap_name_t * 235 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 236 { 237 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 238 239 ASSERT(zap->zap_normflags == 0); 240 zn->zn_zap = zap; 241 zn->zn_key_intlen = sizeof (*key); 242 zn->zn_key_orig = zn->zn_key_norm = key; 243 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; 244 zn->zn_matchtype = 0; 245 246 zn->zn_hash = zap_hash(zn); 247 return (zn); 248 } 249 250 static void 251 mzap_byteswap(mzap_phys_t *buf, size_t size) 252 { 253 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 254 buf->mz_salt = BSWAP_64(buf->mz_salt); 255 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 256 int max = (size / MZAP_ENT_LEN) - 1; 257 for (int i = 0; i < max; i++) { 258 buf->mz_chunk[i].mze_value = 259 BSWAP_64(buf->mz_chunk[i].mze_value); 260 buf->mz_chunk[i].mze_cd = 261 BSWAP_32(buf->mz_chunk[i].mze_cd); 262 } 263 } 264 265 void 266 zap_byteswap(void *buf, size_t size) 267 { 268 uint64_t block_type = *(uint64_t *)buf; 269 270 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 271 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 272 mzap_byteswap(buf, size); 273 } else { 274 fzap_byteswap(buf, size); 275 } 276 } 277 278 static int 279 mze_compare(const void *arg1, const void *arg2) 280 { 281 const mzap_ent_t *mze1 = arg1; 282 const mzap_ent_t *mze2 = arg2; 283 284 int cmp = AVL_CMP(mze1->mze_hash, mze2->mze_hash); 285 if (likely(cmp)) 286 return (cmp); 287 288 return (AVL_CMP(mze1->mze_cd, mze2->mze_cd)); 289 } 290 291 static void 292 mze_insert(zap_t *zap, int chunkid, uint64_t hash) 293 { 294 ASSERT(zap->zap_ismicro); 295 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 296 297 mzap_ent_t *mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 298 mze->mze_chunkid = chunkid; 299 mze->mze_hash = hash; 300 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd; 301 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0); 302 avl_add(&zap->zap_m.zap_avl, mze); 303 } 304 305 static mzap_ent_t * 306 mze_find(zap_name_t *zn) 307 { 308 mzap_ent_t mze_tofind; 309 mzap_ent_t *mze; 310 avl_index_t idx; 311 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; 312 313 ASSERT(zn->zn_zap->zap_ismicro); 314 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 315 316 mze_tofind.mze_hash = zn->zn_hash; 317 mze_tofind.mze_cd = 0; 318 319 mze = avl_find(avl, &mze_tofind, &idx); 320 if (mze == NULL) 321 mze = avl_nearest(avl, idx, AVL_AFTER); 322 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { 323 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); 324 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) 325 return (mze); 326 } 327 328 return (NULL); 329 } 330 331 static uint32_t 332 mze_find_unused_cd(zap_t *zap, uint64_t hash) 333 { 334 mzap_ent_t mze_tofind; 335 avl_index_t idx; 336 avl_tree_t *avl = &zap->zap_m.zap_avl; 337 338 ASSERT(zap->zap_ismicro); 339 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 340 341 mze_tofind.mze_hash = hash; 342 mze_tofind.mze_cd = 0; 343 344 uint32_t cd = 0; 345 for (mzap_ent_t *mze = avl_find(avl, &mze_tofind, &idx); 346 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 347 if (mze->mze_cd != cd) 348 break; 349 cd++; 350 } 351 352 return (cd); 353 } 354 355 static void 356 mze_remove(zap_t *zap, mzap_ent_t *mze) 357 { 358 ASSERT(zap->zap_ismicro); 359 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 360 361 avl_remove(&zap->zap_m.zap_avl, mze); 362 kmem_free(mze, sizeof (mzap_ent_t)); 363 } 364 365 static void 366 mze_destroy(zap_t *zap) 367 { 368 mzap_ent_t *mze; 369 void *avlcookie = NULL; 370 371 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 372 kmem_free(mze, sizeof (mzap_ent_t)); 373 avl_destroy(&zap->zap_m.zap_avl); 374 } 375 376 static zap_t * 377 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 378 { 379 zap_t *winner; 380 uint64_t *zap_hdr = (uint64_t *)db->db_data; 381 uint64_t zap_block_type = zap_hdr[0]; 382 uint64_t zap_magic = zap_hdr[1]; 383 384 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 385 386 zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 387 rw_init(&zap->zap_rwlock, 0, 0, 0); 388 rw_enter(&zap->zap_rwlock, RW_WRITER); 389 zap->zap_objset = os; 390 zap->zap_object = obj; 391 zap->zap_dbuf = db; 392 393 if (zap_block_type != ZBT_MICRO) { 394 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 395 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; 396 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) { 397 winner = NULL; /* No actual winner here... */ 398 goto handle_winner; 399 } 400 } else { 401 zap->zap_ismicro = TRUE; 402 } 403 404 /* 405 * Make sure that zap_ismicro is set before we let others see 406 * it, because zap_lockdir() checks zap_ismicro without the lock 407 * held. 408 */ 409 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf); 410 winner = dmu_buf_set_user(db, &zap->zap_dbu); 411 412 if (winner != NULL) 413 goto handle_winner; 414 415 if (zap->zap_ismicro) { 416 zap->zap_salt = zap_m_phys(zap)->mz_salt; 417 zap->zap_normflags = zap_m_phys(zap)->mz_normflags; 418 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 419 avl_create(&zap->zap_m.zap_avl, mze_compare, 420 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 421 422 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) { 423 mzap_ent_phys_t *mze = 424 &zap_m_phys(zap)->mz_chunk[i]; 425 if (mze->mze_name[0]) { 426 zap_name_t *zn; 427 428 zap->zap_m.zap_num_entries++; 429 zn = zap_name_alloc(zap, mze->mze_name, 0); 430 mze_insert(zap, i, zn->zn_hash); 431 zap_name_free(zn); 432 } 433 } 434 } else { 435 zap->zap_salt = zap_f_phys(zap)->zap_salt; 436 zap->zap_normflags = zap_f_phys(zap)->zap_normflags; 437 438 ASSERT3U(sizeof (struct zap_leaf_header), ==, 439 2*ZAP_LEAF_CHUNKSIZE); 440 441 /* 442 * The embedded pointer table should not overlap the 443 * other members. 444 */ 445 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 446 &zap_f_phys(zap)->zap_salt); 447 448 /* 449 * The embedded pointer table should end at the end of 450 * the block 451 */ 452 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 453 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 454 (uintptr_t)zap_f_phys(zap), ==, 455 zap->zap_dbuf->db_size); 456 } 457 rw_exit(&zap->zap_rwlock); 458 return (zap); 459 460 handle_winner: 461 rw_exit(&zap->zap_rwlock); 462 rw_destroy(&zap->zap_rwlock); 463 if (!zap->zap_ismicro) 464 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 465 kmem_free(zap, sizeof (zap_t)); 466 return (winner); 467 } 468 469 /* 470 * This routine "consumes" the caller's hold on the dbuf, which must 471 * have the specified tag. 472 */ 473 static int 474 zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx, 475 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 476 { 477 ASSERT0(db->db_offset); 478 objset_t *os = dmu_buf_get_objset(db); 479 uint64_t obj = db->db_object; 480 481 *zapp = NULL; 482 483 zap_t *zap = dmu_buf_get_user(db); 484 if (zap == NULL) { 485 zap = mzap_open(os, obj, db); 486 if (zap == NULL) { 487 /* 488 * mzap_open() didn't like what it saw on-disk. 489 * Check for corruption! 490 */ 491 return (SET_ERROR(EIO)); 492 } 493 } 494 495 /* 496 * We're checking zap_ismicro without the lock held, in order to 497 * tell what type of lock we want. Once we have some sort of 498 * lock, see if it really is the right type. In practice this 499 * can only be different if it was upgraded from micro to fat, 500 * and micro wanted WRITER but fat only needs READER. 501 */ 502 krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 503 rw_enter(&zap->zap_rwlock, lt); 504 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 505 /* it was upgraded, now we only need reader */ 506 ASSERT(lt == RW_WRITER); 507 ASSERT(RW_READER == 508 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 509 rw_downgrade(&zap->zap_rwlock); 510 lt = RW_READER; 511 } 512 513 zap->zap_objset = os; 514 515 if (lt == RW_WRITER) 516 dmu_buf_will_dirty(db, tx); 517 518 ASSERT3P(zap->zap_dbuf, ==, db); 519 520 ASSERT(!zap->zap_ismicro || 521 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 522 if (zap->zap_ismicro && tx && adding && 523 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 524 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 525 if (newsz > MZAP_MAX_BLKSZ) { 526 dprintf("upgrading obj %llu: num_entries=%u\n", 527 obj, zap->zap_m.zap_num_entries); 528 *zapp = zap; 529 int err = mzap_upgrade(zapp, tag, tx, 0); 530 if (err != 0) 531 rw_exit(&zap->zap_rwlock); 532 return (err); 533 } 534 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx)); 535 zap->zap_m.zap_num_chunks = 536 db->db_size / MZAP_ENT_LEN - 1; 537 } 538 539 *zapp = zap; 540 return (0); 541 } 542 543 static int 544 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx, 545 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp) 546 { 547 dmu_buf_t *db; 548 549 int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH); 550 if (err != 0) { 551 return (err); 552 } 553 #ifdef ZFS_DEBUG 554 { 555 dmu_object_info_t doi; 556 dmu_object_info_from_db(db, &doi); 557 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 558 } 559 #endif 560 561 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp); 562 if (err != 0) { 563 dmu_buf_rele(db, tag); 564 } 565 return (err); 566 } 567 568 int 569 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 570 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp) 571 { 572 dmu_buf_t *db; 573 574 int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH); 575 if (err != 0) 576 return (err); 577 #ifdef ZFS_DEBUG 578 { 579 dmu_object_info_t doi; 580 dmu_object_info_from_db(db, &doi); 581 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 582 } 583 #endif 584 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp); 585 if (err != 0) 586 dmu_buf_rele(db, tag); 587 return (err); 588 } 589 590 void 591 zap_unlockdir(zap_t *zap, void *tag) 592 { 593 rw_exit(&zap->zap_rwlock); 594 dmu_buf_rele(zap->zap_dbuf, tag); 595 } 596 597 static int 598 mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags) 599 { 600 int err = 0; 601 zap_t *zap = *zapp; 602 603 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 604 605 int sz = zap->zap_dbuf->db_size; 606 mzap_phys_t *mzp = zio_buf_alloc(sz); 607 bcopy(zap->zap_dbuf->db_data, mzp, sz); 608 int nchunks = zap->zap_m.zap_num_chunks; 609 610 if (!flags) { 611 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 612 1ULL << fzap_default_block_shift, 0, tx); 613 if (err != 0) { 614 zio_buf_free(mzp, sz); 615 return (err); 616 } 617 } 618 619 dprintf("upgrading obj=%llu with %u chunks\n", 620 zap->zap_object, nchunks); 621 /* XXX destroy the avl later, so we can use the stored hash value */ 622 mze_destroy(zap); 623 624 fzap_upgrade(zap, tx, flags); 625 626 for (int i = 0; i < nchunks; i++) { 627 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 628 if (mze->mze_name[0] == 0) 629 continue; 630 dprintf("adding %s=%llu\n", 631 mze->mze_name, mze->mze_value); 632 zap_name_t *zn = zap_name_alloc(zap, mze->mze_name, 0); 633 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, 634 tag, tx); 635 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 636 zap_name_free(zn); 637 if (err != 0) 638 break; 639 } 640 zio_buf_free(mzp, sz); 641 *zapp = zap; 642 return (err); 643 } 644 645 /* 646 * The "normflags" determine the behavior of the matchtype_t which is 647 * passed to zap_lookup_norm(). Names which have the same normalized 648 * version will be stored with the same hash value, and therefore we can 649 * perform normalization-insensitive lookups. We can be Unicode form- 650 * insensitive and/or case-insensitive. The following flags are valid for 651 * "normflags": 652 * 653 * U8_TEXTPREP_NFC 654 * U8_TEXTPREP_NFD 655 * U8_TEXTPREP_NFKC 656 * U8_TEXTPREP_NFKD 657 * U8_TEXTPREP_TOUPPER 658 * 659 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one 660 * of them may be supplied. 661 */ 662 void 663 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, 664 dmu_tx_t *tx) 665 { 666 dmu_buf_t *db; 667 668 VERIFY0(dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); 669 670 dmu_buf_will_dirty(db, tx); 671 mzap_phys_t *zp = db->db_data; 672 zp->mz_block_type = ZBT_MICRO; 673 (void) random_get_pseudo_bytes((void *)&zp->mz_salt, sizeof (uint64_t)); 674 zp->mz_normflags = normflags; 675 676 if (flags != 0) { 677 zap_t *zap; 678 /* Only fat zap supports flags; upgrade immediately. */ 679 VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER, 680 B_FALSE, B_FALSE, &zap)); 681 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags)); 682 zap_unlockdir(zap, FTAG); 683 } else { 684 dmu_buf_rele(db, FTAG); 685 } 686 } 687 688 int 689 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 690 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 691 { 692 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen, 693 0, tx)); 694 } 695 696 int 697 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot, 698 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 699 { 700 return (zap_create_claim_norm_dnsize(os, obj, 701 0, ot, bonustype, bonuslen, dnodesize, tx)); 702 } 703 704 int 705 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 706 dmu_object_type_t ot, 707 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 708 { 709 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype, 710 bonuslen, 0, tx)); 711 } 712 713 int 714 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags, 715 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, 716 int dnodesize, dmu_tx_t *tx) 717 { 718 int err; 719 720 err = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen, 721 dnodesize, tx); 722 if (err != 0) 723 return (err); 724 mzap_create_impl(os, obj, normflags, 0, tx); 725 return (0); 726 } 727 728 uint64_t 729 zap_create(objset_t *os, dmu_object_type_t ot, 730 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 731 { 732 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 733 } 734 735 uint64_t 736 zap_create_dnsize(objset_t *os, dmu_object_type_t ot, 737 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 738 { 739 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen, 740 dnodesize, tx)); 741 } 742 743 uint64_t 744 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 745 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 746 { 747 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); 748 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen, 749 0, tx)); 750 } 751 752 uint64_t 753 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot, 754 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 755 { 756 uint64_t obj = dmu_object_alloc_dnsize(os, ot, 0, bonustype, bonuslen, 757 dnodesize, tx); 758 759 mzap_create_impl(os, obj, normflags, 0, tx); 760 return (obj); 761 } 762 763 uint64_t 764 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 765 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 766 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 767 { 768 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); 769 return (zap_create_flags_dnsize(os, normflags, flags, ot, 770 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx)); 771 } 772 773 uint64_t 774 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags, 775 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 776 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 777 { 778 uint64_t obj = dmu_object_alloc_dnsize(os, ot, 0, bonustype, bonuslen, 779 dnodesize, tx); 780 781 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT && 782 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT && 783 indirect_blockshift >= SPA_MINBLOCKSHIFT && 784 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT); 785 786 VERIFY(dmu_object_set_blocksize(os, obj, 787 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0); 788 789 mzap_create_impl(os, obj, normflags, flags, tx); 790 return (obj); 791 } 792 793 int 794 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 795 { 796 /* 797 * dmu_object_free will free the object number and free the 798 * data. Freeing the data will cause our pageout function to be 799 * called, which will destroy our data (zap_leaf_t's and zap_t). 800 */ 801 802 return (dmu_object_free(os, zapobj, tx)); 803 } 804 805 void 806 zap_evict_sync(void *dbu) 807 { 808 zap_t *zap = dbu; 809 810 rw_destroy(&zap->zap_rwlock); 811 812 if (zap->zap_ismicro) 813 mze_destroy(zap); 814 else 815 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 816 817 kmem_free(zap, sizeof (zap_t)); 818 } 819 820 int 821 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 822 { 823 zap_t *zap; 824 825 int err = 826 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 827 if (err != 0) 828 return (err); 829 if (!zap->zap_ismicro) { 830 err = fzap_count(zap, count); 831 } else { 832 *count = zap->zap_m.zap_num_entries; 833 } 834 zap_unlockdir(zap, FTAG); 835 return (err); 836 } 837 838 /* 839 * zn may be NULL; if not specified, it will be computed if needed. 840 * See also the comment above zap_entry_normalization_conflict(). 841 */ 842 static boolean_t 843 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) 844 { 845 int direction = AVL_BEFORE; 846 boolean_t allocdzn = B_FALSE; 847 848 if (zap->zap_normflags == 0) 849 return (B_FALSE); 850 851 again: 852 for (mzap_ent_t *other = avl_walk(&zap->zap_m.zap_avl, mze, direction); 853 other && other->mze_hash == mze->mze_hash; 854 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { 855 856 if (zn == NULL) { 857 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name, 858 MT_NORMALIZE); 859 allocdzn = B_TRUE; 860 } 861 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 862 if (allocdzn) 863 zap_name_free(zn); 864 return (B_TRUE); 865 } 866 } 867 868 if (direction == AVL_BEFORE) { 869 direction = AVL_AFTER; 870 goto again; 871 } 872 873 if (allocdzn) 874 zap_name_free(zn); 875 return (B_FALSE); 876 } 877 878 /* 879 * Routines for manipulating attributes. 880 */ 881 882 int 883 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 884 uint64_t integer_size, uint64_t num_integers, void *buf) 885 { 886 return (zap_lookup_norm(os, zapobj, name, integer_size, 887 num_integers, buf, 0, NULL, 0, NULL)); 888 } 889 890 static int 891 zap_lookup_impl(zap_t *zap, const char *name, 892 uint64_t integer_size, uint64_t num_integers, void *buf, 893 matchtype_t mt, char *realname, int rn_len, 894 boolean_t *ncp) 895 { 896 int err = 0; 897 898 zap_name_t *zn = zap_name_alloc(zap, name, mt); 899 if (zn == NULL) 900 return (SET_ERROR(ENOTSUP)); 901 902 if (!zap->zap_ismicro) { 903 err = fzap_lookup(zn, integer_size, num_integers, buf, 904 realname, rn_len, ncp); 905 } else { 906 mzap_ent_t *mze = mze_find(zn); 907 if (mze == NULL) { 908 err = SET_ERROR(ENOENT); 909 } else { 910 if (num_integers < 1) { 911 err = SET_ERROR(EOVERFLOW); 912 } else if (integer_size != 8) { 913 err = SET_ERROR(EINVAL); 914 } else { 915 *(uint64_t *)buf = 916 MZE_PHYS(zap, mze)->mze_value; 917 (void) strlcpy(realname, 918 MZE_PHYS(zap, mze)->mze_name, rn_len); 919 if (ncp) { 920 *ncp = mzap_normalization_conflict(zap, 921 zn, mze); 922 } 923 } 924 } 925 } 926 zap_name_free(zn); 927 return (err); 928 } 929 930 int 931 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 932 uint64_t integer_size, uint64_t num_integers, void *buf, 933 matchtype_t mt, char *realname, int rn_len, 934 boolean_t *ncp) 935 { 936 zap_t *zap; 937 938 int err = 939 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 940 if (err != 0) 941 return (err); 942 err = zap_lookup_impl(zap, name, integer_size, 943 num_integers, buf, mt, realname, rn_len, ncp); 944 zap_unlockdir(zap, FTAG); 945 return (err); 946 } 947 948 int 949 zap_lookup_by_dnode(dnode_t *dn, const char *name, 950 uint64_t integer_size, uint64_t num_integers, void *buf) 951 { 952 return (zap_lookup_norm_by_dnode(dn, name, integer_size, 953 num_integers, buf, 0, NULL, 0, NULL)); 954 } 955 956 int 957 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name, 958 uint64_t integer_size, uint64_t num_integers, void *buf, 959 matchtype_t mt, char *realname, int rn_len, 960 boolean_t *ncp) 961 { 962 zap_t *zap; 963 964 int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, 965 FTAG, &zap); 966 if (err != 0) 967 return (err); 968 err = zap_lookup_impl(zap, name, integer_size, 969 num_integers, buf, mt, realname, rn_len, ncp); 970 zap_unlockdir(zap, FTAG); 971 return (err); 972 } 973 974 int 975 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 976 int key_numints) 977 { 978 zap_t *zap; 979 980 int err = 981 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 982 if (err != 0) 983 return (err); 984 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 985 if (zn == NULL) { 986 zap_unlockdir(zap, FTAG); 987 return (SET_ERROR(ENOTSUP)); 988 } 989 990 fzap_prefetch(zn); 991 zap_name_free(zn); 992 zap_unlockdir(zap, FTAG); 993 return (err); 994 } 995 996 int 997 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 998 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 999 { 1000 zap_t *zap; 1001 1002 int err = 1003 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1004 if (err != 0) 1005 return (err); 1006 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1007 if (zn == NULL) { 1008 zap_unlockdir(zap, FTAG); 1009 return (SET_ERROR(ENOTSUP)); 1010 } 1011 1012 err = fzap_lookup(zn, integer_size, num_integers, buf, 1013 NULL, 0, NULL); 1014 zap_name_free(zn); 1015 zap_unlockdir(zap, FTAG); 1016 return (err); 1017 } 1018 1019 int 1020 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 1021 { 1022 int err = zap_lookup_norm(os, zapobj, name, 0, 1023 0, NULL, 0, NULL, 0, NULL); 1024 if (err == EOVERFLOW || err == EINVAL) 1025 err = 0; /* found, but skipped reading the value */ 1026 return (err); 1027 } 1028 1029 int 1030 zap_length(objset_t *os, uint64_t zapobj, const char *name, 1031 uint64_t *integer_size, uint64_t *num_integers) 1032 { 1033 zap_t *zap; 1034 1035 int err = 1036 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1037 if (err != 0) 1038 return (err); 1039 zap_name_t *zn = zap_name_alloc(zap, name, 0); 1040 if (zn == NULL) { 1041 zap_unlockdir(zap, FTAG); 1042 return (SET_ERROR(ENOTSUP)); 1043 } 1044 if (!zap->zap_ismicro) { 1045 err = fzap_length(zn, integer_size, num_integers); 1046 } else { 1047 mzap_ent_t *mze = mze_find(zn); 1048 if (mze == NULL) { 1049 err = SET_ERROR(ENOENT); 1050 } else { 1051 if (integer_size) 1052 *integer_size = 8; 1053 if (num_integers) 1054 *num_integers = 1; 1055 } 1056 } 1057 zap_name_free(zn); 1058 zap_unlockdir(zap, FTAG); 1059 return (err); 1060 } 1061 1062 int 1063 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1064 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 1065 { 1066 zap_t *zap; 1067 1068 int err = 1069 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1070 if (err != 0) 1071 return (err); 1072 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1073 if (zn == NULL) { 1074 zap_unlockdir(zap, FTAG); 1075 return (SET_ERROR(ENOTSUP)); 1076 } 1077 err = fzap_length(zn, integer_size, num_integers); 1078 zap_name_free(zn); 1079 zap_unlockdir(zap, FTAG); 1080 return (err); 1081 } 1082 1083 static void 1084 mzap_addent(zap_name_t *zn, uint64_t value) 1085 { 1086 zap_t *zap = zn->zn_zap; 1087 int start = zap->zap_m.zap_alloc_next; 1088 1089 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 1090 1091 #ifdef ZFS_DEBUG 1092 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) { 1093 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 1094 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 1095 } 1096 #endif 1097 1098 uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash); 1099 /* given the limited size of the microzap, this can't happen */ 1100 ASSERT(cd < zap_maxcd(zap)); 1101 1102 again: 1103 for (int i = start; i < zap->zap_m.zap_num_chunks; i++) { 1104 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 1105 if (mze->mze_name[0] == 0) { 1106 mze->mze_value = value; 1107 mze->mze_cd = cd; 1108 (void) strcpy(mze->mze_name, zn->zn_key_orig); 1109 zap->zap_m.zap_num_entries++; 1110 zap->zap_m.zap_alloc_next = i+1; 1111 if (zap->zap_m.zap_alloc_next == 1112 zap->zap_m.zap_num_chunks) 1113 zap->zap_m.zap_alloc_next = 0; 1114 mze_insert(zap, i, zn->zn_hash); 1115 return; 1116 } 1117 } 1118 if (start != 0) { 1119 start = 0; 1120 goto again; 1121 } 1122 ASSERT(!"out of entries!"); 1123 } 1124 1125 static int 1126 zap_add_impl(zap_t *zap, const char *key, 1127 int integer_size, uint64_t num_integers, 1128 const void *val, dmu_tx_t *tx, void *tag) 1129 { 1130 const uint64_t *intval = val; 1131 int err = 0; 1132 1133 zap_name_t *zn = zap_name_alloc(zap, key, 0); 1134 if (zn == NULL) { 1135 zap_unlockdir(zap, tag); 1136 return (SET_ERROR(ENOTSUP)); 1137 } 1138 if (!zap->zap_ismicro) { 1139 err = fzap_add(zn, integer_size, num_integers, val, tag, tx); 1140 zap = zn->zn_zap; /* fzap_add() may change zap */ 1141 } else if (integer_size != 8 || num_integers != 1 || 1142 strlen(key) >= MZAP_NAME_LEN) { 1143 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0); 1144 if (err == 0) { 1145 err = fzap_add(zn, integer_size, num_integers, val, 1146 tag, tx); 1147 } 1148 zap = zn->zn_zap; /* fzap_add() may change zap */ 1149 } else { 1150 if (mze_find(zn) != NULL) { 1151 err = SET_ERROR(EEXIST); 1152 } else { 1153 mzap_addent(zn, *intval); 1154 } 1155 } 1156 ASSERT(zap == zn->zn_zap); 1157 zap_name_free(zn); 1158 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1159 zap_unlockdir(zap, tag); 1160 return (err); 1161 } 1162 1163 int 1164 zap_add(objset_t *os, uint64_t zapobj, const char *key, 1165 int integer_size, uint64_t num_integers, 1166 const void *val, dmu_tx_t *tx) 1167 { 1168 zap_t *zap; 1169 int err; 1170 1171 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1172 if (err != 0) 1173 return (err); 1174 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); 1175 /* zap_add_impl() calls zap_unlockdir() */ 1176 return (err); 1177 } 1178 1179 int 1180 zap_add_by_dnode(dnode_t *dn, const char *key, 1181 int integer_size, uint64_t num_integers, 1182 const void *val, dmu_tx_t *tx) 1183 { 1184 zap_t *zap; 1185 int err; 1186 1187 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1188 if (err != 0) 1189 return (err); 1190 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); 1191 /* zap_add_impl() calls zap_unlockdir() */ 1192 return (err); 1193 } 1194 1195 int 1196 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1197 int key_numints, int integer_size, uint64_t num_integers, 1198 const void *val, dmu_tx_t *tx) 1199 { 1200 zap_t *zap; 1201 1202 int err = 1203 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1204 if (err != 0) 1205 return (err); 1206 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1207 if (zn == NULL) { 1208 zap_unlockdir(zap, FTAG); 1209 return (SET_ERROR(ENOTSUP)); 1210 } 1211 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx); 1212 zap = zn->zn_zap; /* fzap_add() may change zap */ 1213 zap_name_free(zn); 1214 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1215 zap_unlockdir(zap, FTAG); 1216 return (err); 1217 } 1218 1219 int 1220 zap_update(objset_t *os, uint64_t zapobj, const char *name, 1221 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1222 { 1223 zap_t *zap; 1224 uint64_t oldval; 1225 const uint64_t *intval = val; 1226 1227 #ifdef ZFS_DEBUG 1228 /* 1229 * If there is an old value, it shouldn't change across the 1230 * lockdir (eg, due to bprewrite's xlation). 1231 */ 1232 if (integer_size == 8 && num_integers == 1) 1233 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval); 1234 #endif 1235 1236 int err = 1237 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1238 if (err != 0) 1239 return (err); 1240 zap_name_t *zn = zap_name_alloc(zap, name, 0); 1241 if (zn == NULL) { 1242 zap_unlockdir(zap, FTAG); 1243 return (SET_ERROR(ENOTSUP)); 1244 } 1245 if (!zap->zap_ismicro) { 1246 err = fzap_update(zn, integer_size, num_integers, val, 1247 FTAG, tx); 1248 zap = zn->zn_zap; /* fzap_update() may change zap */ 1249 } else if (integer_size != 8 || num_integers != 1 || 1250 strlen(name) >= MZAP_NAME_LEN) { 1251 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1252 zapobj, integer_size, num_integers, name); 1253 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0); 1254 if (err == 0) { 1255 err = fzap_update(zn, integer_size, num_integers, 1256 val, FTAG, tx); 1257 } 1258 zap = zn->zn_zap; /* fzap_update() may change zap */ 1259 } else { 1260 mzap_ent_t *mze = mze_find(zn); 1261 if (mze != NULL) { 1262 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval); 1263 MZE_PHYS(zap, mze)->mze_value = *intval; 1264 } else { 1265 mzap_addent(zn, *intval); 1266 } 1267 } 1268 ASSERT(zap == zn->zn_zap); 1269 zap_name_free(zn); 1270 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1271 zap_unlockdir(zap, FTAG); 1272 return (err); 1273 } 1274 1275 int 1276 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1277 int key_numints, 1278 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1279 { 1280 zap_t *zap; 1281 1282 int err = 1283 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1284 if (err != 0) 1285 return (err); 1286 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1287 if (zn == NULL) { 1288 zap_unlockdir(zap, FTAG); 1289 return (SET_ERROR(ENOTSUP)); 1290 } 1291 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx); 1292 zap = zn->zn_zap; /* fzap_update() may change zap */ 1293 zap_name_free(zn); 1294 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1295 zap_unlockdir(zap, FTAG); 1296 return (err); 1297 } 1298 1299 int 1300 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1301 { 1302 return (zap_remove_norm(os, zapobj, name, 0, tx)); 1303 } 1304 1305 static int 1306 zap_remove_impl(zap_t *zap, const char *name, 1307 matchtype_t mt, dmu_tx_t *tx) 1308 { 1309 int err = 0; 1310 1311 zap_name_t *zn = zap_name_alloc(zap, name, mt); 1312 if (zn == NULL) 1313 return (SET_ERROR(ENOTSUP)); 1314 if (!zap->zap_ismicro) { 1315 err = fzap_remove(zn, tx); 1316 } else { 1317 mzap_ent_t *mze = mze_find(zn); 1318 if (mze == NULL) { 1319 err = SET_ERROR(ENOENT); 1320 } else { 1321 zap->zap_m.zap_num_entries--; 1322 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid], 1323 sizeof (mzap_ent_phys_t)); 1324 mze_remove(zap, mze); 1325 } 1326 } 1327 zap_name_free(zn); 1328 return (err); 1329 } 1330 1331 int 1332 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1333 matchtype_t mt, dmu_tx_t *tx) 1334 { 1335 zap_t *zap; 1336 int err; 1337 1338 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1339 if (err) 1340 return (err); 1341 err = zap_remove_impl(zap, name, mt, tx); 1342 zap_unlockdir(zap, FTAG); 1343 return (err); 1344 } 1345 1346 int 1347 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx) 1348 { 1349 zap_t *zap; 1350 int err; 1351 1352 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1353 if (err) 1354 return (err); 1355 err = zap_remove_impl(zap, name, 0, tx); 1356 zap_unlockdir(zap, FTAG); 1357 return (err); 1358 } 1359 1360 int 1361 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1362 int key_numints, dmu_tx_t *tx) 1363 { 1364 zap_t *zap; 1365 1366 int err = 1367 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1368 if (err != 0) 1369 return (err); 1370 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1371 if (zn == NULL) { 1372 zap_unlockdir(zap, FTAG); 1373 return (SET_ERROR(ENOTSUP)); 1374 } 1375 err = fzap_remove(zn, tx); 1376 zap_name_free(zn); 1377 zap_unlockdir(zap, FTAG); 1378 return (err); 1379 } 1380 1381 /* 1382 * Routines for iterating over the attributes. 1383 */ 1384 1385 static void 1386 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1387 uint64_t serialized, boolean_t prefetch) 1388 { 1389 zc->zc_objset = os; 1390 zc->zc_zap = NULL; 1391 zc->zc_leaf = NULL; 1392 zc->zc_zapobj = zapobj; 1393 zc->zc_serialized = serialized; 1394 zc->zc_hash = 0; 1395 zc->zc_cd = 0; 1396 zc->zc_prefetch = prefetch; 1397 } 1398 void 1399 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1400 uint64_t serialized) 1401 { 1402 zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE); 1403 } 1404 1405 /* 1406 * Initialize a cursor at the beginning of the ZAP object. The entire 1407 * ZAP object will be prefetched. 1408 */ 1409 void 1410 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1411 { 1412 zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE); 1413 } 1414 1415 /* 1416 * Initialize a cursor at the beginning, but request that we not prefetch 1417 * the entire ZAP object. 1418 */ 1419 void 1420 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1421 { 1422 zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE); 1423 } 1424 1425 void 1426 zap_cursor_fini(zap_cursor_t *zc) 1427 { 1428 if (zc->zc_zap) { 1429 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1430 zap_unlockdir(zc->zc_zap, NULL); 1431 zc->zc_zap = NULL; 1432 } 1433 if (zc->zc_leaf) { 1434 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1435 zap_put_leaf(zc->zc_leaf); 1436 zc->zc_leaf = NULL; 1437 } 1438 zc->zc_objset = NULL; 1439 } 1440 1441 uint64_t 1442 zap_cursor_serialize(zap_cursor_t *zc) 1443 { 1444 if (zc->zc_hash == -1ULL) 1445 return (-1ULL); 1446 if (zc->zc_zap == NULL) 1447 return (zc->zc_serialized); 1448 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1449 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1450 1451 /* 1452 * We want to keep the high 32 bits of the cursor zero if we can, so 1453 * that 32-bit programs can access this. So usually use a small 1454 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1455 * of the cursor. 1456 * 1457 * [ collision differentiator | zap_hashbits()-bit hash value ] 1458 */ 1459 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1460 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1461 } 1462 1463 int 1464 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1465 { 1466 int err; 1467 1468 if (zc->zc_hash == -1ULL) 1469 return (SET_ERROR(ENOENT)); 1470 1471 if (zc->zc_zap == NULL) { 1472 int hb; 1473 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1474 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap); 1475 if (err != 0) 1476 return (err); 1477 1478 /* 1479 * To support zap_cursor_init_serialized, advance, retrieve, 1480 * we must add to the existing zc_cd, which may already 1481 * be 1 due to the zap_cursor_advance. 1482 */ 1483 ASSERT(zc->zc_hash == 0); 1484 hb = zap_hashbits(zc->zc_zap); 1485 zc->zc_hash = zc->zc_serialized << (64 - hb); 1486 zc->zc_cd += zc->zc_serialized >> hb; 1487 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1488 zc->zc_cd = 0; 1489 } else { 1490 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1491 } 1492 if (!zc->zc_zap->zap_ismicro) { 1493 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1494 } else { 1495 avl_index_t idx; 1496 mzap_ent_t mze_tofind; 1497 1498 mze_tofind.mze_hash = zc->zc_hash; 1499 mze_tofind.mze_cd = zc->zc_cd; 1500 1501 mzap_ent_t *mze = 1502 avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 1503 if (mze == NULL) { 1504 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 1505 idx, AVL_AFTER); 1506 } 1507 if (mze) { 1508 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); 1509 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); 1510 za->za_normalization_conflict = 1511 mzap_normalization_conflict(zc->zc_zap, NULL, mze); 1512 za->za_integer_length = 8; 1513 za->za_num_integers = 1; 1514 za->za_first_integer = mzep->mze_value; 1515 (void) strcpy(za->za_name, mzep->mze_name); 1516 zc->zc_hash = mze->mze_hash; 1517 zc->zc_cd = mze->mze_cd; 1518 err = 0; 1519 } else { 1520 zc->zc_hash = -1ULL; 1521 err = SET_ERROR(ENOENT); 1522 } 1523 } 1524 rw_exit(&zc->zc_zap->zap_rwlock); 1525 return (err); 1526 } 1527 1528 void 1529 zap_cursor_advance(zap_cursor_t *zc) 1530 { 1531 if (zc->zc_hash == -1ULL) 1532 return; 1533 zc->zc_cd++; 1534 } 1535 1536 int 1537 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1538 { 1539 zap_t *zap; 1540 1541 int err = 1542 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1543 if (err != 0) 1544 return (err); 1545 1546 bzero(zs, sizeof (zap_stats_t)); 1547 1548 if (zap->zap_ismicro) { 1549 zs->zs_blocksize = zap->zap_dbuf->db_size; 1550 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1551 zs->zs_num_blocks = 1; 1552 } else { 1553 fzap_get_stats(zap, zs); 1554 } 1555 zap_unlockdir(zap, FTAG); 1556 return (0); 1557 } 1558