1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2017 Nexenta Systems, Inc. 28 */ 29 30 #include <sys/zio.h> 31 #include <sys/spa.h> 32 #include <sys/dmu.h> 33 #include <sys/zfs_context.h> 34 #include <sys/zap.h> 35 #include <sys/refcount.h> 36 #include <sys/zap_impl.h> 37 #include <sys/zap_leaf.h> 38 #include <sys/avl.h> 39 #include <sys/arc.h> 40 #include <sys/dmu_objset.h> 41 42 #ifdef _KERNEL 43 #include <sys/sunddi.h> 44 #endif 45 46 extern inline mzap_phys_t *zap_m_phys(zap_t *zap); 47 48 static int mzap_upgrade(zap_t **zapp, 49 void *tag, dmu_tx_t *tx, zap_flags_t flags); 50 51 uint64_t 52 zap_getflags(zap_t *zap) 53 { 54 if (zap->zap_ismicro) 55 return (0); 56 return (zap_f_phys(zap)->zap_flags); 57 } 58 59 int 60 zap_hashbits(zap_t *zap) 61 { 62 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 63 return (48); 64 else 65 return (28); 66 } 67 68 uint32_t 69 zap_maxcd(zap_t *zap) 70 { 71 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 72 return ((1<<16)-1); 73 else 74 return (-1U); 75 } 76 77 static uint64_t 78 zap_hash(zap_name_t *zn) 79 { 80 zap_t *zap = zn->zn_zap; 81 uint64_t h = 0; 82 83 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 84 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 85 h = *(uint64_t *)zn->zn_key_orig; 86 } else { 87 h = zap->zap_salt; 88 ASSERT(h != 0); 89 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 90 91 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 92 int i; 93 const uint64_t *wp = zn->zn_key_norm; 94 95 ASSERT(zn->zn_key_intlen == 8); 96 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) { 97 int j; 98 uint64_t word = *wp; 99 100 for (j = 0; j < zn->zn_key_intlen; j++) { 101 h = (h >> 8) ^ 102 zfs_crc64_table[(h ^ word) & 0xFF]; 103 word >>= NBBY; 104 } 105 } 106 } else { 107 int i, len; 108 const uint8_t *cp = zn->zn_key_norm; 109 110 /* 111 * We previously stored the terminating null on 112 * disk, but didn't hash it, so we need to 113 * continue to not hash it. (The 114 * zn_key_*_numints includes the terminating 115 * null for non-binary keys.) 116 */ 117 len = zn->zn_key_norm_numints - 1; 118 119 ASSERT(zn->zn_key_intlen == 1); 120 for (i = 0; i < len; cp++, i++) { 121 h = (h >> 8) ^ 122 zfs_crc64_table[(h ^ *cp) & 0xFF]; 123 } 124 } 125 } 126 /* 127 * Don't use all 64 bits, since we need some in the cookie for 128 * the collision differentiator. We MUST use the high bits, 129 * since those are the ones that we first pay attention to when 130 * chosing the bucket. 131 */ 132 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 133 134 return (h); 135 } 136 137 static int 138 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags) 139 { 140 size_t inlen, outlen; 141 int err; 142 143 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 144 145 inlen = strlen(name) + 1; 146 outlen = ZAP_MAXNAMELEN; 147 148 err = 0; 149 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 150 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID, 151 U8_UNICODE_LATEST, &err); 152 153 return (err); 154 } 155 156 boolean_t 157 zap_match(zap_name_t *zn, const char *matchname) 158 { 159 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 160 161 if (zn->zn_matchtype & MT_NORMALIZE) { 162 char norm[ZAP_MAXNAMELEN]; 163 164 if (zap_normalize(zn->zn_zap, matchname, norm, 165 zn->zn_normflags) != 0) 166 return (B_FALSE); 167 168 return (strcmp(zn->zn_key_norm, norm) == 0); 169 } else { 170 return (strcmp(zn->zn_key_orig, matchname) == 0); 171 } 172 } 173 174 void 175 zap_name_free(zap_name_t *zn) 176 { 177 kmem_free(zn, sizeof (zap_name_t)); 178 } 179 180 zap_name_t * 181 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) 182 { 183 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 184 185 zn->zn_zap = zap; 186 zn->zn_key_intlen = sizeof (*key); 187 zn->zn_key_orig = key; 188 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; 189 zn->zn_matchtype = mt; 190 zn->zn_normflags = zap->zap_normflags; 191 192 /* 193 * If we're dealing with a case sensitive lookup on a mixed or 194 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup 195 * will fold case to all caps overriding the lookup request. 196 */ 197 if (mt & MT_MATCH_CASE) 198 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER; 199 200 if (zap->zap_normflags) { 201 /* 202 * We *must* use zap_normflags because this normalization is 203 * what the hash is computed from. 204 */ 205 if (zap_normalize(zap, key, zn->zn_normbuf, 206 zap->zap_normflags) != 0) { 207 zap_name_free(zn); 208 return (NULL); 209 } 210 zn->zn_key_norm = zn->zn_normbuf; 211 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 212 } else { 213 if (mt != 0) { 214 zap_name_free(zn); 215 return (NULL); 216 } 217 zn->zn_key_norm = zn->zn_key_orig; 218 zn->zn_key_norm_numints = zn->zn_key_orig_numints; 219 } 220 221 zn->zn_hash = zap_hash(zn); 222 223 if (zap->zap_normflags != zn->zn_normflags) { 224 /* 225 * We *must* use zn_normflags because this normalization is 226 * what the matching is based on. (Not the hash!) 227 */ 228 if (zap_normalize(zap, key, zn->zn_normbuf, 229 zn->zn_normflags) != 0) { 230 zap_name_free(zn); 231 return (NULL); 232 } 233 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 234 } 235 236 return (zn); 237 } 238 239 zap_name_t * 240 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 241 { 242 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 243 244 ASSERT(zap->zap_normflags == 0); 245 zn->zn_zap = zap; 246 zn->zn_key_intlen = sizeof (*key); 247 zn->zn_key_orig = zn->zn_key_norm = key; 248 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; 249 zn->zn_matchtype = 0; 250 251 zn->zn_hash = zap_hash(zn); 252 return (zn); 253 } 254 255 static void 256 mzap_byteswap(mzap_phys_t *buf, size_t size) 257 { 258 int i, max; 259 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 260 buf->mz_salt = BSWAP_64(buf->mz_salt); 261 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 262 max = (size / MZAP_ENT_LEN) - 1; 263 for (i = 0; i < max; i++) { 264 buf->mz_chunk[i].mze_value = 265 BSWAP_64(buf->mz_chunk[i].mze_value); 266 buf->mz_chunk[i].mze_cd = 267 BSWAP_32(buf->mz_chunk[i].mze_cd); 268 } 269 } 270 271 void 272 zap_byteswap(void *buf, size_t size) 273 { 274 uint64_t block_type; 275 276 block_type = *(uint64_t *)buf; 277 278 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 279 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 280 mzap_byteswap(buf, size); 281 } else { 282 fzap_byteswap(buf, size); 283 } 284 } 285 286 static int 287 mze_compare(const void *arg1, const void *arg2) 288 { 289 const mzap_ent_t *mze1 = arg1; 290 const mzap_ent_t *mze2 = arg2; 291 292 if (mze1->mze_hash > mze2->mze_hash) 293 return (+1); 294 if (mze1->mze_hash < mze2->mze_hash) 295 return (-1); 296 if (mze1->mze_cd > mze2->mze_cd) 297 return (+1); 298 if (mze1->mze_cd < mze2->mze_cd) 299 return (-1); 300 return (0); 301 } 302 303 static void 304 mze_insert(zap_t *zap, int chunkid, uint64_t hash) 305 { 306 mzap_ent_t *mze; 307 308 ASSERT(zap->zap_ismicro); 309 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 310 311 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 312 mze->mze_chunkid = chunkid; 313 mze->mze_hash = hash; 314 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd; 315 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0); 316 avl_add(&zap->zap_m.zap_avl, mze); 317 } 318 319 static mzap_ent_t * 320 mze_find(zap_name_t *zn) 321 { 322 mzap_ent_t mze_tofind; 323 mzap_ent_t *mze; 324 avl_index_t idx; 325 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; 326 327 ASSERT(zn->zn_zap->zap_ismicro); 328 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 329 330 mze_tofind.mze_hash = zn->zn_hash; 331 mze_tofind.mze_cd = 0; 332 333 mze = avl_find(avl, &mze_tofind, &idx); 334 if (mze == NULL) 335 mze = avl_nearest(avl, idx, AVL_AFTER); 336 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { 337 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); 338 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) 339 return (mze); 340 } 341 342 return (NULL); 343 } 344 345 static uint32_t 346 mze_find_unused_cd(zap_t *zap, uint64_t hash) 347 { 348 mzap_ent_t mze_tofind; 349 mzap_ent_t *mze; 350 avl_index_t idx; 351 avl_tree_t *avl = &zap->zap_m.zap_avl; 352 uint32_t cd; 353 354 ASSERT(zap->zap_ismicro); 355 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 356 357 mze_tofind.mze_hash = hash; 358 mze_tofind.mze_cd = 0; 359 360 cd = 0; 361 for (mze = avl_find(avl, &mze_tofind, &idx); 362 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 363 if (mze->mze_cd != cd) 364 break; 365 cd++; 366 } 367 368 return (cd); 369 } 370 371 static void 372 mze_remove(zap_t *zap, mzap_ent_t *mze) 373 { 374 ASSERT(zap->zap_ismicro); 375 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 376 377 avl_remove(&zap->zap_m.zap_avl, mze); 378 kmem_free(mze, sizeof (mzap_ent_t)); 379 } 380 381 static void 382 mze_destroy(zap_t *zap) 383 { 384 mzap_ent_t *mze; 385 void *avlcookie = NULL; 386 387 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 388 kmem_free(mze, sizeof (mzap_ent_t)); 389 avl_destroy(&zap->zap_m.zap_avl); 390 } 391 392 static zap_t * 393 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 394 { 395 zap_t *winner; 396 zap_t *zap; 397 int i; 398 uint64_t *zap_hdr = (uint64_t *)db->db_data; 399 uint64_t zap_block_type = zap_hdr[0]; 400 uint64_t zap_magic = zap_hdr[1]; 401 402 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 403 404 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 405 rw_init(&zap->zap_rwlock, 0, 0, 0); 406 rw_enter(&zap->zap_rwlock, RW_WRITER); 407 zap->zap_objset = os; 408 zap->zap_object = obj; 409 zap->zap_dbuf = db; 410 411 if (zap_block_type != ZBT_MICRO) { 412 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 413 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; 414 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) { 415 winner = NULL; /* No actual winner here... */ 416 goto handle_winner; 417 } 418 } else { 419 zap->zap_ismicro = TRUE; 420 } 421 422 /* 423 * Make sure that zap_ismicro is set before we let others see 424 * it, because zap_lockdir() checks zap_ismicro without the lock 425 * held. 426 */ 427 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf); 428 winner = dmu_buf_set_user(db, &zap->zap_dbu); 429 430 if (winner != NULL) 431 goto handle_winner; 432 433 if (zap->zap_ismicro) { 434 zap->zap_salt = zap_m_phys(zap)->mz_salt; 435 zap->zap_normflags = zap_m_phys(zap)->mz_normflags; 436 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 437 avl_create(&zap->zap_m.zap_avl, mze_compare, 438 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 439 440 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 441 mzap_ent_phys_t *mze = 442 &zap_m_phys(zap)->mz_chunk[i]; 443 if (mze->mze_name[0]) { 444 zap_name_t *zn; 445 446 zap->zap_m.zap_num_entries++; 447 zn = zap_name_alloc(zap, mze->mze_name, 0); 448 mze_insert(zap, i, zn->zn_hash); 449 zap_name_free(zn); 450 } 451 } 452 } else { 453 zap->zap_salt = zap_f_phys(zap)->zap_salt; 454 zap->zap_normflags = zap_f_phys(zap)->zap_normflags; 455 456 ASSERT3U(sizeof (struct zap_leaf_header), ==, 457 2*ZAP_LEAF_CHUNKSIZE); 458 459 /* 460 * The embedded pointer table should not overlap the 461 * other members. 462 */ 463 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 464 &zap_f_phys(zap)->zap_salt); 465 466 /* 467 * The embedded pointer table should end at the end of 468 * the block 469 */ 470 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 471 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 472 (uintptr_t)zap_f_phys(zap), ==, 473 zap->zap_dbuf->db_size); 474 } 475 rw_exit(&zap->zap_rwlock); 476 return (zap); 477 478 handle_winner: 479 rw_exit(&zap->zap_rwlock); 480 rw_destroy(&zap->zap_rwlock); 481 if (!zap->zap_ismicro) 482 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 483 kmem_free(zap, sizeof (zap_t)); 484 return (winner); 485 } 486 487 static int 488 zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx, 489 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 490 { 491 zap_t *zap; 492 krw_t lt; 493 494 ASSERT0(db->db_offset); 495 objset_t *os = dmu_buf_get_objset(db); 496 uint64_t obj = db->db_object; 497 498 *zapp = NULL; 499 500 #ifdef ZFS_DEBUG 501 { 502 dmu_object_info_t doi; 503 dmu_object_info_from_db(db, &doi); 504 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 505 } 506 #endif 507 508 zap = dmu_buf_get_user(db); 509 if (zap == NULL) { 510 zap = mzap_open(os, obj, db); 511 if (zap == NULL) { 512 /* 513 * mzap_open() didn't like what it saw on-disk. 514 * Check for corruption! 515 */ 516 return (SET_ERROR(EIO)); 517 } 518 } 519 520 /* 521 * We're checking zap_ismicro without the lock held, in order to 522 * tell what type of lock we want. Once we have some sort of 523 * lock, see if it really is the right type. In practice this 524 * can only be different if it was upgraded from micro to fat, 525 * and micro wanted WRITER but fat only needs READER. 526 */ 527 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 528 rw_enter(&zap->zap_rwlock, lt); 529 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 530 /* it was upgraded, now we only need reader */ 531 ASSERT(lt == RW_WRITER); 532 ASSERT(RW_READER == 533 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 534 rw_downgrade(&zap->zap_rwlock); 535 lt = RW_READER; 536 } 537 538 zap->zap_objset = os; 539 540 if (lt == RW_WRITER) 541 dmu_buf_will_dirty(db, tx); 542 543 ASSERT3P(zap->zap_dbuf, ==, db); 544 545 ASSERT(!zap->zap_ismicro || 546 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 547 if (zap->zap_ismicro && tx && adding && 548 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 549 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 550 if (newsz > MZAP_MAX_BLKSZ) { 551 dprintf("upgrading obj %llu: num_entries=%u\n", 552 obj, zap->zap_m.zap_num_entries); 553 *zapp = zap; 554 int err = mzap_upgrade(zapp, tag, tx, 0); 555 if (err != 0) 556 rw_exit(&zap->zap_rwlock); 557 return (err); 558 } 559 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx)); 560 zap->zap_m.zap_num_chunks = 561 db->db_size / MZAP_ENT_LEN - 1; 562 } 563 564 *zapp = zap; 565 return (0); 566 } 567 568 static int 569 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx, 570 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp) 571 { 572 dmu_buf_t *db; 573 int err; 574 575 err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH); 576 if (err != 0) { 577 return (err); 578 } 579 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp); 580 if (err != 0) { 581 dmu_buf_rele(db, tag); 582 } 583 return (err); 584 } 585 586 int 587 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 588 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp) 589 { 590 dmu_buf_t *db; 591 int err; 592 593 err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH); 594 if (err != 0) 595 return (err); 596 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp); 597 if (err != 0) 598 dmu_buf_rele(db, tag); 599 return (err); 600 } 601 602 void 603 zap_unlockdir(zap_t *zap, void *tag) 604 { 605 rw_exit(&zap->zap_rwlock); 606 dmu_buf_rele(zap->zap_dbuf, tag); 607 } 608 609 static int 610 mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags) 611 { 612 mzap_phys_t *mzp; 613 int i, sz, nchunks; 614 int err = 0; 615 zap_t *zap = *zapp; 616 617 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 618 619 sz = zap->zap_dbuf->db_size; 620 mzp = zio_buf_alloc(sz); 621 bcopy(zap->zap_dbuf->db_data, mzp, sz); 622 nchunks = zap->zap_m.zap_num_chunks; 623 624 if (!flags) { 625 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 626 1ULL << fzap_default_block_shift, 0, tx); 627 if (err) { 628 zio_buf_free(mzp, sz); 629 return (err); 630 } 631 } 632 633 dprintf("upgrading obj=%llu with %u chunks\n", 634 zap->zap_object, nchunks); 635 /* XXX destroy the avl later, so we can use the stored hash value */ 636 mze_destroy(zap); 637 638 fzap_upgrade(zap, tx, flags); 639 640 for (i = 0; i < nchunks; i++) { 641 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 642 zap_name_t *zn; 643 if (mze->mze_name[0] == 0) 644 continue; 645 dprintf("adding %s=%llu\n", 646 mze->mze_name, mze->mze_value); 647 zn = zap_name_alloc(zap, mze->mze_name, 0); 648 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, 649 tag, tx); 650 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 651 zap_name_free(zn); 652 if (err) 653 break; 654 } 655 zio_buf_free(mzp, sz); 656 *zapp = zap; 657 return (err); 658 } 659 660 /* 661 * The "normflags" determine the behavior of the matchtype_t which is 662 * passed to zap_lookup_norm(). Names which have the same normalized 663 * version will be stored with the same hash value, and therefore we can 664 * perform normalization-insensitive lookups. We can be Unicode form- 665 * insensitive and/or case-insensitive. The following flags are valid for 666 * "normflags": 667 * 668 * U8_TEXTPREP_NFC 669 * U8_TEXTPREP_NFD 670 * U8_TEXTPREP_NFKC 671 * U8_TEXTPREP_NFKD 672 * U8_TEXTPREP_TOUPPER 673 * 674 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one 675 * of them may be supplied. 676 */ 677 void 678 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, 679 dmu_tx_t *tx) 680 { 681 dmu_buf_t *db; 682 mzap_phys_t *zp; 683 684 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); 685 686 #ifdef ZFS_DEBUG 687 { 688 dmu_object_info_t doi; 689 dmu_object_info_from_db(db, &doi); 690 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 691 } 692 #endif 693 694 dmu_buf_will_dirty(db, tx); 695 zp = db->db_data; 696 zp->mz_block_type = ZBT_MICRO; 697 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; 698 zp->mz_normflags = normflags; 699 dmu_buf_rele(db, FTAG); 700 701 if (flags != 0) { 702 zap_t *zap; 703 /* Only fat zap supports flags; upgrade immediately. */ 704 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER, 705 B_FALSE, B_FALSE, FTAG, &zap)); 706 VERIFY3U(0, ==, mzap_upgrade(&zap, FTAG, tx, flags)); 707 zap_unlockdir(zap, FTAG); 708 } 709 } 710 711 int 712 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 713 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 714 { 715 return (zap_create_claim_norm(os, obj, 716 0, ot, bonustype, bonuslen, tx)); 717 } 718 719 int 720 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 721 dmu_object_type_t ot, 722 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 723 { 724 int err; 725 726 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); 727 if (err != 0) 728 return (err); 729 mzap_create_impl(os, obj, normflags, 0, tx); 730 return (0); 731 } 732 733 uint64_t 734 zap_create(objset_t *os, dmu_object_type_t ot, 735 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 736 { 737 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 738 } 739 740 uint64_t 741 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 742 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 743 { 744 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 745 746 mzap_create_impl(os, obj, normflags, 0, tx); 747 return (obj); 748 } 749 750 uint64_t 751 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 752 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 753 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 754 { 755 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 756 757 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT && 758 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT && 759 indirect_blockshift >= SPA_MINBLOCKSHIFT && 760 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT); 761 762 VERIFY(dmu_object_set_blocksize(os, obj, 763 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0); 764 765 mzap_create_impl(os, obj, normflags, flags, tx); 766 return (obj); 767 } 768 769 int 770 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 771 { 772 /* 773 * dmu_object_free will free the object number and free the 774 * data. Freeing the data will cause our pageout function to be 775 * called, which will destroy our data (zap_leaf_t's and zap_t). 776 */ 777 778 return (dmu_object_free(os, zapobj, tx)); 779 } 780 781 void 782 zap_evict_sync(void *dbu) 783 { 784 zap_t *zap = dbu; 785 786 rw_destroy(&zap->zap_rwlock); 787 788 if (zap->zap_ismicro) 789 mze_destroy(zap); 790 else 791 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 792 793 kmem_free(zap, sizeof (zap_t)); 794 } 795 796 int 797 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 798 { 799 zap_t *zap; 800 int err; 801 802 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 803 if (err) 804 return (err); 805 if (!zap->zap_ismicro) { 806 err = fzap_count(zap, count); 807 } else { 808 *count = zap->zap_m.zap_num_entries; 809 } 810 zap_unlockdir(zap, FTAG); 811 return (err); 812 } 813 814 /* 815 * zn may be NULL; if not specified, it will be computed if needed. 816 * See also the comment above zap_entry_normalization_conflict(). 817 */ 818 static boolean_t 819 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) 820 { 821 mzap_ent_t *other; 822 int direction = AVL_BEFORE; 823 boolean_t allocdzn = B_FALSE; 824 825 if (zap->zap_normflags == 0) 826 return (B_FALSE); 827 828 again: 829 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction); 830 other && other->mze_hash == mze->mze_hash; 831 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { 832 833 if (zn == NULL) { 834 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name, 835 MT_NORMALIZE); 836 allocdzn = B_TRUE; 837 } 838 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 839 if (allocdzn) 840 zap_name_free(zn); 841 return (B_TRUE); 842 } 843 } 844 845 if (direction == AVL_BEFORE) { 846 direction = AVL_AFTER; 847 goto again; 848 } 849 850 if (allocdzn) 851 zap_name_free(zn); 852 return (B_FALSE); 853 } 854 855 /* 856 * Routines for manipulating attributes. 857 */ 858 859 int 860 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 861 uint64_t integer_size, uint64_t num_integers, void *buf) 862 { 863 return (zap_lookup_norm(os, zapobj, name, integer_size, 864 num_integers, buf, 0, NULL, 0, NULL)); 865 } 866 867 static int 868 zap_lookup_impl(zap_t *zap, const char *name, 869 uint64_t integer_size, uint64_t num_integers, void *buf, 870 matchtype_t mt, char *realname, int rn_len, 871 boolean_t *ncp) 872 { 873 int err = 0; 874 mzap_ent_t *mze; 875 zap_name_t *zn; 876 877 zn = zap_name_alloc(zap, name, mt); 878 if (zn == NULL) 879 return (SET_ERROR(ENOTSUP)); 880 881 if (!zap->zap_ismicro) { 882 err = fzap_lookup(zn, integer_size, num_integers, buf, 883 realname, rn_len, ncp); 884 } else { 885 mze = mze_find(zn); 886 if (mze == NULL) { 887 err = SET_ERROR(ENOENT); 888 } else { 889 if (num_integers < 1) { 890 err = SET_ERROR(EOVERFLOW); 891 } else if (integer_size != 8) { 892 err = SET_ERROR(EINVAL); 893 } else { 894 *(uint64_t *)buf = 895 MZE_PHYS(zap, mze)->mze_value; 896 (void) strlcpy(realname, 897 MZE_PHYS(zap, mze)->mze_name, rn_len); 898 if (ncp) { 899 *ncp = mzap_normalization_conflict(zap, 900 zn, mze); 901 } 902 } 903 } 904 } 905 zap_name_free(zn); 906 return (err); 907 } 908 909 int 910 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 911 uint64_t integer_size, uint64_t num_integers, void *buf, 912 matchtype_t mt, char *realname, int rn_len, 913 boolean_t *ncp) 914 { 915 zap_t *zap; 916 int err; 917 918 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 919 if (err != 0) 920 return (err); 921 err = zap_lookup_impl(zap, name, integer_size, 922 num_integers, buf, mt, realname, rn_len, ncp); 923 zap_unlockdir(zap, FTAG); 924 return (err); 925 } 926 927 int 928 zap_lookup_by_dnode(dnode_t *dn, const char *name, 929 uint64_t integer_size, uint64_t num_integers, void *buf) 930 { 931 return (zap_lookup_norm_by_dnode(dn, name, integer_size, 932 num_integers, buf, 0, NULL, 0, NULL)); 933 } 934 935 int 936 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name, 937 uint64_t integer_size, uint64_t num_integers, void *buf, 938 matchtype_t mt, char *realname, int rn_len, 939 boolean_t *ncp) 940 { 941 zap_t *zap; 942 int err; 943 944 err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, 945 FTAG, &zap); 946 if (err != 0) 947 return (err); 948 err = zap_lookup_impl(zap, name, integer_size, 949 num_integers, buf, mt, realname, rn_len, ncp); 950 zap_unlockdir(zap, FTAG); 951 return (err); 952 } 953 954 int 955 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 956 int key_numints) 957 { 958 zap_t *zap; 959 int err; 960 zap_name_t *zn; 961 962 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 963 if (err) 964 return (err); 965 zn = zap_name_alloc_uint64(zap, key, key_numints); 966 if (zn == NULL) { 967 zap_unlockdir(zap, FTAG); 968 return (SET_ERROR(ENOTSUP)); 969 } 970 971 fzap_prefetch(zn); 972 zap_name_free(zn); 973 zap_unlockdir(zap, FTAG); 974 return (err); 975 } 976 977 int 978 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 979 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 980 { 981 zap_t *zap; 982 int err; 983 zap_name_t *zn; 984 985 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 986 if (err) 987 return (err); 988 zn = zap_name_alloc_uint64(zap, key, key_numints); 989 if (zn == NULL) { 990 zap_unlockdir(zap, FTAG); 991 return (SET_ERROR(ENOTSUP)); 992 } 993 994 err = fzap_lookup(zn, integer_size, num_integers, buf, 995 NULL, 0, NULL); 996 zap_name_free(zn); 997 zap_unlockdir(zap, FTAG); 998 return (err); 999 } 1000 1001 int 1002 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 1003 { 1004 int err = zap_lookup_norm(os, zapobj, name, 0, 1005 0, NULL, 0, NULL, 0, NULL); 1006 if (err == EOVERFLOW || err == EINVAL) 1007 err = 0; /* found, but skipped reading the value */ 1008 return (err); 1009 } 1010 1011 int 1012 zap_length(objset_t *os, uint64_t zapobj, const char *name, 1013 uint64_t *integer_size, uint64_t *num_integers) 1014 { 1015 zap_t *zap; 1016 int err; 1017 mzap_ent_t *mze; 1018 zap_name_t *zn; 1019 1020 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1021 if (err) 1022 return (err); 1023 zn = zap_name_alloc(zap, name, 0); 1024 if (zn == NULL) { 1025 zap_unlockdir(zap, FTAG); 1026 return (SET_ERROR(ENOTSUP)); 1027 } 1028 if (!zap->zap_ismicro) { 1029 err = fzap_length(zn, integer_size, num_integers); 1030 } else { 1031 mze = mze_find(zn); 1032 if (mze == NULL) { 1033 err = SET_ERROR(ENOENT); 1034 } else { 1035 if (integer_size) 1036 *integer_size = 8; 1037 if (num_integers) 1038 *num_integers = 1; 1039 } 1040 } 1041 zap_name_free(zn); 1042 zap_unlockdir(zap, FTAG); 1043 return (err); 1044 } 1045 1046 int 1047 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1048 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 1049 { 1050 zap_t *zap; 1051 int err; 1052 zap_name_t *zn; 1053 1054 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1055 if (err) 1056 return (err); 1057 zn = zap_name_alloc_uint64(zap, key, key_numints); 1058 if (zn == NULL) { 1059 zap_unlockdir(zap, FTAG); 1060 return (SET_ERROR(ENOTSUP)); 1061 } 1062 err = fzap_length(zn, integer_size, num_integers); 1063 zap_name_free(zn); 1064 zap_unlockdir(zap, FTAG); 1065 return (err); 1066 } 1067 1068 static void 1069 mzap_addent(zap_name_t *zn, uint64_t value) 1070 { 1071 int i; 1072 zap_t *zap = zn->zn_zap; 1073 int start = zap->zap_m.zap_alloc_next; 1074 uint32_t cd; 1075 1076 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 1077 1078 #ifdef ZFS_DEBUG 1079 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 1080 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 1081 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 1082 } 1083 #endif 1084 1085 cd = mze_find_unused_cd(zap, zn->zn_hash); 1086 /* given the limited size of the microzap, this can't happen */ 1087 ASSERT(cd < zap_maxcd(zap)); 1088 1089 again: 1090 for (i = start; i < zap->zap_m.zap_num_chunks; i++) { 1091 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 1092 if (mze->mze_name[0] == 0) { 1093 mze->mze_value = value; 1094 mze->mze_cd = cd; 1095 (void) strcpy(mze->mze_name, zn->zn_key_orig); 1096 zap->zap_m.zap_num_entries++; 1097 zap->zap_m.zap_alloc_next = i+1; 1098 if (zap->zap_m.zap_alloc_next == 1099 zap->zap_m.zap_num_chunks) 1100 zap->zap_m.zap_alloc_next = 0; 1101 mze_insert(zap, i, zn->zn_hash); 1102 return; 1103 } 1104 } 1105 if (start != 0) { 1106 start = 0; 1107 goto again; 1108 } 1109 ASSERT(!"out of entries!"); 1110 } 1111 1112 static int 1113 zap_add_impl(zap_t *zap, const char *key, 1114 int integer_size, uint64_t num_integers, 1115 const void *val, dmu_tx_t *tx, void *tag) 1116 { 1117 int err = 0; 1118 mzap_ent_t *mze; 1119 const uint64_t *intval = val; 1120 zap_name_t *zn; 1121 1122 zn = zap_name_alloc(zap, key, 0); 1123 if (zn == NULL) { 1124 zap_unlockdir(zap, tag); 1125 return (SET_ERROR(ENOTSUP)); 1126 } 1127 if (!zap->zap_ismicro) { 1128 err = fzap_add(zn, integer_size, num_integers, val, tag, tx); 1129 zap = zn->zn_zap; /* fzap_add() may change zap */ 1130 } else if (integer_size != 8 || num_integers != 1 || 1131 strlen(key) >= MZAP_NAME_LEN) { 1132 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0); 1133 if (err == 0) { 1134 err = fzap_add(zn, integer_size, num_integers, val, 1135 tag, tx); 1136 } 1137 zap = zn->zn_zap; /* fzap_add() may change zap */ 1138 } else { 1139 mze = mze_find(zn); 1140 if (mze != NULL) { 1141 err = SET_ERROR(EEXIST); 1142 } else { 1143 mzap_addent(zn, *intval); 1144 } 1145 } 1146 ASSERT(zap == zn->zn_zap); 1147 zap_name_free(zn); 1148 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1149 zap_unlockdir(zap, tag); 1150 return (err); 1151 } 1152 1153 int 1154 zap_add(objset_t *os, uint64_t zapobj, const char *key, 1155 int integer_size, uint64_t num_integers, 1156 const void *val, dmu_tx_t *tx) 1157 { 1158 zap_t *zap; 1159 int err; 1160 1161 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1162 if (err != 0) 1163 return (err); 1164 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); 1165 /* zap_add_impl() calls zap_unlockdir() */ 1166 return (err); 1167 } 1168 1169 int 1170 zap_add_by_dnode(dnode_t *dn, const char *key, 1171 int integer_size, uint64_t num_integers, 1172 const void *val, dmu_tx_t *tx) 1173 { 1174 zap_t *zap; 1175 int err; 1176 1177 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1178 if (err != 0) 1179 return (err); 1180 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); 1181 /* zap_add_impl() calls zap_unlockdir() */ 1182 return (err); 1183 } 1184 1185 int 1186 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1187 int key_numints, int integer_size, uint64_t num_integers, 1188 const void *val, dmu_tx_t *tx) 1189 { 1190 zap_t *zap; 1191 int err; 1192 zap_name_t *zn; 1193 1194 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1195 if (err) 1196 return (err); 1197 zn = zap_name_alloc_uint64(zap, key, key_numints); 1198 if (zn == NULL) { 1199 zap_unlockdir(zap, FTAG); 1200 return (SET_ERROR(ENOTSUP)); 1201 } 1202 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx); 1203 zap = zn->zn_zap; /* fzap_add() may change zap */ 1204 zap_name_free(zn); 1205 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1206 zap_unlockdir(zap, FTAG); 1207 return (err); 1208 } 1209 1210 int 1211 zap_update(objset_t *os, uint64_t zapobj, const char *name, 1212 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1213 { 1214 zap_t *zap; 1215 mzap_ent_t *mze; 1216 uint64_t oldval; 1217 const uint64_t *intval = val; 1218 zap_name_t *zn; 1219 int err; 1220 1221 #ifdef ZFS_DEBUG 1222 /* 1223 * If there is an old value, it shouldn't change across the 1224 * lockdir (eg, due to bprewrite's xlation). 1225 */ 1226 if (integer_size == 8 && num_integers == 1) 1227 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval); 1228 #endif 1229 1230 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1231 if (err) 1232 return (err); 1233 zn = zap_name_alloc(zap, name, 0); 1234 if (zn == NULL) { 1235 zap_unlockdir(zap, FTAG); 1236 return (SET_ERROR(ENOTSUP)); 1237 } 1238 if (!zap->zap_ismicro) { 1239 err = fzap_update(zn, integer_size, num_integers, val, 1240 FTAG, tx); 1241 zap = zn->zn_zap; /* fzap_update() may change zap */ 1242 } else if (integer_size != 8 || num_integers != 1 || 1243 strlen(name) >= MZAP_NAME_LEN) { 1244 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1245 zapobj, integer_size, num_integers, name); 1246 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0); 1247 if (err == 0) { 1248 err = fzap_update(zn, integer_size, num_integers, 1249 val, FTAG, tx); 1250 } 1251 zap = zn->zn_zap; /* fzap_update() may change zap */ 1252 } else { 1253 mze = mze_find(zn); 1254 if (mze != NULL) { 1255 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval); 1256 MZE_PHYS(zap, mze)->mze_value = *intval; 1257 } else { 1258 mzap_addent(zn, *intval); 1259 } 1260 } 1261 ASSERT(zap == zn->zn_zap); 1262 zap_name_free(zn); 1263 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1264 zap_unlockdir(zap, FTAG); 1265 return (err); 1266 } 1267 1268 int 1269 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1270 int key_numints, 1271 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1272 { 1273 zap_t *zap; 1274 zap_name_t *zn; 1275 int err; 1276 1277 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1278 if (err) 1279 return (err); 1280 zn = zap_name_alloc_uint64(zap, key, key_numints); 1281 if (zn == NULL) { 1282 zap_unlockdir(zap, FTAG); 1283 return (SET_ERROR(ENOTSUP)); 1284 } 1285 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx); 1286 zap = zn->zn_zap; /* fzap_update() may change zap */ 1287 zap_name_free(zn); 1288 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1289 zap_unlockdir(zap, FTAG); 1290 return (err); 1291 } 1292 1293 int 1294 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1295 { 1296 return (zap_remove_norm(os, zapobj, name, 0, tx)); 1297 } 1298 1299 static int 1300 zap_remove_impl(zap_t *zap, const char *name, 1301 matchtype_t mt, dmu_tx_t *tx) 1302 { 1303 mzap_ent_t *mze; 1304 zap_name_t *zn; 1305 int err = 0; 1306 1307 zn = zap_name_alloc(zap, name, mt); 1308 if (zn == NULL) 1309 return (SET_ERROR(ENOTSUP)); 1310 if (!zap->zap_ismicro) { 1311 err = fzap_remove(zn, tx); 1312 } else { 1313 mze = mze_find(zn); 1314 if (mze == NULL) { 1315 err = SET_ERROR(ENOENT); 1316 } else { 1317 zap->zap_m.zap_num_entries--; 1318 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid], 1319 sizeof (mzap_ent_phys_t)); 1320 mze_remove(zap, mze); 1321 } 1322 } 1323 zap_name_free(zn); 1324 return (err); 1325 } 1326 1327 int 1328 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1329 matchtype_t mt, dmu_tx_t *tx) 1330 { 1331 zap_t *zap; 1332 int err; 1333 1334 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1335 if (err) 1336 return (err); 1337 err = zap_remove_impl(zap, name, mt, tx); 1338 zap_unlockdir(zap, FTAG); 1339 return (err); 1340 } 1341 1342 int 1343 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx) 1344 { 1345 zap_t *zap; 1346 int err; 1347 1348 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1349 if (err) 1350 return (err); 1351 err = zap_remove_impl(zap, name, 0, tx); 1352 zap_unlockdir(zap, FTAG); 1353 return (err); 1354 } 1355 1356 int 1357 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1358 int key_numints, dmu_tx_t *tx) 1359 { 1360 zap_t *zap; 1361 int err; 1362 zap_name_t *zn; 1363 1364 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1365 if (err) 1366 return (err); 1367 zn = zap_name_alloc_uint64(zap, key, key_numints); 1368 if (zn == NULL) { 1369 zap_unlockdir(zap, FTAG); 1370 return (SET_ERROR(ENOTSUP)); 1371 } 1372 err = fzap_remove(zn, tx); 1373 zap_name_free(zn); 1374 zap_unlockdir(zap, FTAG); 1375 return (err); 1376 } 1377 1378 /* 1379 * Routines for iterating over the attributes. 1380 */ 1381 1382 void 1383 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1384 uint64_t serialized) 1385 { 1386 zc->zc_objset = os; 1387 zc->zc_zap = NULL; 1388 zc->zc_leaf = NULL; 1389 zc->zc_zapobj = zapobj; 1390 zc->zc_serialized = serialized; 1391 zc->zc_hash = 0; 1392 zc->zc_cd = 0; 1393 } 1394 1395 void 1396 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1397 { 1398 zap_cursor_init_serialized(zc, os, zapobj, 0); 1399 } 1400 1401 void 1402 zap_cursor_fini(zap_cursor_t *zc) 1403 { 1404 if (zc->zc_zap) { 1405 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1406 zap_unlockdir(zc->zc_zap, NULL); 1407 zc->zc_zap = NULL; 1408 } 1409 if (zc->zc_leaf) { 1410 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1411 zap_put_leaf(zc->zc_leaf); 1412 zc->zc_leaf = NULL; 1413 } 1414 zc->zc_objset = NULL; 1415 } 1416 1417 uint64_t 1418 zap_cursor_serialize(zap_cursor_t *zc) 1419 { 1420 if (zc->zc_hash == -1ULL) 1421 return (-1ULL); 1422 if (zc->zc_zap == NULL) 1423 return (zc->zc_serialized); 1424 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1425 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1426 1427 /* 1428 * We want to keep the high 32 bits of the cursor zero if we can, so 1429 * that 32-bit programs can access this. So usually use a small 1430 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1431 * of the cursor. 1432 * 1433 * [ collision differentiator | zap_hashbits()-bit hash value ] 1434 */ 1435 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1436 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1437 } 1438 1439 int 1440 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1441 { 1442 int err; 1443 avl_index_t idx; 1444 mzap_ent_t mze_tofind; 1445 mzap_ent_t *mze; 1446 1447 if (zc->zc_hash == -1ULL) 1448 return (SET_ERROR(ENOENT)); 1449 1450 if (zc->zc_zap == NULL) { 1451 int hb; 1452 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1453 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap); 1454 if (err) 1455 return (err); 1456 1457 /* 1458 * To support zap_cursor_init_serialized, advance, retrieve, 1459 * we must add to the existing zc_cd, which may already 1460 * be 1 due to the zap_cursor_advance. 1461 */ 1462 ASSERT(zc->zc_hash == 0); 1463 hb = zap_hashbits(zc->zc_zap); 1464 zc->zc_hash = zc->zc_serialized << (64 - hb); 1465 zc->zc_cd += zc->zc_serialized >> hb; 1466 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1467 zc->zc_cd = 0; 1468 } else { 1469 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1470 } 1471 if (!zc->zc_zap->zap_ismicro) { 1472 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1473 } else { 1474 mze_tofind.mze_hash = zc->zc_hash; 1475 mze_tofind.mze_cd = zc->zc_cd; 1476 1477 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 1478 if (mze == NULL) { 1479 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 1480 idx, AVL_AFTER); 1481 } 1482 if (mze) { 1483 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); 1484 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); 1485 za->za_normalization_conflict = 1486 mzap_normalization_conflict(zc->zc_zap, NULL, mze); 1487 za->za_integer_length = 8; 1488 za->za_num_integers = 1; 1489 za->za_first_integer = mzep->mze_value; 1490 (void) strcpy(za->za_name, mzep->mze_name); 1491 zc->zc_hash = mze->mze_hash; 1492 zc->zc_cd = mze->mze_cd; 1493 err = 0; 1494 } else { 1495 zc->zc_hash = -1ULL; 1496 err = SET_ERROR(ENOENT); 1497 } 1498 } 1499 rw_exit(&zc->zc_zap->zap_rwlock); 1500 return (err); 1501 } 1502 1503 void 1504 zap_cursor_advance(zap_cursor_t *zc) 1505 { 1506 if (zc->zc_hash == -1ULL) 1507 return; 1508 zc->zc_cd++; 1509 } 1510 1511 int 1512 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1513 { 1514 int err; 1515 zap_t *zap; 1516 1517 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1518 if (err) 1519 return (err); 1520 1521 bzero(zs, sizeof (zap_stats_t)); 1522 1523 if (zap->zap_ismicro) { 1524 zs->zs_blocksize = zap->zap_dbuf->db_size; 1525 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1526 zs->zs_num_blocks = 1; 1527 } else { 1528 fzap_get_stats(zap, zs); 1529 } 1530 zap_unlockdir(zap, FTAG); 1531 return (0); 1532 } 1533