xref: /illumos-gate/usr/src/uts/common/fs/zfs/zap_micro.c (revision 328d222be1e6f8291e6805ec610012ec96e249ec)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/zio.h>
26 #include <sys/spa.h>
27 #include <sys/dmu.h>
28 #include <sys/zfs_context.h>
29 #include <sys/zap.h>
30 #include <sys/refcount.h>
31 #include <sys/zap_impl.h>
32 #include <sys/zap_leaf.h>
33 #include <sys/avl.h>
34 
35 #ifdef _KERNEL
36 #include <sys/sunddi.h>
37 #endif
38 
39 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
40 
41 uint64_t
42 zap_getflags(zap_t *zap)
43 {
44 	if (zap->zap_ismicro)
45 		return (0);
46 	return (zap->zap_u.zap_fat.zap_phys->zap_flags);
47 }
48 
49 int
50 zap_hashbits(zap_t *zap)
51 {
52 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
53 		return (48);
54 	else
55 		return (28);
56 }
57 
58 uint32_t
59 zap_maxcd(zap_t *zap)
60 {
61 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
62 		return ((1<<16)-1);
63 	else
64 		return (-1U);
65 }
66 
67 static uint64_t
68 zap_hash(zap_name_t *zn)
69 {
70 	zap_t *zap = zn->zn_zap;
71 	uint64_t h = 0;
72 
73 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
74 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
75 		h = *(uint64_t *)zn->zn_key_orig;
76 	} else {
77 		h = zap->zap_salt;
78 		ASSERT(h != 0);
79 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
80 
81 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
82 			int i;
83 			const uint64_t *wp = zn->zn_key_norm;
84 
85 			ASSERT(zn->zn_key_intlen == 8);
86 			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
87 				int j;
88 				uint64_t word = *wp;
89 
90 				for (j = 0; j < zn->zn_key_intlen; j++) {
91 					h = (h >> 8) ^
92 					    zfs_crc64_table[(h ^ word) & 0xFF];
93 					word >>= NBBY;
94 				}
95 			}
96 		} else {
97 			int i, len;
98 			const uint8_t *cp = zn->zn_key_norm;
99 
100 			/*
101 			 * We previously stored the terminating null on
102 			 * disk, but didn't hash it, so we need to
103 			 * continue to not hash it.  (The
104 			 * zn_key_*_numints includes the terminating
105 			 * null for non-binary keys.)
106 			 */
107 			len = zn->zn_key_norm_numints - 1;
108 
109 			ASSERT(zn->zn_key_intlen == 1);
110 			for (i = 0; i < len; cp++, i++) {
111 				h = (h >> 8) ^
112 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
113 			}
114 		}
115 	}
116 	/*
117 	 * Don't use all 64 bits, since we need some in the cookie for
118 	 * the collision differentiator.  We MUST use the high bits,
119 	 * since those are the ones that we first pay attention to when
120 	 * chosing the bucket.
121 	 */
122 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
123 
124 	return (h);
125 }
126 
127 static int
128 zap_normalize(zap_t *zap, const char *name, char *namenorm)
129 {
130 	size_t inlen, outlen;
131 	int err;
132 
133 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
134 
135 	inlen = strlen(name) + 1;
136 	outlen = ZAP_MAXNAMELEN;
137 
138 	err = 0;
139 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
140 	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
141 	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
142 
143 	return (err);
144 }
145 
146 boolean_t
147 zap_match(zap_name_t *zn, const char *matchname)
148 {
149 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
150 
151 	if (zn->zn_matchtype == MT_FIRST) {
152 		char norm[ZAP_MAXNAMELEN];
153 
154 		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
155 			return (B_FALSE);
156 
157 		return (strcmp(zn->zn_key_norm, norm) == 0);
158 	} else {
159 		/* MT_BEST or MT_EXACT */
160 		return (strcmp(zn->zn_key_orig, matchname) == 0);
161 	}
162 }
163 
164 void
165 zap_name_free(zap_name_t *zn)
166 {
167 	kmem_free(zn, sizeof (zap_name_t));
168 }
169 
170 zap_name_t *
171 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
172 {
173 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
174 
175 	zn->zn_zap = zap;
176 	zn->zn_key_intlen = sizeof (*key);
177 	zn->zn_key_orig = key;
178 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
179 	zn->zn_matchtype = mt;
180 	if (zap->zap_normflags) {
181 		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
182 			zap_name_free(zn);
183 			return (NULL);
184 		}
185 		zn->zn_key_norm = zn->zn_normbuf;
186 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
187 	} else {
188 		if (mt != MT_EXACT) {
189 			zap_name_free(zn);
190 			return (NULL);
191 		}
192 		zn->zn_key_norm = zn->zn_key_orig;
193 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
194 	}
195 
196 	zn->zn_hash = zap_hash(zn);
197 	return (zn);
198 }
199 
200 zap_name_t *
201 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
202 {
203 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
204 
205 	ASSERT(zap->zap_normflags == 0);
206 	zn->zn_zap = zap;
207 	zn->zn_key_intlen = sizeof (*key);
208 	zn->zn_key_orig = zn->zn_key_norm = key;
209 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
210 	zn->zn_matchtype = MT_EXACT;
211 
212 	zn->zn_hash = zap_hash(zn);
213 	return (zn);
214 }
215 
216 static void
217 mzap_byteswap(mzap_phys_t *buf, size_t size)
218 {
219 	int i, max;
220 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
221 	buf->mz_salt = BSWAP_64(buf->mz_salt);
222 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
223 	max = (size / MZAP_ENT_LEN) - 1;
224 	for (i = 0; i < max; i++) {
225 		buf->mz_chunk[i].mze_value =
226 		    BSWAP_64(buf->mz_chunk[i].mze_value);
227 		buf->mz_chunk[i].mze_cd =
228 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
229 	}
230 }
231 
232 void
233 zap_byteswap(void *buf, size_t size)
234 {
235 	uint64_t block_type;
236 
237 	block_type = *(uint64_t *)buf;
238 
239 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
240 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
241 		mzap_byteswap(buf, size);
242 	} else {
243 		fzap_byteswap(buf, size);
244 	}
245 }
246 
247 static int
248 mze_compare(const void *arg1, const void *arg2)
249 {
250 	const mzap_ent_t *mze1 = arg1;
251 	const mzap_ent_t *mze2 = arg2;
252 
253 	if (mze1->mze_hash > mze2->mze_hash)
254 		return (+1);
255 	if (mze1->mze_hash < mze2->mze_hash)
256 		return (-1);
257 	if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd)
258 		return (+1);
259 	if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd)
260 		return (-1);
261 	return (0);
262 }
263 
264 static void
265 mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep)
266 {
267 	mzap_ent_t *mze;
268 
269 	ASSERT(zap->zap_ismicro);
270 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
271 	ASSERT(mzep->mze_cd < zap_maxcd(zap));
272 
273 	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
274 	mze->mze_chunkid = chunkid;
275 	mze->mze_hash = hash;
276 	mze->mze_phys = *mzep;
277 	avl_add(&zap->zap_m.zap_avl, mze);
278 }
279 
280 static mzap_ent_t *
281 mze_find(zap_name_t *zn)
282 {
283 	mzap_ent_t mze_tofind;
284 	mzap_ent_t *mze;
285 	avl_index_t idx;
286 	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
287 
288 	ASSERT(zn->zn_zap->zap_ismicro);
289 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
290 
291 	mze_tofind.mze_hash = zn->zn_hash;
292 	mze_tofind.mze_phys.mze_cd = 0;
293 
294 again:
295 	mze = avl_find(avl, &mze_tofind, &idx);
296 	if (mze == NULL)
297 		mze = avl_nearest(avl, idx, AVL_AFTER);
298 	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
299 		if (zap_match(zn, mze->mze_phys.mze_name))
300 			return (mze);
301 	}
302 	if (zn->zn_matchtype == MT_BEST) {
303 		zn->zn_matchtype = MT_FIRST;
304 		goto again;
305 	}
306 	return (NULL);
307 }
308 
309 static uint32_t
310 mze_find_unused_cd(zap_t *zap, uint64_t hash)
311 {
312 	mzap_ent_t mze_tofind;
313 	mzap_ent_t *mze;
314 	avl_index_t idx;
315 	avl_tree_t *avl = &zap->zap_m.zap_avl;
316 	uint32_t cd;
317 
318 	ASSERT(zap->zap_ismicro);
319 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
320 
321 	mze_tofind.mze_hash = hash;
322 	mze_tofind.mze_phys.mze_cd = 0;
323 
324 	cd = 0;
325 	for (mze = avl_find(avl, &mze_tofind, &idx);
326 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
327 		if (mze->mze_phys.mze_cd != cd)
328 			break;
329 		cd++;
330 	}
331 
332 	return (cd);
333 }
334 
335 static void
336 mze_remove(zap_t *zap, mzap_ent_t *mze)
337 {
338 	ASSERT(zap->zap_ismicro);
339 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
340 
341 	avl_remove(&zap->zap_m.zap_avl, mze);
342 	kmem_free(mze, sizeof (mzap_ent_t));
343 }
344 
345 static void
346 mze_destroy(zap_t *zap)
347 {
348 	mzap_ent_t *mze;
349 	void *avlcookie = NULL;
350 
351 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
352 		kmem_free(mze, sizeof (mzap_ent_t));
353 	avl_destroy(&zap->zap_m.zap_avl);
354 }
355 
356 static zap_t *
357 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
358 {
359 	zap_t *winner;
360 	zap_t *zap;
361 	int i;
362 
363 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
364 
365 	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
366 	rw_init(&zap->zap_rwlock, 0, 0, 0);
367 	rw_enter(&zap->zap_rwlock, RW_WRITER);
368 	zap->zap_objset = os;
369 	zap->zap_object = obj;
370 	zap->zap_dbuf = db;
371 
372 	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
373 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
374 		zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
375 	} else {
376 		zap->zap_ismicro = TRUE;
377 	}
378 
379 	/*
380 	 * Make sure that zap_ismicro is set before we let others see
381 	 * it, because zap_lockdir() checks zap_ismicro without the lock
382 	 * held.
383 	 */
384 	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
385 
386 	if (winner != NULL) {
387 		rw_exit(&zap->zap_rwlock);
388 		rw_destroy(&zap->zap_rwlock);
389 		if (!zap->zap_ismicro)
390 			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
391 		kmem_free(zap, sizeof (zap_t));
392 		return (winner);
393 	}
394 
395 	if (zap->zap_ismicro) {
396 		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
397 		zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
398 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
399 		avl_create(&zap->zap_m.zap_avl, mze_compare,
400 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
401 
402 		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
403 			mzap_ent_phys_t *mze =
404 			    &zap->zap_m.zap_phys->mz_chunk[i];
405 			if (mze->mze_name[0]) {
406 				zap_name_t *zn;
407 
408 				zap->zap_m.zap_num_entries++;
409 				zn = zap_name_alloc(zap, mze->mze_name,
410 				    MT_EXACT);
411 				mze_insert(zap, i, zn->zn_hash, mze);
412 				zap_name_free(zn);
413 			}
414 		}
415 	} else {
416 		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
417 		zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
418 
419 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
420 		    2*ZAP_LEAF_CHUNKSIZE);
421 
422 		/*
423 		 * The embedded pointer table should not overlap the
424 		 * other members.
425 		 */
426 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
427 		    &zap->zap_f.zap_phys->zap_salt);
428 
429 		/*
430 		 * The embedded pointer table should end at the end of
431 		 * the block
432 		 */
433 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
434 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
435 		    (uintptr_t)zap->zap_f.zap_phys, ==,
436 		    zap->zap_dbuf->db_size);
437 	}
438 	rw_exit(&zap->zap_rwlock);
439 	return (zap);
440 }
441 
442 int
443 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
444     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
445 {
446 	zap_t *zap;
447 	dmu_buf_t *db;
448 	krw_t lt;
449 	int err;
450 
451 	*zapp = NULL;
452 
453 	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
454 	if (err)
455 		return (err);
456 
457 #ifdef ZFS_DEBUG
458 	{
459 		dmu_object_info_t doi;
460 		dmu_object_info_from_db(db, &doi);
461 		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
462 	}
463 #endif
464 
465 	zap = dmu_buf_get_user(db);
466 	if (zap == NULL)
467 		zap = mzap_open(os, obj, db);
468 
469 	/*
470 	 * We're checking zap_ismicro without the lock held, in order to
471 	 * tell what type of lock we want.  Once we have some sort of
472 	 * lock, see if it really is the right type.  In practice this
473 	 * can only be different if it was upgraded from micro to fat,
474 	 * and micro wanted WRITER but fat only needs READER.
475 	 */
476 	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
477 	rw_enter(&zap->zap_rwlock, lt);
478 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
479 		/* it was upgraded, now we only need reader */
480 		ASSERT(lt == RW_WRITER);
481 		ASSERT(RW_READER ==
482 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
483 		rw_downgrade(&zap->zap_rwlock);
484 		lt = RW_READER;
485 	}
486 
487 	zap->zap_objset = os;
488 
489 	if (lt == RW_WRITER)
490 		dmu_buf_will_dirty(db, tx);
491 
492 	ASSERT3P(zap->zap_dbuf, ==, db);
493 
494 	ASSERT(!zap->zap_ismicro ||
495 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
496 	if (zap->zap_ismicro && tx && adding &&
497 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
498 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
499 		if (newsz > MZAP_MAX_BLKSZ) {
500 			dprintf("upgrading obj %llu: num_entries=%u\n",
501 			    obj, zap->zap_m.zap_num_entries);
502 			*zapp = zap;
503 			return (mzap_upgrade(zapp, tx, 0));
504 		}
505 		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
506 		ASSERT3U(err, ==, 0);
507 		zap->zap_m.zap_num_chunks =
508 		    db->db_size / MZAP_ENT_LEN - 1;
509 	}
510 
511 	*zapp = zap;
512 	return (0);
513 }
514 
515 void
516 zap_unlockdir(zap_t *zap)
517 {
518 	rw_exit(&zap->zap_rwlock);
519 	dmu_buf_rele(zap->zap_dbuf, NULL);
520 }
521 
522 static int
523 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
524 {
525 	mzap_phys_t *mzp;
526 	int i, sz, nchunks;
527 	int err = 0;
528 	zap_t *zap = *zapp;
529 
530 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
531 
532 	sz = zap->zap_dbuf->db_size;
533 	mzp = kmem_alloc(sz, KM_SLEEP);
534 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
535 	nchunks = zap->zap_m.zap_num_chunks;
536 
537 	if (!flags) {
538 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
539 		    1ULL << fzap_default_block_shift, 0, tx);
540 		if (err) {
541 			kmem_free(mzp, sz);
542 			return (err);
543 		}
544 	}
545 
546 	dprintf("upgrading obj=%llu with %u chunks\n",
547 	    zap->zap_object, nchunks);
548 	/* XXX destroy the avl later, so we can use the stored hash value */
549 	mze_destroy(zap);
550 
551 	fzap_upgrade(zap, tx, flags);
552 
553 	for (i = 0; i < nchunks; i++) {
554 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
555 		zap_name_t *zn;
556 		if (mze->mze_name[0] == 0)
557 			continue;
558 		dprintf("adding %s=%llu\n",
559 		    mze->mze_name, mze->mze_value);
560 		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
561 		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
562 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
563 		zap_name_free(zn);
564 		if (err)
565 			break;
566 	}
567 	kmem_free(mzp, sz);
568 	*zapp = zap;
569 	return (err);
570 }
571 
572 static void
573 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
574     dmu_tx_t *tx)
575 {
576 	dmu_buf_t *db;
577 	mzap_phys_t *zp;
578 
579 	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
580 
581 #ifdef ZFS_DEBUG
582 	{
583 		dmu_object_info_t doi;
584 		dmu_object_info_from_db(db, &doi);
585 		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
586 	}
587 #endif
588 
589 	dmu_buf_will_dirty(db, tx);
590 	zp = db->db_data;
591 	zp->mz_block_type = ZBT_MICRO;
592 	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
593 	zp->mz_normflags = normflags;
594 	dmu_buf_rele(db, FTAG);
595 
596 	if (flags != 0) {
597 		zap_t *zap;
598 		/* Only fat zap supports flags; upgrade immediately. */
599 		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
600 		    B_FALSE, B_FALSE, &zap));
601 		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
602 		zap_unlockdir(zap);
603 	}
604 }
605 
606 int
607 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
608     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
609 {
610 	return (zap_create_claim_norm(os, obj,
611 	    0, ot, bonustype, bonuslen, tx));
612 }
613 
614 int
615 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
616     dmu_object_type_t ot,
617     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
618 {
619 	int err;
620 
621 	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
622 	if (err != 0)
623 		return (err);
624 	mzap_create_impl(os, obj, normflags, 0, tx);
625 	return (0);
626 }
627 
628 uint64_t
629 zap_create(objset_t *os, dmu_object_type_t ot,
630     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
631 {
632 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
633 }
634 
635 uint64_t
636 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
637     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
638 {
639 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
640 
641 	mzap_create_impl(os, obj, normflags, 0, tx);
642 	return (obj);
643 }
644 
645 uint64_t
646 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
647     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
648     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
649 {
650 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
651 
652 	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
653 	    leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
654 	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
655 	    indirect_blockshift <= SPA_MAXBLOCKSHIFT);
656 
657 	VERIFY(dmu_object_set_blocksize(os, obj,
658 	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
659 
660 	mzap_create_impl(os, obj, normflags, flags, tx);
661 	return (obj);
662 }
663 
664 int
665 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
666 {
667 	/*
668 	 * dmu_object_free will free the object number and free the
669 	 * data.  Freeing the data will cause our pageout function to be
670 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
671 	 */
672 
673 	return (dmu_object_free(os, zapobj, tx));
674 }
675 
676 _NOTE(ARGSUSED(0))
677 void
678 zap_evict(dmu_buf_t *db, void *vzap)
679 {
680 	zap_t *zap = vzap;
681 
682 	rw_destroy(&zap->zap_rwlock);
683 
684 	if (zap->zap_ismicro)
685 		mze_destroy(zap);
686 	else
687 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
688 
689 	kmem_free(zap, sizeof (zap_t));
690 }
691 
692 int
693 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
694 {
695 	zap_t *zap;
696 	int err;
697 
698 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
699 	if (err)
700 		return (err);
701 	if (!zap->zap_ismicro) {
702 		err = fzap_count(zap, count);
703 	} else {
704 		*count = zap->zap_m.zap_num_entries;
705 	}
706 	zap_unlockdir(zap);
707 	return (err);
708 }
709 
710 /*
711  * zn may be NULL; if not specified, it will be computed if needed.
712  * See also the comment above zap_entry_normalization_conflict().
713  */
714 static boolean_t
715 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
716 {
717 	mzap_ent_t *other;
718 	int direction = AVL_BEFORE;
719 	boolean_t allocdzn = B_FALSE;
720 
721 	if (zap->zap_normflags == 0)
722 		return (B_FALSE);
723 
724 again:
725 	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
726 	    other && other->mze_hash == mze->mze_hash;
727 	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
728 
729 		if (zn == NULL) {
730 			zn = zap_name_alloc(zap, mze->mze_phys.mze_name,
731 			    MT_FIRST);
732 			allocdzn = B_TRUE;
733 		}
734 		if (zap_match(zn, other->mze_phys.mze_name)) {
735 			if (allocdzn)
736 				zap_name_free(zn);
737 			return (B_TRUE);
738 		}
739 	}
740 
741 	if (direction == AVL_BEFORE) {
742 		direction = AVL_AFTER;
743 		goto again;
744 	}
745 
746 	if (allocdzn)
747 		zap_name_free(zn);
748 	return (B_FALSE);
749 }
750 
751 /*
752  * Routines for manipulating attributes.
753  */
754 
755 int
756 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
757     uint64_t integer_size, uint64_t num_integers, void *buf)
758 {
759 	return (zap_lookup_norm(os, zapobj, name, integer_size,
760 	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
761 }
762 
763 int
764 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
765     uint64_t integer_size, uint64_t num_integers, void *buf,
766     matchtype_t mt, char *realname, int rn_len,
767     boolean_t *ncp)
768 {
769 	zap_t *zap;
770 	int err;
771 	mzap_ent_t *mze;
772 	zap_name_t *zn;
773 
774 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
775 	if (err)
776 		return (err);
777 	zn = zap_name_alloc(zap, name, mt);
778 	if (zn == NULL) {
779 		zap_unlockdir(zap);
780 		return (ENOTSUP);
781 	}
782 
783 	if (!zap->zap_ismicro) {
784 		err = fzap_lookup(zn, integer_size, num_integers, buf,
785 		    realname, rn_len, ncp);
786 	} else {
787 		mze = mze_find(zn);
788 		if (mze == NULL) {
789 			err = ENOENT;
790 		} else {
791 			if (num_integers < 1) {
792 				err = EOVERFLOW;
793 			} else if (integer_size != 8) {
794 				err = EINVAL;
795 			} else {
796 				*(uint64_t *)buf = mze->mze_phys.mze_value;
797 				(void) strlcpy(realname,
798 				    mze->mze_phys.mze_name, rn_len);
799 				if (ncp) {
800 					*ncp = mzap_normalization_conflict(zap,
801 					    zn, mze);
802 				}
803 			}
804 		}
805 	}
806 	zap_name_free(zn);
807 	zap_unlockdir(zap);
808 	return (err);
809 }
810 
811 int
812 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
813     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
814 {
815 	zap_t *zap;
816 	int err;
817 	zap_name_t *zn;
818 
819 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
820 	if (err)
821 		return (err);
822 	zn = zap_name_alloc_uint64(zap, key, key_numints);
823 	if (zn == NULL) {
824 		zap_unlockdir(zap);
825 		return (ENOTSUP);
826 	}
827 
828 	err = fzap_lookup(zn, integer_size, num_integers, buf,
829 	    NULL, 0, NULL);
830 	zap_name_free(zn);
831 	zap_unlockdir(zap);
832 	return (err);
833 }
834 
835 int
836 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
837 {
838 	int err = (zap_lookup_norm(os, zapobj, name, 0,
839 	    0, NULL, MT_EXACT, NULL, 0, NULL));
840 	if (err == EOVERFLOW || err == EINVAL)
841 		err = 0; /* found, but skipped reading the value */
842 	return (err);
843 }
844 
845 int
846 zap_length(objset_t *os, uint64_t zapobj, const char *name,
847     uint64_t *integer_size, uint64_t *num_integers)
848 {
849 	zap_t *zap;
850 	int err;
851 	mzap_ent_t *mze;
852 	zap_name_t *zn;
853 
854 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
855 	if (err)
856 		return (err);
857 	zn = zap_name_alloc(zap, name, MT_EXACT);
858 	if (zn == NULL) {
859 		zap_unlockdir(zap);
860 		return (ENOTSUP);
861 	}
862 	if (!zap->zap_ismicro) {
863 		err = fzap_length(zn, integer_size, num_integers);
864 	} else {
865 		mze = mze_find(zn);
866 		if (mze == NULL) {
867 			err = ENOENT;
868 		} else {
869 			if (integer_size)
870 				*integer_size = 8;
871 			if (num_integers)
872 				*num_integers = 1;
873 		}
874 	}
875 	zap_name_free(zn);
876 	zap_unlockdir(zap);
877 	return (err);
878 }
879 
880 int
881 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
882     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
883 {
884 	zap_t *zap;
885 	int err;
886 	zap_name_t *zn;
887 
888 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
889 	if (err)
890 		return (err);
891 	zn = zap_name_alloc_uint64(zap, key, key_numints);
892 	if (zn == NULL) {
893 		zap_unlockdir(zap);
894 		return (ENOTSUP);
895 	}
896 	err = fzap_length(zn, integer_size, num_integers);
897 	zap_name_free(zn);
898 	zap_unlockdir(zap);
899 	return (err);
900 }
901 
902 static void
903 mzap_addent(zap_name_t *zn, uint64_t value)
904 {
905 	int i;
906 	zap_t *zap = zn->zn_zap;
907 	int start = zap->zap_m.zap_alloc_next;
908 	uint32_t cd;
909 
910 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
911 
912 #ifdef ZFS_DEBUG
913 	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
914 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
915 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
916 	}
917 #endif
918 
919 	cd = mze_find_unused_cd(zap, zn->zn_hash);
920 	/* given the limited size of the microzap, this can't happen */
921 	ASSERT(cd < zap_maxcd(zap));
922 
923 again:
924 	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
925 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
926 		if (mze->mze_name[0] == 0) {
927 			mze->mze_value = value;
928 			mze->mze_cd = cd;
929 			(void) strcpy(mze->mze_name, zn->zn_key_orig);
930 			zap->zap_m.zap_num_entries++;
931 			zap->zap_m.zap_alloc_next = i+1;
932 			if (zap->zap_m.zap_alloc_next ==
933 			    zap->zap_m.zap_num_chunks)
934 				zap->zap_m.zap_alloc_next = 0;
935 			mze_insert(zap, i, zn->zn_hash, mze);
936 			return;
937 		}
938 	}
939 	if (start != 0) {
940 		start = 0;
941 		goto again;
942 	}
943 	ASSERT(!"out of entries!");
944 }
945 
946 int
947 zap_add(objset_t *os, uint64_t zapobj, const char *key,
948     int integer_size, uint64_t num_integers,
949     const void *val, dmu_tx_t *tx)
950 {
951 	zap_t *zap;
952 	int err;
953 	mzap_ent_t *mze;
954 	const uint64_t *intval = val;
955 	zap_name_t *zn;
956 
957 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
958 	if (err)
959 		return (err);
960 	zn = zap_name_alloc(zap, key, MT_EXACT);
961 	if (zn == NULL) {
962 		zap_unlockdir(zap);
963 		return (ENOTSUP);
964 	}
965 	if (!zap->zap_ismicro) {
966 		err = fzap_add(zn, integer_size, num_integers, val, tx);
967 		zap = zn->zn_zap;	/* fzap_add() may change zap */
968 	} else if (integer_size != 8 || num_integers != 1 ||
969 	    strlen(key) >= MZAP_NAME_LEN) {
970 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
971 		if (err == 0)
972 			err = fzap_add(zn, integer_size, num_integers, val, tx);
973 		zap = zn->zn_zap;	/* fzap_add() may change zap */
974 	} else {
975 		mze = mze_find(zn);
976 		if (mze != NULL) {
977 			err = EEXIST;
978 		} else {
979 			mzap_addent(zn, *intval);
980 		}
981 	}
982 	ASSERT(zap == zn->zn_zap);
983 	zap_name_free(zn);
984 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
985 		zap_unlockdir(zap);
986 	return (err);
987 }
988 
989 int
990 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
991     int key_numints, int integer_size, uint64_t num_integers,
992     const void *val, dmu_tx_t *tx)
993 {
994 	zap_t *zap;
995 	int err;
996 	zap_name_t *zn;
997 
998 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
999 	if (err)
1000 		return (err);
1001 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1002 	if (zn == NULL) {
1003 		zap_unlockdir(zap);
1004 		return (ENOTSUP);
1005 	}
1006 	err = fzap_add(zn, integer_size, num_integers, val, tx);
1007 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1008 	zap_name_free(zn);
1009 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1010 		zap_unlockdir(zap);
1011 	return (err);
1012 }
1013 
1014 int
1015 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1016     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1017 {
1018 	zap_t *zap;
1019 	mzap_ent_t *mze;
1020 	const uint64_t *intval = val;
1021 	zap_name_t *zn;
1022 	int err;
1023 
1024 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1025 	if (err)
1026 		return (err);
1027 	zn = zap_name_alloc(zap, name, MT_EXACT);
1028 	if (zn == NULL) {
1029 		zap_unlockdir(zap);
1030 		return (ENOTSUP);
1031 	}
1032 	if (!zap->zap_ismicro) {
1033 		err = fzap_update(zn, integer_size, num_integers, val, tx);
1034 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1035 	} else if (integer_size != 8 || num_integers != 1 ||
1036 	    strlen(name) >= MZAP_NAME_LEN) {
1037 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1038 		    zapobj, integer_size, num_integers, name);
1039 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1040 		if (err == 0)
1041 			err = fzap_update(zn, integer_size, num_integers,
1042 			    val, tx);
1043 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1044 	} else {
1045 		mze = mze_find(zn);
1046 		if (mze != NULL) {
1047 			mze->mze_phys.mze_value = *intval;
1048 			zap->zap_m.zap_phys->mz_chunk
1049 			    [mze->mze_chunkid].mze_value = *intval;
1050 		} else {
1051 			mzap_addent(zn, *intval);
1052 		}
1053 	}
1054 	ASSERT(zap == zn->zn_zap);
1055 	zap_name_free(zn);
1056 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1057 		zap_unlockdir(zap);
1058 	return (err);
1059 }
1060 
1061 int
1062 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1063     int key_numints,
1064     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1065 {
1066 	zap_t *zap;
1067 	zap_name_t *zn;
1068 	int err;
1069 
1070 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1071 	if (err)
1072 		return (err);
1073 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1074 	if (zn == NULL) {
1075 		zap_unlockdir(zap);
1076 		return (ENOTSUP);
1077 	}
1078 	err = fzap_update(zn, integer_size, num_integers, val, tx);
1079 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1080 	zap_name_free(zn);
1081 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1082 		zap_unlockdir(zap);
1083 	return (err);
1084 }
1085 
1086 int
1087 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1088 {
1089 	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1090 }
1091 
1092 int
1093 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1094     matchtype_t mt, dmu_tx_t *tx)
1095 {
1096 	zap_t *zap;
1097 	int err;
1098 	mzap_ent_t *mze;
1099 	zap_name_t *zn;
1100 
1101 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1102 	if (err)
1103 		return (err);
1104 	zn = zap_name_alloc(zap, name, mt);
1105 	if (zn == NULL) {
1106 		zap_unlockdir(zap);
1107 		return (ENOTSUP);
1108 	}
1109 	if (!zap->zap_ismicro) {
1110 		err = fzap_remove(zn, tx);
1111 	} else {
1112 		mze = mze_find(zn);
1113 		if (mze == NULL) {
1114 			err = ENOENT;
1115 		} else {
1116 			zap->zap_m.zap_num_entries--;
1117 			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1118 			    sizeof (mzap_ent_phys_t));
1119 			mze_remove(zap, mze);
1120 		}
1121 	}
1122 	zap_name_free(zn);
1123 	zap_unlockdir(zap);
1124 	return (err);
1125 }
1126 
1127 int
1128 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1129     int key_numints, dmu_tx_t *tx)
1130 {
1131 	zap_t *zap;
1132 	int err;
1133 	zap_name_t *zn;
1134 
1135 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1136 	if (err)
1137 		return (err);
1138 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1139 	if (zn == NULL) {
1140 		zap_unlockdir(zap);
1141 		return (ENOTSUP);
1142 	}
1143 	err = fzap_remove(zn, tx);
1144 	zap_name_free(zn);
1145 	zap_unlockdir(zap);
1146 	return (err);
1147 }
1148 
1149 /*
1150  * Routines for iterating over the attributes.
1151  */
1152 
1153 void
1154 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1155     uint64_t serialized)
1156 {
1157 	zc->zc_objset = os;
1158 	zc->zc_zap = NULL;
1159 	zc->zc_leaf = NULL;
1160 	zc->zc_zapobj = zapobj;
1161 	zc->zc_serialized = serialized;
1162 	zc->zc_hash = 0;
1163 	zc->zc_cd = 0;
1164 }
1165 
1166 void
1167 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1168 {
1169 	zap_cursor_init_serialized(zc, os, zapobj, 0);
1170 }
1171 
1172 void
1173 zap_cursor_fini(zap_cursor_t *zc)
1174 {
1175 	if (zc->zc_zap) {
1176 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1177 		zap_unlockdir(zc->zc_zap);
1178 		zc->zc_zap = NULL;
1179 	}
1180 	if (zc->zc_leaf) {
1181 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1182 		zap_put_leaf(zc->zc_leaf);
1183 		zc->zc_leaf = NULL;
1184 	}
1185 	zc->zc_objset = NULL;
1186 }
1187 
1188 uint64_t
1189 zap_cursor_serialize(zap_cursor_t *zc)
1190 {
1191 	if (zc->zc_hash == -1ULL)
1192 		return (-1ULL);
1193 	if (zc->zc_zap == NULL)
1194 		return (zc->zc_serialized);
1195 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1196 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1197 
1198 	/*
1199 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1200 	 * that 32-bit programs can access this.  So usually use a small
1201 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1202 	 * of the cursor.
1203 	 *
1204 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1205 	 */
1206 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1207 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1208 }
1209 
1210 int
1211 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1212 {
1213 	int err;
1214 	avl_index_t idx;
1215 	mzap_ent_t mze_tofind;
1216 	mzap_ent_t *mze;
1217 
1218 	if (zc->zc_hash == -1ULL)
1219 		return (ENOENT);
1220 
1221 	if (zc->zc_zap == NULL) {
1222 		int hb;
1223 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1224 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1225 		if (err)
1226 			return (err);
1227 
1228 		/*
1229 		 * To support zap_cursor_init_serialized, advance, retrieve,
1230 		 * we must add to the existing zc_cd, which may already
1231 		 * be 1 due to the zap_cursor_advance.
1232 		 */
1233 		ASSERT(zc->zc_hash == 0);
1234 		hb = zap_hashbits(zc->zc_zap);
1235 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1236 		zc->zc_cd += zc->zc_serialized >> hb;
1237 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1238 			zc->zc_cd = 0;
1239 	} else {
1240 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1241 	}
1242 	if (!zc->zc_zap->zap_ismicro) {
1243 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1244 	} else {
1245 		err = ENOENT;
1246 
1247 		mze_tofind.mze_hash = zc->zc_hash;
1248 		mze_tofind.mze_phys.mze_cd = zc->zc_cd;
1249 
1250 		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1251 		if (mze == NULL) {
1252 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1253 			    idx, AVL_AFTER);
1254 		}
1255 		if (mze) {
1256 			ASSERT(0 == bcmp(&mze->mze_phys,
1257 			    &zc->zc_zap->zap_m.zap_phys->mz_chunk
1258 			    [mze->mze_chunkid], sizeof (mze->mze_phys)));
1259 
1260 			za->za_normalization_conflict =
1261 			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1262 			za->za_integer_length = 8;
1263 			za->za_num_integers = 1;
1264 			za->za_first_integer = mze->mze_phys.mze_value;
1265 			(void) strcpy(za->za_name, mze->mze_phys.mze_name);
1266 			zc->zc_hash = mze->mze_hash;
1267 			zc->zc_cd = mze->mze_phys.mze_cd;
1268 			err = 0;
1269 		} else {
1270 			zc->zc_hash = -1ULL;
1271 		}
1272 	}
1273 	rw_exit(&zc->zc_zap->zap_rwlock);
1274 	return (err);
1275 }
1276 
1277 void
1278 zap_cursor_advance(zap_cursor_t *zc)
1279 {
1280 	if (zc->zc_hash == -1ULL)
1281 		return;
1282 	zc->zc_cd++;
1283 }
1284 
1285 int
1286 zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1287 {
1288 	int err = 0;
1289 	mzap_ent_t *mze;
1290 	zap_name_t *zn;
1291 
1292 	if (zc->zc_zap == NULL) {
1293 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1294 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1295 		if (err)
1296 			return (err);
1297 	} else {
1298 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1299 	}
1300 
1301 	zn = zap_name_alloc(zc->zc_zap, name, mt);
1302 	if (zn == NULL) {
1303 		rw_exit(&zc->zc_zap->zap_rwlock);
1304 		return (ENOTSUP);
1305 	}
1306 
1307 	if (!zc->zc_zap->zap_ismicro) {
1308 		err = fzap_cursor_move_to_key(zc, zn);
1309 	} else {
1310 		mze = mze_find(zn);
1311 		if (mze == NULL) {
1312 			err = ENOENT;
1313 			goto out;
1314 		}
1315 		zc->zc_hash = mze->mze_hash;
1316 		zc->zc_cd = mze->mze_phys.mze_cd;
1317 	}
1318 
1319 out:
1320 	zap_name_free(zn);
1321 	rw_exit(&zc->zc_zap->zap_rwlock);
1322 	return (err);
1323 }
1324 
1325 int
1326 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1327 {
1328 	int err;
1329 	zap_t *zap;
1330 
1331 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1332 	if (err)
1333 		return (err);
1334 
1335 	bzero(zs, sizeof (zap_stats_t));
1336 
1337 	if (zap->zap_ismicro) {
1338 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1339 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1340 		zs->zs_num_blocks = 1;
1341 	} else {
1342 		fzap_get_stats(zap, zs);
1343 	}
1344 	zap_unlockdir(zap);
1345 	return (0);
1346 }
1347 
1348 int
1349 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1350     uint64_t *towrite, uint64_t *tooverwrite)
1351 {
1352 	zap_t *zap;
1353 	int err = 0;
1354 
1355 
1356 	/*
1357 	 * Since, we don't have a name, we cannot figure out which blocks will
1358 	 * be affected in this operation. So, account for the worst case :
1359 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1360 	 * - 4 new blocks written if adding:
1361 	 * 	- 2 blocks for possibly split leaves,
1362 	 * 	- 2 grown ptrtbl blocks
1363 	 *
1364 	 * This also accomodates the case where an add operation to a fairly
1365 	 * large microzap results in a promotion to fatzap.
1366 	 */
1367 	if (name == NULL) {
1368 		*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1369 		return (err);
1370 	}
1371 
1372 	/*
1373 	 * We lock the zap with adding ==  FALSE. Because, if we pass
1374 	 * the actual value of add, it could trigger a mzap_upgrade().
1375 	 * At present we are just evaluating the possibility of this operation
1376 	 * and hence we donot want to trigger an upgrade.
1377 	 */
1378 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1379 	if (err)
1380 		return (err);
1381 
1382 	if (!zap->zap_ismicro) {
1383 		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1384 		if (zn) {
1385 			err = fzap_count_write(zn, add, towrite,
1386 			    tooverwrite);
1387 			zap_name_free(zn);
1388 		} else {
1389 			/*
1390 			 * We treat this case as similar to (name == NULL)
1391 			 */
1392 			*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1393 		}
1394 	} else {
1395 		/*
1396 		 * We are here if (name != NULL) and this is a micro-zap.
1397 		 * We account for the header block depending on whether it
1398 		 * is freeable.
1399 		 *
1400 		 * Incase of an add-operation it is hard to find out
1401 		 * if this add will promote this microzap to fatzap.
1402 		 * Hence, we consider the worst case and account for the
1403 		 * blocks assuming this microzap would be promoted to a
1404 		 * fatzap.
1405 		 *
1406 		 * 1 block overwritten  : header block
1407 		 * 4 new blocks written : 2 new split leaf, 2 grown
1408 		 *			ptrtbl blocks
1409 		 */
1410 		if (dmu_buf_freeable(zap->zap_dbuf))
1411 			*tooverwrite += SPA_MAXBLOCKSIZE;
1412 		else
1413 			*towrite += SPA_MAXBLOCKSIZE;
1414 
1415 		if (add) {
1416 			*towrite += 4 * SPA_MAXBLOCKSIZE;
1417 		}
1418 	}
1419 
1420 	zap_unlockdir(zap);
1421 	return (err);
1422 }
1423