1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/zio.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zfs_context.h> 32 #include <sys/zap.h> 33 #include <sys/refcount.h> 34 #include <sys/zap_impl.h> 35 #include <sys/zap_leaf.h> 36 #include <sys/avl.h> 37 #include <sys/arc.h> 38 #include <sys/dmu_objset.h> 39 40 #ifdef _KERNEL 41 #include <sys/sunddi.h> 42 #endif 43 44 extern inline mzap_phys_t *zap_m_phys(zap_t *zap); 45 46 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags); 47 48 uint64_t 49 zap_getflags(zap_t *zap) 50 { 51 if (zap->zap_ismicro) 52 return (0); 53 return (zap_f_phys(zap)->zap_flags); 54 } 55 56 int 57 zap_hashbits(zap_t *zap) 58 { 59 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 60 return (48); 61 else 62 return (28); 63 } 64 65 uint32_t 66 zap_maxcd(zap_t *zap) 67 { 68 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 69 return ((1<<16)-1); 70 else 71 return (-1U); 72 } 73 74 static uint64_t 75 zap_hash(zap_name_t *zn) 76 { 77 zap_t *zap = zn->zn_zap; 78 uint64_t h = 0; 79 80 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 81 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 82 h = *(uint64_t *)zn->zn_key_orig; 83 } else { 84 h = zap->zap_salt; 85 ASSERT(h != 0); 86 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 87 88 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 89 int i; 90 const uint64_t *wp = zn->zn_key_norm; 91 92 ASSERT(zn->zn_key_intlen == 8); 93 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) { 94 int j; 95 uint64_t word = *wp; 96 97 for (j = 0; j < zn->zn_key_intlen; j++) { 98 h = (h >> 8) ^ 99 zfs_crc64_table[(h ^ word) & 0xFF]; 100 word >>= NBBY; 101 } 102 } 103 } else { 104 int i, len; 105 const uint8_t *cp = zn->zn_key_norm; 106 107 /* 108 * We previously stored the terminating null on 109 * disk, but didn't hash it, so we need to 110 * continue to not hash it. (The 111 * zn_key_*_numints includes the terminating 112 * null for non-binary keys.) 113 */ 114 len = zn->zn_key_norm_numints - 1; 115 116 ASSERT(zn->zn_key_intlen == 1); 117 for (i = 0; i < len; cp++, i++) { 118 h = (h >> 8) ^ 119 zfs_crc64_table[(h ^ *cp) & 0xFF]; 120 } 121 } 122 } 123 /* 124 * Don't use all 64 bits, since we need some in the cookie for 125 * the collision differentiator. We MUST use the high bits, 126 * since those are the ones that we first pay attention to when 127 * chosing the bucket. 128 */ 129 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 130 131 return (h); 132 } 133 134 static int 135 zap_normalize(zap_t *zap, const char *name, char *namenorm) 136 { 137 size_t inlen, outlen; 138 int err; 139 140 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 141 142 inlen = strlen(name) + 1; 143 outlen = ZAP_MAXNAMELEN; 144 145 err = 0; 146 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 147 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL | 148 U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err); 149 150 return (err); 151 } 152 153 boolean_t 154 zap_match(zap_name_t *zn, const char *matchname) 155 { 156 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 157 158 if (zn->zn_matchtype == MT_FIRST) { 159 char norm[ZAP_MAXNAMELEN]; 160 161 if (zap_normalize(zn->zn_zap, matchname, norm) != 0) 162 return (B_FALSE); 163 164 return (strcmp(zn->zn_key_norm, norm) == 0); 165 } else { 166 /* MT_BEST or MT_EXACT */ 167 return (strcmp(zn->zn_key_orig, matchname) == 0); 168 } 169 } 170 171 void 172 zap_name_free(zap_name_t *zn) 173 { 174 kmem_free(zn, sizeof (zap_name_t)); 175 } 176 177 zap_name_t * 178 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) 179 { 180 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 181 182 zn->zn_zap = zap; 183 zn->zn_key_intlen = sizeof (*key); 184 zn->zn_key_orig = key; 185 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; 186 zn->zn_matchtype = mt; 187 if (zap->zap_normflags) { 188 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) { 189 zap_name_free(zn); 190 return (NULL); 191 } 192 zn->zn_key_norm = zn->zn_normbuf; 193 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 194 } else { 195 if (mt != MT_EXACT) { 196 zap_name_free(zn); 197 return (NULL); 198 } 199 zn->zn_key_norm = zn->zn_key_orig; 200 zn->zn_key_norm_numints = zn->zn_key_orig_numints; 201 } 202 203 zn->zn_hash = zap_hash(zn); 204 return (zn); 205 } 206 207 zap_name_t * 208 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 209 { 210 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 211 212 ASSERT(zap->zap_normflags == 0); 213 zn->zn_zap = zap; 214 zn->zn_key_intlen = sizeof (*key); 215 zn->zn_key_orig = zn->zn_key_norm = key; 216 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; 217 zn->zn_matchtype = MT_EXACT; 218 219 zn->zn_hash = zap_hash(zn); 220 return (zn); 221 } 222 223 static void 224 mzap_byteswap(mzap_phys_t *buf, size_t size) 225 { 226 int i, max; 227 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 228 buf->mz_salt = BSWAP_64(buf->mz_salt); 229 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 230 max = (size / MZAP_ENT_LEN) - 1; 231 for (i = 0; i < max; i++) { 232 buf->mz_chunk[i].mze_value = 233 BSWAP_64(buf->mz_chunk[i].mze_value); 234 buf->mz_chunk[i].mze_cd = 235 BSWAP_32(buf->mz_chunk[i].mze_cd); 236 } 237 } 238 239 void 240 zap_byteswap(void *buf, size_t size) 241 { 242 uint64_t block_type; 243 244 block_type = *(uint64_t *)buf; 245 246 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 247 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 248 mzap_byteswap(buf, size); 249 } else { 250 fzap_byteswap(buf, size); 251 } 252 } 253 254 static int 255 mze_compare(const void *arg1, const void *arg2) 256 { 257 const mzap_ent_t *mze1 = arg1; 258 const mzap_ent_t *mze2 = arg2; 259 260 if (mze1->mze_hash > mze2->mze_hash) 261 return (+1); 262 if (mze1->mze_hash < mze2->mze_hash) 263 return (-1); 264 if (mze1->mze_cd > mze2->mze_cd) 265 return (+1); 266 if (mze1->mze_cd < mze2->mze_cd) 267 return (-1); 268 return (0); 269 } 270 271 static void 272 mze_insert(zap_t *zap, int chunkid, uint64_t hash) 273 { 274 mzap_ent_t *mze; 275 276 ASSERT(zap->zap_ismicro); 277 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 278 279 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 280 mze->mze_chunkid = chunkid; 281 mze->mze_hash = hash; 282 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd; 283 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0); 284 avl_add(&zap->zap_m.zap_avl, mze); 285 } 286 287 static mzap_ent_t * 288 mze_find(zap_name_t *zn) 289 { 290 mzap_ent_t mze_tofind; 291 mzap_ent_t *mze; 292 avl_index_t idx; 293 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; 294 295 ASSERT(zn->zn_zap->zap_ismicro); 296 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 297 298 mze_tofind.mze_hash = zn->zn_hash; 299 mze_tofind.mze_cd = 0; 300 301 again: 302 mze = avl_find(avl, &mze_tofind, &idx); 303 if (mze == NULL) 304 mze = avl_nearest(avl, idx, AVL_AFTER); 305 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { 306 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); 307 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) 308 return (mze); 309 } 310 if (zn->zn_matchtype == MT_BEST) { 311 zn->zn_matchtype = MT_FIRST; 312 goto again; 313 } 314 return (NULL); 315 } 316 317 static uint32_t 318 mze_find_unused_cd(zap_t *zap, uint64_t hash) 319 { 320 mzap_ent_t mze_tofind; 321 mzap_ent_t *mze; 322 avl_index_t idx; 323 avl_tree_t *avl = &zap->zap_m.zap_avl; 324 uint32_t cd; 325 326 ASSERT(zap->zap_ismicro); 327 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 328 329 mze_tofind.mze_hash = hash; 330 mze_tofind.mze_cd = 0; 331 332 cd = 0; 333 for (mze = avl_find(avl, &mze_tofind, &idx); 334 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 335 if (mze->mze_cd != cd) 336 break; 337 cd++; 338 } 339 340 return (cd); 341 } 342 343 static void 344 mze_remove(zap_t *zap, mzap_ent_t *mze) 345 { 346 ASSERT(zap->zap_ismicro); 347 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 348 349 avl_remove(&zap->zap_m.zap_avl, mze); 350 kmem_free(mze, sizeof (mzap_ent_t)); 351 } 352 353 static void 354 mze_destroy(zap_t *zap) 355 { 356 mzap_ent_t *mze; 357 void *avlcookie = NULL; 358 359 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 360 kmem_free(mze, sizeof (mzap_ent_t)); 361 avl_destroy(&zap->zap_m.zap_avl); 362 } 363 364 static zap_t * 365 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 366 { 367 zap_t *winner; 368 zap_t *zap; 369 int i; 370 uint64_t *zap_hdr = (uint64_t *)db->db_data; 371 uint64_t zap_block_type = zap_hdr[0]; 372 uint64_t zap_magic = zap_hdr[1]; 373 374 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 375 376 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 377 rw_init(&zap->zap_rwlock, 0, 0, 0); 378 rw_enter(&zap->zap_rwlock, RW_WRITER); 379 zap->zap_objset = os; 380 zap->zap_object = obj; 381 zap->zap_dbuf = db; 382 383 if (zap_block_type != ZBT_MICRO) { 384 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 385 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; 386 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) { 387 winner = NULL; /* No actual winner here... */ 388 goto handle_winner; 389 } 390 } else { 391 zap->zap_ismicro = TRUE; 392 } 393 394 /* 395 * Make sure that zap_ismicro is set before we let others see 396 * it, because zap_lockdir() checks zap_ismicro without the lock 397 * held. 398 */ 399 dmu_buf_init_user(&zap->zap_dbu, zap_evict, &zap->zap_dbuf); 400 winner = dmu_buf_set_user(db, &zap->zap_dbu); 401 402 if (winner != NULL) 403 goto handle_winner; 404 405 if (zap->zap_ismicro) { 406 zap->zap_salt = zap_m_phys(zap)->mz_salt; 407 zap->zap_normflags = zap_m_phys(zap)->mz_normflags; 408 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 409 avl_create(&zap->zap_m.zap_avl, mze_compare, 410 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 411 412 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 413 mzap_ent_phys_t *mze = 414 &zap_m_phys(zap)->mz_chunk[i]; 415 if (mze->mze_name[0]) { 416 zap_name_t *zn; 417 418 zap->zap_m.zap_num_entries++; 419 zn = zap_name_alloc(zap, mze->mze_name, 420 MT_EXACT); 421 mze_insert(zap, i, zn->zn_hash); 422 zap_name_free(zn); 423 } 424 } 425 } else { 426 zap->zap_salt = zap_f_phys(zap)->zap_salt; 427 zap->zap_normflags = zap_f_phys(zap)->zap_normflags; 428 429 ASSERT3U(sizeof (struct zap_leaf_header), ==, 430 2*ZAP_LEAF_CHUNKSIZE); 431 432 /* 433 * The embedded pointer table should not overlap the 434 * other members. 435 */ 436 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 437 &zap_f_phys(zap)->zap_salt); 438 439 /* 440 * The embedded pointer table should end at the end of 441 * the block 442 */ 443 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 444 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 445 (uintptr_t)zap_f_phys(zap), ==, 446 zap->zap_dbuf->db_size); 447 } 448 rw_exit(&zap->zap_rwlock); 449 return (zap); 450 451 handle_winner: 452 rw_exit(&zap->zap_rwlock); 453 rw_destroy(&zap->zap_rwlock); 454 if (!zap->zap_ismicro) 455 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 456 kmem_free(zap, sizeof (zap_t)); 457 return (winner); 458 } 459 460 int 461 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 462 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 463 { 464 zap_t *zap; 465 dmu_buf_t *db; 466 krw_t lt; 467 int err; 468 469 *zapp = NULL; 470 471 err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH); 472 if (err) 473 return (err); 474 475 #ifdef ZFS_DEBUG 476 { 477 dmu_object_info_t doi; 478 dmu_object_info_from_db(db, &doi); 479 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 480 } 481 #endif 482 483 zap = dmu_buf_get_user(db); 484 if (zap == NULL) { 485 zap = mzap_open(os, obj, db); 486 if (zap == NULL) { 487 /* 488 * mzap_open() didn't like what it saw on-disk. 489 * Check for corruption! 490 */ 491 dmu_buf_rele(db, NULL); 492 return (SET_ERROR(EIO)); 493 } 494 } 495 496 /* 497 * We're checking zap_ismicro without the lock held, in order to 498 * tell what type of lock we want. Once we have some sort of 499 * lock, see if it really is the right type. In practice this 500 * can only be different if it was upgraded from micro to fat, 501 * and micro wanted WRITER but fat only needs READER. 502 */ 503 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 504 rw_enter(&zap->zap_rwlock, lt); 505 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 506 /* it was upgraded, now we only need reader */ 507 ASSERT(lt == RW_WRITER); 508 ASSERT(RW_READER == 509 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 510 rw_downgrade(&zap->zap_rwlock); 511 lt = RW_READER; 512 } 513 514 zap->zap_objset = os; 515 516 if (lt == RW_WRITER) 517 dmu_buf_will_dirty(db, tx); 518 519 ASSERT3P(zap->zap_dbuf, ==, db); 520 521 ASSERT(!zap->zap_ismicro || 522 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 523 if (zap->zap_ismicro && tx && adding && 524 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 525 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 526 if (newsz > MZAP_MAX_BLKSZ) { 527 dprintf("upgrading obj %llu: num_entries=%u\n", 528 obj, zap->zap_m.zap_num_entries); 529 *zapp = zap; 530 return (mzap_upgrade(zapp, tx, 0)); 531 } 532 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); 533 ASSERT0(err); 534 zap->zap_m.zap_num_chunks = 535 db->db_size / MZAP_ENT_LEN - 1; 536 } 537 538 *zapp = zap; 539 return (0); 540 } 541 542 void 543 zap_unlockdir(zap_t *zap) 544 { 545 rw_exit(&zap->zap_rwlock); 546 dmu_buf_rele(zap->zap_dbuf, NULL); 547 } 548 549 static int 550 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags) 551 { 552 mzap_phys_t *mzp; 553 int i, sz, nchunks; 554 int err = 0; 555 zap_t *zap = *zapp; 556 557 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 558 559 sz = zap->zap_dbuf->db_size; 560 mzp = zio_buf_alloc(sz); 561 bcopy(zap->zap_dbuf->db_data, mzp, sz); 562 nchunks = zap->zap_m.zap_num_chunks; 563 564 if (!flags) { 565 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 566 1ULL << fzap_default_block_shift, 0, tx); 567 if (err) { 568 zio_buf_free(mzp, sz); 569 return (err); 570 } 571 } 572 573 dprintf("upgrading obj=%llu with %u chunks\n", 574 zap->zap_object, nchunks); 575 /* XXX destroy the avl later, so we can use the stored hash value */ 576 mze_destroy(zap); 577 578 fzap_upgrade(zap, tx, flags); 579 580 for (i = 0; i < nchunks; i++) { 581 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 582 zap_name_t *zn; 583 if (mze->mze_name[0] == 0) 584 continue; 585 dprintf("adding %s=%llu\n", 586 mze->mze_name, mze->mze_value); 587 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); 588 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx); 589 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 590 zap_name_free(zn); 591 if (err) 592 break; 593 } 594 zio_buf_free(mzp, sz); 595 *zapp = zap; 596 return (err); 597 } 598 599 void 600 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, 601 dmu_tx_t *tx) 602 { 603 dmu_buf_t *db; 604 mzap_phys_t *zp; 605 606 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); 607 608 #ifdef ZFS_DEBUG 609 { 610 dmu_object_info_t doi; 611 dmu_object_info_from_db(db, &doi); 612 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 613 } 614 #endif 615 616 dmu_buf_will_dirty(db, tx); 617 zp = db->db_data; 618 zp->mz_block_type = ZBT_MICRO; 619 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; 620 zp->mz_normflags = normflags; 621 dmu_buf_rele(db, FTAG); 622 623 if (flags != 0) { 624 zap_t *zap; 625 /* Only fat zap supports flags; upgrade immediately. */ 626 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER, 627 B_FALSE, B_FALSE, &zap)); 628 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags)); 629 zap_unlockdir(zap); 630 } 631 } 632 633 int 634 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 635 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 636 { 637 return (zap_create_claim_norm(os, obj, 638 0, ot, bonustype, bonuslen, tx)); 639 } 640 641 int 642 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 643 dmu_object_type_t ot, 644 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 645 { 646 int err; 647 648 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); 649 if (err != 0) 650 return (err); 651 mzap_create_impl(os, obj, normflags, 0, tx); 652 return (0); 653 } 654 655 uint64_t 656 zap_create(objset_t *os, dmu_object_type_t ot, 657 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 658 { 659 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 660 } 661 662 uint64_t 663 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 664 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 665 { 666 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 667 668 mzap_create_impl(os, obj, normflags, 0, tx); 669 return (obj); 670 } 671 672 uint64_t 673 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 674 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 675 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 676 { 677 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 678 679 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT && 680 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT && 681 indirect_blockshift >= SPA_MINBLOCKSHIFT && 682 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT); 683 684 VERIFY(dmu_object_set_blocksize(os, obj, 685 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0); 686 687 mzap_create_impl(os, obj, normflags, flags, tx); 688 return (obj); 689 } 690 691 int 692 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 693 { 694 /* 695 * dmu_object_free will free the object number and free the 696 * data. Freeing the data will cause our pageout function to be 697 * called, which will destroy our data (zap_leaf_t's and zap_t). 698 */ 699 700 return (dmu_object_free(os, zapobj, tx)); 701 } 702 703 void 704 zap_evict(void *dbu) 705 { 706 zap_t *zap = dbu; 707 708 rw_destroy(&zap->zap_rwlock); 709 710 if (zap->zap_ismicro) 711 mze_destroy(zap); 712 else 713 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 714 715 kmem_free(zap, sizeof (zap_t)); 716 } 717 718 int 719 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 720 { 721 zap_t *zap; 722 int err; 723 724 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 725 if (err) 726 return (err); 727 if (!zap->zap_ismicro) { 728 err = fzap_count(zap, count); 729 } else { 730 *count = zap->zap_m.zap_num_entries; 731 } 732 zap_unlockdir(zap); 733 return (err); 734 } 735 736 /* 737 * zn may be NULL; if not specified, it will be computed if needed. 738 * See also the comment above zap_entry_normalization_conflict(). 739 */ 740 static boolean_t 741 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) 742 { 743 mzap_ent_t *other; 744 int direction = AVL_BEFORE; 745 boolean_t allocdzn = B_FALSE; 746 747 if (zap->zap_normflags == 0) 748 return (B_FALSE); 749 750 again: 751 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction); 752 other && other->mze_hash == mze->mze_hash; 753 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { 754 755 if (zn == NULL) { 756 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name, 757 MT_FIRST); 758 allocdzn = B_TRUE; 759 } 760 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 761 if (allocdzn) 762 zap_name_free(zn); 763 return (B_TRUE); 764 } 765 } 766 767 if (direction == AVL_BEFORE) { 768 direction = AVL_AFTER; 769 goto again; 770 } 771 772 if (allocdzn) 773 zap_name_free(zn); 774 return (B_FALSE); 775 } 776 777 /* 778 * Routines for manipulating attributes. 779 */ 780 781 int 782 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 783 uint64_t integer_size, uint64_t num_integers, void *buf) 784 { 785 return (zap_lookup_norm(os, zapobj, name, integer_size, 786 num_integers, buf, MT_EXACT, NULL, 0, NULL)); 787 } 788 789 int 790 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 791 uint64_t integer_size, uint64_t num_integers, void *buf, 792 matchtype_t mt, char *realname, int rn_len, 793 boolean_t *ncp) 794 { 795 zap_t *zap; 796 int err; 797 mzap_ent_t *mze; 798 zap_name_t *zn; 799 800 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 801 if (err) 802 return (err); 803 zn = zap_name_alloc(zap, name, mt); 804 if (zn == NULL) { 805 zap_unlockdir(zap); 806 return (SET_ERROR(ENOTSUP)); 807 } 808 809 if (!zap->zap_ismicro) { 810 err = fzap_lookup(zn, integer_size, num_integers, buf, 811 realname, rn_len, ncp); 812 } else { 813 mze = mze_find(zn); 814 if (mze == NULL) { 815 err = SET_ERROR(ENOENT); 816 } else { 817 if (num_integers < 1) { 818 err = SET_ERROR(EOVERFLOW); 819 } else if (integer_size != 8) { 820 err = SET_ERROR(EINVAL); 821 } else { 822 *(uint64_t *)buf = 823 MZE_PHYS(zap, mze)->mze_value; 824 (void) strlcpy(realname, 825 MZE_PHYS(zap, mze)->mze_name, rn_len); 826 if (ncp) { 827 *ncp = mzap_normalization_conflict(zap, 828 zn, mze); 829 } 830 } 831 } 832 } 833 zap_name_free(zn); 834 zap_unlockdir(zap); 835 return (err); 836 } 837 838 int 839 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 840 int key_numints) 841 { 842 zap_t *zap; 843 int err; 844 zap_name_t *zn; 845 846 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 847 if (err) 848 return (err); 849 zn = zap_name_alloc_uint64(zap, key, key_numints); 850 if (zn == NULL) { 851 zap_unlockdir(zap); 852 return (SET_ERROR(ENOTSUP)); 853 } 854 855 fzap_prefetch(zn); 856 zap_name_free(zn); 857 zap_unlockdir(zap); 858 return (err); 859 } 860 861 int 862 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 863 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 864 { 865 zap_t *zap; 866 int err; 867 zap_name_t *zn; 868 869 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 870 if (err) 871 return (err); 872 zn = zap_name_alloc_uint64(zap, key, key_numints); 873 if (zn == NULL) { 874 zap_unlockdir(zap); 875 return (SET_ERROR(ENOTSUP)); 876 } 877 878 err = fzap_lookup(zn, integer_size, num_integers, buf, 879 NULL, 0, NULL); 880 zap_name_free(zn); 881 zap_unlockdir(zap); 882 return (err); 883 } 884 885 int 886 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 887 { 888 int err = zap_lookup_norm(os, zapobj, name, 0, 889 0, NULL, MT_EXACT, NULL, 0, NULL); 890 if (err == EOVERFLOW || err == EINVAL) 891 err = 0; /* found, but skipped reading the value */ 892 return (err); 893 } 894 895 int 896 zap_length(objset_t *os, uint64_t zapobj, const char *name, 897 uint64_t *integer_size, uint64_t *num_integers) 898 { 899 zap_t *zap; 900 int err; 901 mzap_ent_t *mze; 902 zap_name_t *zn; 903 904 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 905 if (err) 906 return (err); 907 zn = zap_name_alloc(zap, name, MT_EXACT); 908 if (zn == NULL) { 909 zap_unlockdir(zap); 910 return (SET_ERROR(ENOTSUP)); 911 } 912 if (!zap->zap_ismicro) { 913 err = fzap_length(zn, integer_size, num_integers); 914 } else { 915 mze = mze_find(zn); 916 if (mze == NULL) { 917 err = SET_ERROR(ENOENT); 918 } else { 919 if (integer_size) 920 *integer_size = 8; 921 if (num_integers) 922 *num_integers = 1; 923 } 924 } 925 zap_name_free(zn); 926 zap_unlockdir(zap); 927 return (err); 928 } 929 930 int 931 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 932 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 933 { 934 zap_t *zap; 935 int err; 936 zap_name_t *zn; 937 938 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 939 if (err) 940 return (err); 941 zn = zap_name_alloc_uint64(zap, key, key_numints); 942 if (zn == NULL) { 943 zap_unlockdir(zap); 944 return (SET_ERROR(ENOTSUP)); 945 } 946 err = fzap_length(zn, integer_size, num_integers); 947 zap_name_free(zn); 948 zap_unlockdir(zap); 949 return (err); 950 } 951 952 static void 953 mzap_addent(zap_name_t *zn, uint64_t value) 954 { 955 int i; 956 zap_t *zap = zn->zn_zap; 957 int start = zap->zap_m.zap_alloc_next; 958 uint32_t cd; 959 960 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 961 962 #ifdef ZFS_DEBUG 963 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 964 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 965 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 966 } 967 #endif 968 969 cd = mze_find_unused_cd(zap, zn->zn_hash); 970 /* given the limited size of the microzap, this can't happen */ 971 ASSERT(cd < zap_maxcd(zap)); 972 973 again: 974 for (i = start; i < zap->zap_m.zap_num_chunks; i++) { 975 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 976 if (mze->mze_name[0] == 0) { 977 mze->mze_value = value; 978 mze->mze_cd = cd; 979 (void) strcpy(mze->mze_name, zn->zn_key_orig); 980 zap->zap_m.zap_num_entries++; 981 zap->zap_m.zap_alloc_next = i+1; 982 if (zap->zap_m.zap_alloc_next == 983 zap->zap_m.zap_num_chunks) 984 zap->zap_m.zap_alloc_next = 0; 985 mze_insert(zap, i, zn->zn_hash); 986 return; 987 } 988 } 989 if (start != 0) { 990 start = 0; 991 goto again; 992 } 993 ASSERT(!"out of entries!"); 994 } 995 996 int 997 zap_add(objset_t *os, uint64_t zapobj, const char *key, 998 int integer_size, uint64_t num_integers, 999 const void *val, dmu_tx_t *tx) 1000 { 1001 zap_t *zap; 1002 int err; 1003 mzap_ent_t *mze; 1004 const uint64_t *intval = val; 1005 zap_name_t *zn; 1006 1007 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1008 if (err) 1009 return (err); 1010 zn = zap_name_alloc(zap, key, MT_EXACT); 1011 if (zn == NULL) { 1012 zap_unlockdir(zap); 1013 return (SET_ERROR(ENOTSUP)); 1014 } 1015 if (!zap->zap_ismicro) { 1016 err = fzap_add(zn, integer_size, num_integers, val, tx); 1017 zap = zn->zn_zap; /* fzap_add() may change zap */ 1018 } else if (integer_size != 8 || num_integers != 1 || 1019 strlen(key) >= MZAP_NAME_LEN) { 1020 err = mzap_upgrade(&zn->zn_zap, tx, 0); 1021 if (err == 0) 1022 err = fzap_add(zn, integer_size, num_integers, val, tx); 1023 zap = zn->zn_zap; /* fzap_add() may change zap */ 1024 } else { 1025 mze = mze_find(zn); 1026 if (mze != NULL) { 1027 err = SET_ERROR(EEXIST); 1028 } else { 1029 mzap_addent(zn, *intval); 1030 } 1031 } 1032 ASSERT(zap == zn->zn_zap); 1033 zap_name_free(zn); 1034 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1035 zap_unlockdir(zap); 1036 return (err); 1037 } 1038 1039 int 1040 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1041 int key_numints, int integer_size, uint64_t num_integers, 1042 const void *val, dmu_tx_t *tx) 1043 { 1044 zap_t *zap; 1045 int err; 1046 zap_name_t *zn; 1047 1048 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1049 if (err) 1050 return (err); 1051 zn = zap_name_alloc_uint64(zap, key, key_numints); 1052 if (zn == NULL) { 1053 zap_unlockdir(zap); 1054 return (SET_ERROR(ENOTSUP)); 1055 } 1056 err = fzap_add(zn, integer_size, num_integers, val, tx); 1057 zap = zn->zn_zap; /* fzap_add() may change zap */ 1058 zap_name_free(zn); 1059 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1060 zap_unlockdir(zap); 1061 return (err); 1062 } 1063 1064 int 1065 zap_update(objset_t *os, uint64_t zapobj, const char *name, 1066 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1067 { 1068 zap_t *zap; 1069 mzap_ent_t *mze; 1070 uint64_t oldval; 1071 const uint64_t *intval = val; 1072 zap_name_t *zn; 1073 int err; 1074 1075 #ifdef ZFS_DEBUG 1076 /* 1077 * If there is an old value, it shouldn't change across the 1078 * lockdir (eg, due to bprewrite's xlation). 1079 */ 1080 if (integer_size == 8 && num_integers == 1) 1081 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval); 1082 #endif 1083 1084 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1085 if (err) 1086 return (err); 1087 zn = zap_name_alloc(zap, name, MT_EXACT); 1088 if (zn == NULL) { 1089 zap_unlockdir(zap); 1090 return (SET_ERROR(ENOTSUP)); 1091 } 1092 if (!zap->zap_ismicro) { 1093 err = fzap_update(zn, integer_size, num_integers, val, tx); 1094 zap = zn->zn_zap; /* fzap_update() may change zap */ 1095 } else if (integer_size != 8 || num_integers != 1 || 1096 strlen(name) >= MZAP_NAME_LEN) { 1097 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1098 zapobj, integer_size, num_integers, name); 1099 err = mzap_upgrade(&zn->zn_zap, tx, 0); 1100 if (err == 0) 1101 err = fzap_update(zn, integer_size, num_integers, 1102 val, tx); 1103 zap = zn->zn_zap; /* fzap_update() may change zap */ 1104 } else { 1105 mze = mze_find(zn); 1106 if (mze != NULL) { 1107 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval); 1108 MZE_PHYS(zap, mze)->mze_value = *intval; 1109 } else { 1110 mzap_addent(zn, *intval); 1111 } 1112 } 1113 ASSERT(zap == zn->zn_zap); 1114 zap_name_free(zn); 1115 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1116 zap_unlockdir(zap); 1117 return (err); 1118 } 1119 1120 int 1121 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1122 int key_numints, 1123 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1124 { 1125 zap_t *zap; 1126 zap_name_t *zn; 1127 int err; 1128 1129 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1130 if (err) 1131 return (err); 1132 zn = zap_name_alloc_uint64(zap, key, key_numints); 1133 if (zn == NULL) { 1134 zap_unlockdir(zap); 1135 return (SET_ERROR(ENOTSUP)); 1136 } 1137 err = fzap_update(zn, integer_size, num_integers, val, tx); 1138 zap = zn->zn_zap; /* fzap_update() may change zap */ 1139 zap_name_free(zn); 1140 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1141 zap_unlockdir(zap); 1142 return (err); 1143 } 1144 1145 int 1146 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1147 { 1148 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx)); 1149 } 1150 1151 int 1152 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1153 matchtype_t mt, dmu_tx_t *tx) 1154 { 1155 zap_t *zap; 1156 int err; 1157 mzap_ent_t *mze; 1158 zap_name_t *zn; 1159 1160 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1161 if (err) 1162 return (err); 1163 zn = zap_name_alloc(zap, name, mt); 1164 if (zn == NULL) { 1165 zap_unlockdir(zap); 1166 return (SET_ERROR(ENOTSUP)); 1167 } 1168 if (!zap->zap_ismicro) { 1169 err = fzap_remove(zn, tx); 1170 } else { 1171 mze = mze_find(zn); 1172 if (mze == NULL) { 1173 err = SET_ERROR(ENOENT); 1174 } else { 1175 zap->zap_m.zap_num_entries--; 1176 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid], 1177 sizeof (mzap_ent_phys_t)); 1178 mze_remove(zap, mze); 1179 } 1180 } 1181 zap_name_free(zn); 1182 zap_unlockdir(zap); 1183 return (err); 1184 } 1185 1186 int 1187 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1188 int key_numints, dmu_tx_t *tx) 1189 { 1190 zap_t *zap; 1191 int err; 1192 zap_name_t *zn; 1193 1194 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1195 if (err) 1196 return (err); 1197 zn = zap_name_alloc_uint64(zap, key, key_numints); 1198 if (zn == NULL) { 1199 zap_unlockdir(zap); 1200 return (SET_ERROR(ENOTSUP)); 1201 } 1202 err = fzap_remove(zn, tx); 1203 zap_name_free(zn); 1204 zap_unlockdir(zap); 1205 return (err); 1206 } 1207 1208 /* 1209 * Routines for iterating over the attributes. 1210 */ 1211 1212 void 1213 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1214 uint64_t serialized) 1215 { 1216 zc->zc_objset = os; 1217 zc->zc_zap = NULL; 1218 zc->zc_leaf = NULL; 1219 zc->zc_zapobj = zapobj; 1220 zc->zc_serialized = serialized; 1221 zc->zc_hash = 0; 1222 zc->zc_cd = 0; 1223 } 1224 1225 void 1226 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1227 { 1228 zap_cursor_init_serialized(zc, os, zapobj, 0); 1229 } 1230 1231 void 1232 zap_cursor_fini(zap_cursor_t *zc) 1233 { 1234 if (zc->zc_zap) { 1235 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1236 zap_unlockdir(zc->zc_zap); 1237 zc->zc_zap = NULL; 1238 } 1239 if (zc->zc_leaf) { 1240 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1241 zap_put_leaf(zc->zc_leaf); 1242 zc->zc_leaf = NULL; 1243 } 1244 zc->zc_objset = NULL; 1245 } 1246 1247 uint64_t 1248 zap_cursor_serialize(zap_cursor_t *zc) 1249 { 1250 if (zc->zc_hash == -1ULL) 1251 return (-1ULL); 1252 if (zc->zc_zap == NULL) 1253 return (zc->zc_serialized); 1254 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1255 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1256 1257 /* 1258 * We want to keep the high 32 bits of the cursor zero if we can, so 1259 * that 32-bit programs can access this. So usually use a small 1260 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1261 * of the cursor. 1262 * 1263 * [ collision differentiator | zap_hashbits()-bit hash value ] 1264 */ 1265 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1266 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1267 } 1268 1269 int 1270 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1271 { 1272 int err; 1273 avl_index_t idx; 1274 mzap_ent_t mze_tofind; 1275 mzap_ent_t *mze; 1276 1277 if (zc->zc_hash == -1ULL) 1278 return (SET_ERROR(ENOENT)); 1279 1280 if (zc->zc_zap == NULL) { 1281 int hb; 1282 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1283 RW_READER, TRUE, FALSE, &zc->zc_zap); 1284 if (err) 1285 return (err); 1286 1287 /* 1288 * To support zap_cursor_init_serialized, advance, retrieve, 1289 * we must add to the existing zc_cd, which may already 1290 * be 1 due to the zap_cursor_advance. 1291 */ 1292 ASSERT(zc->zc_hash == 0); 1293 hb = zap_hashbits(zc->zc_zap); 1294 zc->zc_hash = zc->zc_serialized << (64 - hb); 1295 zc->zc_cd += zc->zc_serialized >> hb; 1296 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1297 zc->zc_cd = 0; 1298 } else { 1299 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1300 } 1301 if (!zc->zc_zap->zap_ismicro) { 1302 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1303 } else { 1304 mze_tofind.mze_hash = zc->zc_hash; 1305 mze_tofind.mze_cd = zc->zc_cd; 1306 1307 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 1308 if (mze == NULL) { 1309 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 1310 idx, AVL_AFTER); 1311 } 1312 if (mze) { 1313 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); 1314 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); 1315 za->za_normalization_conflict = 1316 mzap_normalization_conflict(zc->zc_zap, NULL, mze); 1317 za->za_integer_length = 8; 1318 za->za_num_integers = 1; 1319 za->za_first_integer = mzep->mze_value; 1320 (void) strcpy(za->za_name, mzep->mze_name); 1321 zc->zc_hash = mze->mze_hash; 1322 zc->zc_cd = mze->mze_cd; 1323 err = 0; 1324 } else { 1325 zc->zc_hash = -1ULL; 1326 err = SET_ERROR(ENOENT); 1327 } 1328 } 1329 rw_exit(&zc->zc_zap->zap_rwlock); 1330 return (err); 1331 } 1332 1333 void 1334 zap_cursor_advance(zap_cursor_t *zc) 1335 { 1336 if (zc->zc_hash == -1ULL) 1337 return; 1338 zc->zc_cd++; 1339 } 1340 1341 int 1342 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1343 { 1344 int err; 1345 zap_t *zap; 1346 1347 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1348 if (err) 1349 return (err); 1350 1351 bzero(zs, sizeof (zap_stats_t)); 1352 1353 if (zap->zap_ismicro) { 1354 zs->zs_blocksize = zap->zap_dbuf->db_size; 1355 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1356 zs->zs_num_blocks = 1; 1357 } else { 1358 fzap_get_stats(zap, zs); 1359 } 1360 zap_unlockdir(zap); 1361 return (0); 1362 } 1363 1364 int 1365 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add, 1366 uint64_t *towrite, uint64_t *tooverwrite) 1367 { 1368 zap_t *zap; 1369 int err = 0; 1370 1371 /* 1372 * Since, we don't have a name, we cannot figure out which blocks will 1373 * be affected in this operation. So, account for the worst case : 1374 * - 3 blocks overwritten: target leaf, ptrtbl block, header block 1375 * - 4 new blocks written if adding: 1376 * - 2 blocks for possibly split leaves, 1377 * - 2 grown ptrtbl blocks 1378 * 1379 * This also accomodates the case where an add operation to a fairly 1380 * large microzap results in a promotion to fatzap. 1381 */ 1382 if (name == NULL) { 1383 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE; 1384 return (err); 1385 } 1386 1387 /* 1388 * We lock the zap with adding == FALSE. Because, if we pass 1389 * the actual value of add, it could trigger a mzap_upgrade(). 1390 * At present we are just evaluating the possibility of this operation 1391 * and hence we donot want to trigger an upgrade. 1392 */ 1393 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1394 if (err) 1395 return (err); 1396 1397 if (!zap->zap_ismicro) { 1398 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT); 1399 if (zn) { 1400 err = fzap_count_write(zn, add, towrite, 1401 tooverwrite); 1402 zap_name_free(zn); 1403 } else { 1404 /* 1405 * We treat this case as similar to (name == NULL) 1406 */ 1407 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE; 1408 } 1409 } else { 1410 /* 1411 * We are here if (name != NULL) and this is a micro-zap. 1412 * We account for the header block depending on whether it 1413 * is freeable. 1414 * 1415 * Incase of an add-operation it is hard to find out 1416 * if this add will promote this microzap to fatzap. 1417 * Hence, we consider the worst case and account for the 1418 * blocks assuming this microzap would be promoted to a 1419 * fatzap. 1420 * 1421 * 1 block overwritten : header block 1422 * 4 new blocks written : 2 new split leaf, 2 grown 1423 * ptrtbl blocks 1424 */ 1425 if (dmu_buf_freeable(zap->zap_dbuf)) 1426 *tooverwrite += MZAP_MAX_BLKSZ; 1427 else 1428 *towrite += MZAP_MAX_BLKSZ; 1429 1430 if (add) { 1431 *towrite += 4 * MZAP_MAX_BLKSZ; 1432 } 1433 } 1434 1435 zap_unlockdir(zap); 1436 return (err); 1437 } 1438