xref: /illumos-gate/usr/src/uts/common/fs/zfs/zap_micro.c (revision 4b5c8e93cab28d3c65ba9d407fd8f46e3be1db1c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/zio.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zfs_context.h>
32 #include <sys/zap.h>
33 #include <sys/refcount.h>
34 #include <sys/zap_impl.h>
35 #include <sys/zap_leaf.h>
36 #include <sys/avl.h>
37 #include <sys/arc.h>
38 #include <sys/dmu_objset.h>
39 
40 #ifdef _KERNEL
41 #include <sys/sunddi.h>
42 #endif
43 
44 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
45 
46 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
47 
48 uint64_t
49 zap_getflags(zap_t *zap)
50 {
51 	if (zap->zap_ismicro)
52 		return (0);
53 	return (zap_f_phys(zap)->zap_flags);
54 }
55 
56 int
57 zap_hashbits(zap_t *zap)
58 {
59 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
60 		return (48);
61 	else
62 		return (28);
63 }
64 
65 uint32_t
66 zap_maxcd(zap_t *zap)
67 {
68 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
69 		return ((1<<16)-1);
70 	else
71 		return (-1U);
72 }
73 
74 static uint64_t
75 zap_hash(zap_name_t *zn)
76 {
77 	zap_t *zap = zn->zn_zap;
78 	uint64_t h = 0;
79 
80 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
81 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
82 		h = *(uint64_t *)zn->zn_key_orig;
83 	} else {
84 		h = zap->zap_salt;
85 		ASSERT(h != 0);
86 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
87 
88 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
89 			int i;
90 			const uint64_t *wp = zn->zn_key_norm;
91 
92 			ASSERT(zn->zn_key_intlen == 8);
93 			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
94 				int j;
95 				uint64_t word = *wp;
96 
97 				for (j = 0; j < zn->zn_key_intlen; j++) {
98 					h = (h >> 8) ^
99 					    zfs_crc64_table[(h ^ word) & 0xFF];
100 					word >>= NBBY;
101 				}
102 			}
103 		} else {
104 			int i, len;
105 			const uint8_t *cp = zn->zn_key_norm;
106 
107 			/*
108 			 * We previously stored the terminating null on
109 			 * disk, but didn't hash it, so we need to
110 			 * continue to not hash it.  (The
111 			 * zn_key_*_numints includes the terminating
112 			 * null for non-binary keys.)
113 			 */
114 			len = zn->zn_key_norm_numints - 1;
115 
116 			ASSERT(zn->zn_key_intlen == 1);
117 			for (i = 0; i < len; cp++, i++) {
118 				h = (h >> 8) ^
119 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
120 			}
121 		}
122 	}
123 	/*
124 	 * Don't use all 64 bits, since we need some in the cookie for
125 	 * the collision differentiator.  We MUST use the high bits,
126 	 * since those are the ones that we first pay attention to when
127 	 * chosing the bucket.
128 	 */
129 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
130 
131 	return (h);
132 }
133 
134 static int
135 zap_normalize(zap_t *zap, const char *name, char *namenorm)
136 {
137 	size_t inlen, outlen;
138 	int err;
139 
140 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
141 
142 	inlen = strlen(name) + 1;
143 	outlen = ZAP_MAXNAMELEN;
144 
145 	err = 0;
146 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
147 	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
148 	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
149 
150 	return (err);
151 }
152 
153 boolean_t
154 zap_match(zap_name_t *zn, const char *matchname)
155 {
156 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
157 
158 	if (zn->zn_matchtype == MT_FIRST) {
159 		char norm[ZAP_MAXNAMELEN];
160 
161 		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
162 			return (B_FALSE);
163 
164 		return (strcmp(zn->zn_key_norm, norm) == 0);
165 	} else {
166 		/* MT_BEST or MT_EXACT */
167 		return (strcmp(zn->zn_key_orig, matchname) == 0);
168 	}
169 }
170 
171 void
172 zap_name_free(zap_name_t *zn)
173 {
174 	kmem_free(zn, sizeof (zap_name_t));
175 }
176 
177 zap_name_t *
178 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
179 {
180 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
181 
182 	zn->zn_zap = zap;
183 	zn->zn_key_intlen = sizeof (*key);
184 	zn->zn_key_orig = key;
185 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
186 	zn->zn_matchtype = mt;
187 	if (zap->zap_normflags) {
188 		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
189 			zap_name_free(zn);
190 			return (NULL);
191 		}
192 		zn->zn_key_norm = zn->zn_normbuf;
193 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
194 	} else {
195 		if (mt != MT_EXACT) {
196 			zap_name_free(zn);
197 			return (NULL);
198 		}
199 		zn->zn_key_norm = zn->zn_key_orig;
200 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
201 	}
202 
203 	zn->zn_hash = zap_hash(zn);
204 	return (zn);
205 }
206 
207 zap_name_t *
208 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
209 {
210 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
211 
212 	ASSERT(zap->zap_normflags == 0);
213 	zn->zn_zap = zap;
214 	zn->zn_key_intlen = sizeof (*key);
215 	zn->zn_key_orig = zn->zn_key_norm = key;
216 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
217 	zn->zn_matchtype = MT_EXACT;
218 
219 	zn->zn_hash = zap_hash(zn);
220 	return (zn);
221 }
222 
223 static void
224 mzap_byteswap(mzap_phys_t *buf, size_t size)
225 {
226 	int i, max;
227 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
228 	buf->mz_salt = BSWAP_64(buf->mz_salt);
229 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
230 	max = (size / MZAP_ENT_LEN) - 1;
231 	for (i = 0; i < max; i++) {
232 		buf->mz_chunk[i].mze_value =
233 		    BSWAP_64(buf->mz_chunk[i].mze_value);
234 		buf->mz_chunk[i].mze_cd =
235 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
236 	}
237 }
238 
239 void
240 zap_byteswap(void *buf, size_t size)
241 {
242 	uint64_t block_type;
243 
244 	block_type = *(uint64_t *)buf;
245 
246 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
247 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
248 		mzap_byteswap(buf, size);
249 	} else {
250 		fzap_byteswap(buf, size);
251 	}
252 }
253 
254 static int
255 mze_compare(const void *arg1, const void *arg2)
256 {
257 	const mzap_ent_t *mze1 = arg1;
258 	const mzap_ent_t *mze2 = arg2;
259 
260 	if (mze1->mze_hash > mze2->mze_hash)
261 		return (+1);
262 	if (mze1->mze_hash < mze2->mze_hash)
263 		return (-1);
264 	if (mze1->mze_cd > mze2->mze_cd)
265 		return (+1);
266 	if (mze1->mze_cd < mze2->mze_cd)
267 		return (-1);
268 	return (0);
269 }
270 
271 static void
272 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
273 {
274 	mzap_ent_t *mze;
275 
276 	ASSERT(zap->zap_ismicro);
277 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
278 
279 	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
280 	mze->mze_chunkid = chunkid;
281 	mze->mze_hash = hash;
282 	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
283 	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
284 	avl_add(&zap->zap_m.zap_avl, mze);
285 }
286 
287 static mzap_ent_t *
288 mze_find(zap_name_t *zn)
289 {
290 	mzap_ent_t mze_tofind;
291 	mzap_ent_t *mze;
292 	avl_index_t idx;
293 	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
294 
295 	ASSERT(zn->zn_zap->zap_ismicro);
296 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
297 
298 	mze_tofind.mze_hash = zn->zn_hash;
299 	mze_tofind.mze_cd = 0;
300 
301 again:
302 	mze = avl_find(avl, &mze_tofind, &idx);
303 	if (mze == NULL)
304 		mze = avl_nearest(avl, idx, AVL_AFTER);
305 	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
306 		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
307 		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
308 			return (mze);
309 	}
310 	if (zn->zn_matchtype == MT_BEST) {
311 		zn->zn_matchtype = MT_FIRST;
312 		goto again;
313 	}
314 	return (NULL);
315 }
316 
317 static uint32_t
318 mze_find_unused_cd(zap_t *zap, uint64_t hash)
319 {
320 	mzap_ent_t mze_tofind;
321 	mzap_ent_t *mze;
322 	avl_index_t idx;
323 	avl_tree_t *avl = &zap->zap_m.zap_avl;
324 	uint32_t cd;
325 
326 	ASSERT(zap->zap_ismicro);
327 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
328 
329 	mze_tofind.mze_hash = hash;
330 	mze_tofind.mze_cd = 0;
331 
332 	cd = 0;
333 	for (mze = avl_find(avl, &mze_tofind, &idx);
334 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
335 		if (mze->mze_cd != cd)
336 			break;
337 		cd++;
338 	}
339 
340 	return (cd);
341 }
342 
343 static void
344 mze_remove(zap_t *zap, mzap_ent_t *mze)
345 {
346 	ASSERT(zap->zap_ismicro);
347 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
348 
349 	avl_remove(&zap->zap_m.zap_avl, mze);
350 	kmem_free(mze, sizeof (mzap_ent_t));
351 }
352 
353 static void
354 mze_destroy(zap_t *zap)
355 {
356 	mzap_ent_t *mze;
357 	void *avlcookie = NULL;
358 
359 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
360 		kmem_free(mze, sizeof (mzap_ent_t));
361 	avl_destroy(&zap->zap_m.zap_avl);
362 }
363 
364 static zap_t *
365 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
366 {
367 	zap_t *winner;
368 	zap_t *zap;
369 	int i;
370 	uint64_t *zap_hdr = (uint64_t *)db->db_data;
371 	uint64_t zap_block_type = zap_hdr[0];
372 	uint64_t zap_magic = zap_hdr[1];
373 
374 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
375 
376 	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
377 	rw_init(&zap->zap_rwlock, 0, 0, 0);
378 	rw_enter(&zap->zap_rwlock, RW_WRITER);
379 	zap->zap_objset = os;
380 	zap->zap_object = obj;
381 	zap->zap_dbuf = db;
382 
383 	if (zap_block_type != ZBT_MICRO) {
384 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
385 		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
386 		if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
387 			winner = NULL;	/* No actual winner here... */
388 			goto handle_winner;
389 		}
390 	} else {
391 		zap->zap_ismicro = TRUE;
392 	}
393 
394 	/*
395 	 * Make sure that zap_ismicro is set before we let others see
396 	 * it, because zap_lockdir() checks zap_ismicro without the lock
397 	 * held.
398 	 */
399 	dmu_buf_init_user(&zap->zap_dbu, zap_evict, &zap->zap_dbuf);
400 	winner = dmu_buf_set_user(db, &zap->zap_dbu);
401 
402 	if (winner != NULL)
403 		goto handle_winner;
404 
405 	if (zap->zap_ismicro) {
406 		zap->zap_salt = zap_m_phys(zap)->mz_salt;
407 		zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
408 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
409 		avl_create(&zap->zap_m.zap_avl, mze_compare,
410 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
411 
412 		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
413 			mzap_ent_phys_t *mze =
414 			    &zap_m_phys(zap)->mz_chunk[i];
415 			if (mze->mze_name[0]) {
416 				zap_name_t *zn;
417 
418 				zap->zap_m.zap_num_entries++;
419 				zn = zap_name_alloc(zap, mze->mze_name,
420 				    MT_EXACT);
421 				mze_insert(zap, i, zn->zn_hash);
422 				zap_name_free(zn);
423 			}
424 		}
425 	} else {
426 		zap->zap_salt = zap_f_phys(zap)->zap_salt;
427 		zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
428 
429 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
430 		    2*ZAP_LEAF_CHUNKSIZE);
431 
432 		/*
433 		 * The embedded pointer table should not overlap the
434 		 * other members.
435 		 */
436 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
437 		    &zap_f_phys(zap)->zap_salt);
438 
439 		/*
440 		 * The embedded pointer table should end at the end of
441 		 * the block
442 		 */
443 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
444 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
445 		    (uintptr_t)zap_f_phys(zap), ==,
446 		    zap->zap_dbuf->db_size);
447 	}
448 	rw_exit(&zap->zap_rwlock);
449 	return (zap);
450 
451 handle_winner:
452 	rw_exit(&zap->zap_rwlock);
453 	rw_destroy(&zap->zap_rwlock);
454 	if (!zap->zap_ismicro)
455 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
456 	kmem_free(zap, sizeof (zap_t));
457 	return (winner);
458 }
459 
460 int
461 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
462     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
463 {
464 	zap_t *zap;
465 	dmu_buf_t *db;
466 	krw_t lt;
467 	int err;
468 
469 	*zapp = NULL;
470 
471 	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
472 	if (err)
473 		return (err);
474 
475 #ifdef ZFS_DEBUG
476 	{
477 		dmu_object_info_t doi;
478 		dmu_object_info_from_db(db, &doi);
479 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
480 	}
481 #endif
482 
483 	zap = dmu_buf_get_user(db);
484 	if (zap == NULL) {
485 		zap = mzap_open(os, obj, db);
486 		if (zap == NULL) {
487 			/*
488 			 * mzap_open() didn't like what it saw on-disk.
489 			 * Check for corruption!
490 			 */
491 			dmu_buf_rele(db, NULL);
492 			return (SET_ERROR(EIO));
493 		}
494 	}
495 
496 	/*
497 	 * We're checking zap_ismicro without the lock held, in order to
498 	 * tell what type of lock we want.  Once we have some sort of
499 	 * lock, see if it really is the right type.  In practice this
500 	 * can only be different if it was upgraded from micro to fat,
501 	 * and micro wanted WRITER but fat only needs READER.
502 	 */
503 	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
504 	rw_enter(&zap->zap_rwlock, lt);
505 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
506 		/* it was upgraded, now we only need reader */
507 		ASSERT(lt == RW_WRITER);
508 		ASSERT(RW_READER ==
509 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
510 		rw_downgrade(&zap->zap_rwlock);
511 		lt = RW_READER;
512 	}
513 
514 	zap->zap_objset = os;
515 
516 	if (lt == RW_WRITER)
517 		dmu_buf_will_dirty(db, tx);
518 
519 	ASSERT3P(zap->zap_dbuf, ==, db);
520 
521 	ASSERT(!zap->zap_ismicro ||
522 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
523 	if (zap->zap_ismicro && tx && adding &&
524 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
525 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
526 		if (newsz > MZAP_MAX_BLKSZ) {
527 			dprintf("upgrading obj %llu: num_entries=%u\n",
528 			    obj, zap->zap_m.zap_num_entries);
529 			*zapp = zap;
530 			return (mzap_upgrade(zapp, tx, 0));
531 		}
532 		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
533 		ASSERT0(err);
534 		zap->zap_m.zap_num_chunks =
535 		    db->db_size / MZAP_ENT_LEN - 1;
536 	}
537 
538 	*zapp = zap;
539 	return (0);
540 }
541 
542 void
543 zap_unlockdir(zap_t *zap)
544 {
545 	rw_exit(&zap->zap_rwlock);
546 	dmu_buf_rele(zap->zap_dbuf, NULL);
547 }
548 
549 static int
550 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
551 {
552 	mzap_phys_t *mzp;
553 	int i, sz, nchunks;
554 	int err = 0;
555 	zap_t *zap = *zapp;
556 
557 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
558 
559 	sz = zap->zap_dbuf->db_size;
560 	mzp = zio_buf_alloc(sz);
561 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
562 	nchunks = zap->zap_m.zap_num_chunks;
563 
564 	if (!flags) {
565 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
566 		    1ULL << fzap_default_block_shift, 0, tx);
567 		if (err) {
568 			zio_buf_free(mzp, sz);
569 			return (err);
570 		}
571 	}
572 
573 	dprintf("upgrading obj=%llu with %u chunks\n",
574 	    zap->zap_object, nchunks);
575 	/* XXX destroy the avl later, so we can use the stored hash value */
576 	mze_destroy(zap);
577 
578 	fzap_upgrade(zap, tx, flags);
579 
580 	for (i = 0; i < nchunks; i++) {
581 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
582 		zap_name_t *zn;
583 		if (mze->mze_name[0] == 0)
584 			continue;
585 		dprintf("adding %s=%llu\n",
586 		    mze->mze_name, mze->mze_value);
587 		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
588 		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
589 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
590 		zap_name_free(zn);
591 		if (err)
592 			break;
593 	}
594 	zio_buf_free(mzp, sz);
595 	*zapp = zap;
596 	return (err);
597 }
598 
599 void
600 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
601     dmu_tx_t *tx)
602 {
603 	dmu_buf_t *db;
604 	mzap_phys_t *zp;
605 
606 	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
607 
608 #ifdef ZFS_DEBUG
609 	{
610 		dmu_object_info_t doi;
611 		dmu_object_info_from_db(db, &doi);
612 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
613 	}
614 #endif
615 
616 	dmu_buf_will_dirty(db, tx);
617 	zp = db->db_data;
618 	zp->mz_block_type = ZBT_MICRO;
619 	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
620 	zp->mz_normflags = normflags;
621 	dmu_buf_rele(db, FTAG);
622 
623 	if (flags != 0) {
624 		zap_t *zap;
625 		/* Only fat zap supports flags; upgrade immediately. */
626 		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
627 		    B_FALSE, B_FALSE, &zap));
628 		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
629 		zap_unlockdir(zap);
630 	}
631 }
632 
633 int
634 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
635     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
636 {
637 	return (zap_create_claim_norm(os, obj,
638 	    0, ot, bonustype, bonuslen, tx));
639 }
640 
641 int
642 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
643     dmu_object_type_t ot,
644     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
645 {
646 	int err;
647 
648 	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
649 	if (err != 0)
650 		return (err);
651 	mzap_create_impl(os, obj, normflags, 0, tx);
652 	return (0);
653 }
654 
655 uint64_t
656 zap_create(objset_t *os, dmu_object_type_t ot,
657     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
658 {
659 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
660 }
661 
662 uint64_t
663 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
664     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
665 {
666 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
667 
668 	mzap_create_impl(os, obj, normflags, 0, tx);
669 	return (obj);
670 }
671 
672 uint64_t
673 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
674     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
675     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
676 {
677 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
678 
679 	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
680 	    leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
681 	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
682 	    indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
683 
684 	VERIFY(dmu_object_set_blocksize(os, obj,
685 	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
686 
687 	mzap_create_impl(os, obj, normflags, flags, tx);
688 	return (obj);
689 }
690 
691 int
692 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
693 {
694 	/*
695 	 * dmu_object_free will free the object number and free the
696 	 * data.  Freeing the data will cause our pageout function to be
697 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
698 	 */
699 
700 	return (dmu_object_free(os, zapobj, tx));
701 }
702 
703 void
704 zap_evict(void *dbu)
705 {
706 	zap_t *zap = dbu;
707 
708 	rw_destroy(&zap->zap_rwlock);
709 
710 	if (zap->zap_ismicro)
711 		mze_destroy(zap);
712 	else
713 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
714 
715 	kmem_free(zap, sizeof (zap_t));
716 }
717 
718 int
719 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
720 {
721 	zap_t *zap;
722 	int err;
723 
724 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
725 	if (err)
726 		return (err);
727 	if (!zap->zap_ismicro) {
728 		err = fzap_count(zap, count);
729 	} else {
730 		*count = zap->zap_m.zap_num_entries;
731 	}
732 	zap_unlockdir(zap);
733 	return (err);
734 }
735 
736 /*
737  * zn may be NULL; if not specified, it will be computed if needed.
738  * See also the comment above zap_entry_normalization_conflict().
739  */
740 static boolean_t
741 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
742 {
743 	mzap_ent_t *other;
744 	int direction = AVL_BEFORE;
745 	boolean_t allocdzn = B_FALSE;
746 
747 	if (zap->zap_normflags == 0)
748 		return (B_FALSE);
749 
750 again:
751 	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
752 	    other && other->mze_hash == mze->mze_hash;
753 	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
754 
755 		if (zn == NULL) {
756 			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
757 			    MT_FIRST);
758 			allocdzn = B_TRUE;
759 		}
760 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
761 			if (allocdzn)
762 				zap_name_free(zn);
763 			return (B_TRUE);
764 		}
765 	}
766 
767 	if (direction == AVL_BEFORE) {
768 		direction = AVL_AFTER;
769 		goto again;
770 	}
771 
772 	if (allocdzn)
773 		zap_name_free(zn);
774 	return (B_FALSE);
775 }
776 
777 /*
778  * Routines for manipulating attributes.
779  */
780 
781 int
782 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
783     uint64_t integer_size, uint64_t num_integers, void *buf)
784 {
785 	return (zap_lookup_norm(os, zapobj, name, integer_size,
786 	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
787 }
788 
789 int
790 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
791     uint64_t integer_size, uint64_t num_integers, void *buf,
792     matchtype_t mt, char *realname, int rn_len,
793     boolean_t *ncp)
794 {
795 	zap_t *zap;
796 	int err;
797 	mzap_ent_t *mze;
798 	zap_name_t *zn;
799 
800 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
801 	if (err)
802 		return (err);
803 	zn = zap_name_alloc(zap, name, mt);
804 	if (zn == NULL) {
805 		zap_unlockdir(zap);
806 		return (SET_ERROR(ENOTSUP));
807 	}
808 
809 	if (!zap->zap_ismicro) {
810 		err = fzap_lookup(zn, integer_size, num_integers, buf,
811 		    realname, rn_len, ncp);
812 	} else {
813 		mze = mze_find(zn);
814 		if (mze == NULL) {
815 			err = SET_ERROR(ENOENT);
816 		} else {
817 			if (num_integers < 1) {
818 				err = SET_ERROR(EOVERFLOW);
819 			} else if (integer_size != 8) {
820 				err = SET_ERROR(EINVAL);
821 			} else {
822 				*(uint64_t *)buf =
823 				    MZE_PHYS(zap, mze)->mze_value;
824 				(void) strlcpy(realname,
825 				    MZE_PHYS(zap, mze)->mze_name, rn_len);
826 				if (ncp) {
827 					*ncp = mzap_normalization_conflict(zap,
828 					    zn, mze);
829 				}
830 			}
831 		}
832 	}
833 	zap_name_free(zn);
834 	zap_unlockdir(zap);
835 	return (err);
836 }
837 
838 int
839 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
840     int key_numints)
841 {
842 	zap_t *zap;
843 	int err;
844 	zap_name_t *zn;
845 
846 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
847 	if (err)
848 		return (err);
849 	zn = zap_name_alloc_uint64(zap, key, key_numints);
850 	if (zn == NULL) {
851 		zap_unlockdir(zap);
852 		return (SET_ERROR(ENOTSUP));
853 	}
854 
855 	fzap_prefetch(zn);
856 	zap_name_free(zn);
857 	zap_unlockdir(zap);
858 	return (err);
859 }
860 
861 int
862 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
863     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
864 {
865 	zap_t *zap;
866 	int err;
867 	zap_name_t *zn;
868 
869 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
870 	if (err)
871 		return (err);
872 	zn = zap_name_alloc_uint64(zap, key, key_numints);
873 	if (zn == NULL) {
874 		zap_unlockdir(zap);
875 		return (SET_ERROR(ENOTSUP));
876 	}
877 
878 	err = fzap_lookup(zn, integer_size, num_integers, buf,
879 	    NULL, 0, NULL);
880 	zap_name_free(zn);
881 	zap_unlockdir(zap);
882 	return (err);
883 }
884 
885 int
886 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
887 {
888 	int err = zap_lookup_norm(os, zapobj, name, 0,
889 	    0, NULL, MT_EXACT, NULL, 0, NULL);
890 	if (err == EOVERFLOW || err == EINVAL)
891 		err = 0; /* found, but skipped reading the value */
892 	return (err);
893 }
894 
895 int
896 zap_length(objset_t *os, uint64_t zapobj, const char *name,
897     uint64_t *integer_size, uint64_t *num_integers)
898 {
899 	zap_t *zap;
900 	int err;
901 	mzap_ent_t *mze;
902 	zap_name_t *zn;
903 
904 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
905 	if (err)
906 		return (err);
907 	zn = zap_name_alloc(zap, name, MT_EXACT);
908 	if (zn == NULL) {
909 		zap_unlockdir(zap);
910 		return (SET_ERROR(ENOTSUP));
911 	}
912 	if (!zap->zap_ismicro) {
913 		err = fzap_length(zn, integer_size, num_integers);
914 	} else {
915 		mze = mze_find(zn);
916 		if (mze == NULL) {
917 			err = SET_ERROR(ENOENT);
918 		} else {
919 			if (integer_size)
920 				*integer_size = 8;
921 			if (num_integers)
922 				*num_integers = 1;
923 		}
924 	}
925 	zap_name_free(zn);
926 	zap_unlockdir(zap);
927 	return (err);
928 }
929 
930 int
931 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
932     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
933 {
934 	zap_t *zap;
935 	int err;
936 	zap_name_t *zn;
937 
938 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
939 	if (err)
940 		return (err);
941 	zn = zap_name_alloc_uint64(zap, key, key_numints);
942 	if (zn == NULL) {
943 		zap_unlockdir(zap);
944 		return (SET_ERROR(ENOTSUP));
945 	}
946 	err = fzap_length(zn, integer_size, num_integers);
947 	zap_name_free(zn);
948 	zap_unlockdir(zap);
949 	return (err);
950 }
951 
952 static void
953 mzap_addent(zap_name_t *zn, uint64_t value)
954 {
955 	int i;
956 	zap_t *zap = zn->zn_zap;
957 	int start = zap->zap_m.zap_alloc_next;
958 	uint32_t cd;
959 
960 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
961 
962 #ifdef ZFS_DEBUG
963 	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
964 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
965 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
966 	}
967 #endif
968 
969 	cd = mze_find_unused_cd(zap, zn->zn_hash);
970 	/* given the limited size of the microzap, this can't happen */
971 	ASSERT(cd < zap_maxcd(zap));
972 
973 again:
974 	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
975 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
976 		if (mze->mze_name[0] == 0) {
977 			mze->mze_value = value;
978 			mze->mze_cd = cd;
979 			(void) strcpy(mze->mze_name, zn->zn_key_orig);
980 			zap->zap_m.zap_num_entries++;
981 			zap->zap_m.zap_alloc_next = i+1;
982 			if (zap->zap_m.zap_alloc_next ==
983 			    zap->zap_m.zap_num_chunks)
984 				zap->zap_m.zap_alloc_next = 0;
985 			mze_insert(zap, i, zn->zn_hash);
986 			return;
987 		}
988 	}
989 	if (start != 0) {
990 		start = 0;
991 		goto again;
992 	}
993 	ASSERT(!"out of entries!");
994 }
995 
996 int
997 zap_add(objset_t *os, uint64_t zapobj, const char *key,
998     int integer_size, uint64_t num_integers,
999     const void *val, dmu_tx_t *tx)
1000 {
1001 	zap_t *zap;
1002 	int err;
1003 	mzap_ent_t *mze;
1004 	const uint64_t *intval = val;
1005 	zap_name_t *zn;
1006 
1007 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1008 	if (err)
1009 		return (err);
1010 	zn = zap_name_alloc(zap, key, MT_EXACT);
1011 	if (zn == NULL) {
1012 		zap_unlockdir(zap);
1013 		return (SET_ERROR(ENOTSUP));
1014 	}
1015 	if (!zap->zap_ismicro) {
1016 		err = fzap_add(zn, integer_size, num_integers, val, tx);
1017 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1018 	} else if (integer_size != 8 || num_integers != 1 ||
1019 	    strlen(key) >= MZAP_NAME_LEN) {
1020 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1021 		if (err == 0)
1022 			err = fzap_add(zn, integer_size, num_integers, val, tx);
1023 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1024 	} else {
1025 		mze = mze_find(zn);
1026 		if (mze != NULL) {
1027 			err = SET_ERROR(EEXIST);
1028 		} else {
1029 			mzap_addent(zn, *intval);
1030 		}
1031 	}
1032 	ASSERT(zap == zn->zn_zap);
1033 	zap_name_free(zn);
1034 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1035 		zap_unlockdir(zap);
1036 	return (err);
1037 }
1038 
1039 int
1040 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1041     int key_numints, int integer_size, uint64_t num_integers,
1042     const void *val, dmu_tx_t *tx)
1043 {
1044 	zap_t *zap;
1045 	int err;
1046 	zap_name_t *zn;
1047 
1048 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1049 	if (err)
1050 		return (err);
1051 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1052 	if (zn == NULL) {
1053 		zap_unlockdir(zap);
1054 		return (SET_ERROR(ENOTSUP));
1055 	}
1056 	err = fzap_add(zn, integer_size, num_integers, val, tx);
1057 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1058 	zap_name_free(zn);
1059 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1060 		zap_unlockdir(zap);
1061 	return (err);
1062 }
1063 
1064 int
1065 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1066     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1067 {
1068 	zap_t *zap;
1069 	mzap_ent_t *mze;
1070 	uint64_t oldval;
1071 	const uint64_t *intval = val;
1072 	zap_name_t *zn;
1073 	int err;
1074 
1075 #ifdef ZFS_DEBUG
1076 	/*
1077 	 * If there is an old value, it shouldn't change across the
1078 	 * lockdir (eg, due to bprewrite's xlation).
1079 	 */
1080 	if (integer_size == 8 && num_integers == 1)
1081 		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1082 #endif
1083 
1084 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1085 	if (err)
1086 		return (err);
1087 	zn = zap_name_alloc(zap, name, MT_EXACT);
1088 	if (zn == NULL) {
1089 		zap_unlockdir(zap);
1090 		return (SET_ERROR(ENOTSUP));
1091 	}
1092 	if (!zap->zap_ismicro) {
1093 		err = fzap_update(zn, integer_size, num_integers, val, tx);
1094 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1095 	} else if (integer_size != 8 || num_integers != 1 ||
1096 	    strlen(name) >= MZAP_NAME_LEN) {
1097 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1098 		    zapobj, integer_size, num_integers, name);
1099 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1100 		if (err == 0)
1101 			err = fzap_update(zn, integer_size, num_integers,
1102 			    val, tx);
1103 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1104 	} else {
1105 		mze = mze_find(zn);
1106 		if (mze != NULL) {
1107 			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1108 			MZE_PHYS(zap, mze)->mze_value = *intval;
1109 		} else {
1110 			mzap_addent(zn, *intval);
1111 		}
1112 	}
1113 	ASSERT(zap == zn->zn_zap);
1114 	zap_name_free(zn);
1115 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1116 		zap_unlockdir(zap);
1117 	return (err);
1118 }
1119 
1120 int
1121 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1122     int key_numints,
1123     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1124 {
1125 	zap_t *zap;
1126 	zap_name_t *zn;
1127 	int err;
1128 
1129 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1130 	if (err)
1131 		return (err);
1132 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1133 	if (zn == NULL) {
1134 		zap_unlockdir(zap);
1135 		return (SET_ERROR(ENOTSUP));
1136 	}
1137 	err = fzap_update(zn, integer_size, num_integers, val, tx);
1138 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1139 	zap_name_free(zn);
1140 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1141 		zap_unlockdir(zap);
1142 	return (err);
1143 }
1144 
1145 int
1146 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1147 {
1148 	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1149 }
1150 
1151 int
1152 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1153     matchtype_t mt, dmu_tx_t *tx)
1154 {
1155 	zap_t *zap;
1156 	int err;
1157 	mzap_ent_t *mze;
1158 	zap_name_t *zn;
1159 
1160 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1161 	if (err)
1162 		return (err);
1163 	zn = zap_name_alloc(zap, name, mt);
1164 	if (zn == NULL) {
1165 		zap_unlockdir(zap);
1166 		return (SET_ERROR(ENOTSUP));
1167 	}
1168 	if (!zap->zap_ismicro) {
1169 		err = fzap_remove(zn, tx);
1170 	} else {
1171 		mze = mze_find(zn);
1172 		if (mze == NULL) {
1173 			err = SET_ERROR(ENOENT);
1174 		} else {
1175 			zap->zap_m.zap_num_entries--;
1176 			bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1177 			    sizeof (mzap_ent_phys_t));
1178 			mze_remove(zap, mze);
1179 		}
1180 	}
1181 	zap_name_free(zn);
1182 	zap_unlockdir(zap);
1183 	return (err);
1184 }
1185 
1186 int
1187 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1188     int key_numints, dmu_tx_t *tx)
1189 {
1190 	zap_t *zap;
1191 	int err;
1192 	zap_name_t *zn;
1193 
1194 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1195 	if (err)
1196 		return (err);
1197 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1198 	if (zn == NULL) {
1199 		zap_unlockdir(zap);
1200 		return (SET_ERROR(ENOTSUP));
1201 	}
1202 	err = fzap_remove(zn, tx);
1203 	zap_name_free(zn);
1204 	zap_unlockdir(zap);
1205 	return (err);
1206 }
1207 
1208 /*
1209  * Routines for iterating over the attributes.
1210  */
1211 
1212 void
1213 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1214     uint64_t serialized)
1215 {
1216 	zc->zc_objset = os;
1217 	zc->zc_zap = NULL;
1218 	zc->zc_leaf = NULL;
1219 	zc->zc_zapobj = zapobj;
1220 	zc->zc_serialized = serialized;
1221 	zc->zc_hash = 0;
1222 	zc->zc_cd = 0;
1223 }
1224 
1225 void
1226 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1227 {
1228 	zap_cursor_init_serialized(zc, os, zapobj, 0);
1229 }
1230 
1231 void
1232 zap_cursor_fini(zap_cursor_t *zc)
1233 {
1234 	if (zc->zc_zap) {
1235 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1236 		zap_unlockdir(zc->zc_zap);
1237 		zc->zc_zap = NULL;
1238 	}
1239 	if (zc->zc_leaf) {
1240 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1241 		zap_put_leaf(zc->zc_leaf);
1242 		zc->zc_leaf = NULL;
1243 	}
1244 	zc->zc_objset = NULL;
1245 }
1246 
1247 uint64_t
1248 zap_cursor_serialize(zap_cursor_t *zc)
1249 {
1250 	if (zc->zc_hash == -1ULL)
1251 		return (-1ULL);
1252 	if (zc->zc_zap == NULL)
1253 		return (zc->zc_serialized);
1254 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1255 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1256 
1257 	/*
1258 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1259 	 * that 32-bit programs can access this.  So usually use a small
1260 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1261 	 * of the cursor.
1262 	 *
1263 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1264 	 */
1265 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1266 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1267 }
1268 
1269 int
1270 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1271 {
1272 	int err;
1273 	avl_index_t idx;
1274 	mzap_ent_t mze_tofind;
1275 	mzap_ent_t *mze;
1276 
1277 	if (zc->zc_hash == -1ULL)
1278 		return (SET_ERROR(ENOENT));
1279 
1280 	if (zc->zc_zap == NULL) {
1281 		int hb;
1282 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1283 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1284 		if (err)
1285 			return (err);
1286 
1287 		/*
1288 		 * To support zap_cursor_init_serialized, advance, retrieve,
1289 		 * we must add to the existing zc_cd, which may already
1290 		 * be 1 due to the zap_cursor_advance.
1291 		 */
1292 		ASSERT(zc->zc_hash == 0);
1293 		hb = zap_hashbits(zc->zc_zap);
1294 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1295 		zc->zc_cd += zc->zc_serialized >> hb;
1296 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1297 			zc->zc_cd = 0;
1298 	} else {
1299 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1300 	}
1301 	if (!zc->zc_zap->zap_ismicro) {
1302 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1303 	} else {
1304 		mze_tofind.mze_hash = zc->zc_hash;
1305 		mze_tofind.mze_cd = zc->zc_cd;
1306 
1307 		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1308 		if (mze == NULL) {
1309 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1310 			    idx, AVL_AFTER);
1311 		}
1312 		if (mze) {
1313 			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1314 			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1315 			za->za_normalization_conflict =
1316 			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1317 			za->za_integer_length = 8;
1318 			za->za_num_integers = 1;
1319 			za->za_first_integer = mzep->mze_value;
1320 			(void) strcpy(za->za_name, mzep->mze_name);
1321 			zc->zc_hash = mze->mze_hash;
1322 			zc->zc_cd = mze->mze_cd;
1323 			err = 0;
1324 		} else {
1325 			zc->zc_hash = -1ULL;
1326 			err = SET_ERROR(ENOENT);
1327 		}
1328 	}
1329 	rw_exit(&zc->zc_zap->zap_rwlock);
1330 	return (err);
1331 }
1332 
1333 void
1334 zap_cursor_advance(zap_cursor_t *zc)
1335 {
1336 	if (zc->zc_hash == -1ULL)
1337 		return;
1338 	zc->zc_cd++;
1339 }
1340 
1341 int
1342 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1343 {
1344 	int err;
1345 	zap_t *zap;
1346 
1347 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1348 	if (err)
1349 		return (err);
1350 
1351 	bzero(zs, sizeof (zap_stats_t));
1352 
1353 	if (zap->zap_ismicro) {
1354 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1355 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1356 		zs->zs_num_blocks = 1;
1357 	} else {
1358 		fzap_get_stats(zap, zs);
1359 	}
1360 	zap_unlockdir(zap);
1361 	return (0);
1362 }
1363 
1364 int
1365 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1366     refcount_t *towrite, refcount_t *tooverwrite)
1367 {
1368 	zap_t *zap;
1369 	int err = 0;
1370 
1371 	/*
1372 	 * Since, we don't have a name, we cannot figure out which blocks will
1373 	 * be affected in this operation. So, account for the worst case :
1374 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1375 	 * - 4 new blocks written if adding:
1376 	 *    - 2 blocks for possibly split leaves,
1377 	 *    - 2 grown ptrtbl blocks
1378 	 *
1379 	 * This also accomodates the case where an add operation to a fairly
1380 	 * large microzap results in a promotion to fatzap.
1381 	 */
1382 	if (name == NULL) {
1383 		(void) refcount_add_many(towrite,
1384 		    (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE, FTAG);
1385 		return (err);
1386 	}
1387 
1388 	/*
1389 	 * We lock the zap with adding == FALSE. Because, if we pass
1390 	 * the actual value of add, it could trigger a mzap_upgrade().
1391 	 * At present we are just evaluating the possibility of this operation
1392 	 * and hence we donot want to trigger an upgrade.
1393 	 */
1394 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1395 	if (err)
1396 		return (err);
1397 
1398 	if (!zap->zap_ismicro) {
1399 		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1400 		if (zn) {
1401 			err = fzap_count_write(zn, add, towrite,
1402 			    tooverwrite);
1403 			zap_name_free(zn);
1404 		} else {
1405 			/*
1406 			 * We treat this case as similar to (name == NULL)
1407 			 */
1408 			(void) refcount_add_many(towrite,
1409 			    (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE, FTAG);
1410 		}
1411 	} else {
1412 		/*
1413 		 * We are here if (name != NULL) and this is a micro-zap.
1414 		 * We account for the header block depending on whether it
1415 		 * is freeable.
1416 		 *
1417 		 * Incase of an add-operation it is hard to find out
1418 		 * if this add will promote this microzap to fatzap.
1419 		 * Hence, we consider the worst case and account for the
1420 		 * blocks assuming this microzap would be promoted to a
1421 		 * fatzap.
1422 		 *
1423 		 * 1 block overwritten  : header block
1424 		 * 4 new blocks written : 2 new split leaf, 2 grown
1425 		 *			ptrtbl blocks
1426 		 */
1427 		if (dmu_buf_freeable(zap->zap_dbuf)) {
1428 			(void) refcount_add_many(tooverwrite,
1429 			    MZAP_MAX_BLKSZ, FTAG);
1430 		} else {
1431 			(void) refcount_add_many(towrite,
1432 			    MZAP_MAX_BLKSZ, FTAG);
1433 		}
1434 
1435 		if (add) {
1436 			(void) refcount_add_many(towrite,
1437 			    4 * MZAP_MAX_BLKSZ, FTAG);
1438 		}
1439 	}
1440 
1441 	zap_unlockdir(zap);
1442 	return (err);
1443 }
1444