1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2015 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 */ 27 28 /* 29 * The 512-byte leaf is broken into 32 16-byte chunks. 30 * chunk number n means l_chunk[n], even though the header precedes it. 31 * the names are stored null-terminated. 32 */ 33 34 #include <sys/zio.h> 35 #include <sys/spa.h> 36 #include <sys/dmu.h> 37 #include <sys/zfs_context.h> 38 #include <sys/fs/zfs.h> 39 #include <sys/zap.h> 40 #include <sys/zap_impl.h> 41 #include <sys/zap_leaf.h> 42 #include <sys/arc.h> 43 44 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); 45 46 #define CHAIN_END 0xffff /* end of the chunk chain */ 47 48 /* half the (current) minimum block size */ 49 #define MAX_ARRAY_BYTES (8<<10) 50 51 #define LEAF_HASH(l, h) \ 52 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 53 ((h) >> \ 54 (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) 55 56 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)]) 57 58 extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l); 59 60 static void 61 zap_memset(void *a, int c, size_t n) 62 { 63 char *cp = a; 64 char *cpend = cp + n; 65 66 while (cp < cpend) 67 *cp++ = c; 68 } 69 70 static void 71 stv(int len, void *addr, uint64_t value) 72 { 73 switch (len) { 74 case 1: 75 *(uint8_t *)addr = value; 76 return; 77 case 2: 78 *(uint16_t *)addr = value; 79 return; 80 case 4: 81 *(uint32_t *)addr = value; 82 return; 83 case 8: 84 *(uint64_t *)addr = value; 85 return; 86 } 87 ASSERT(!"bad int len"); 88 } 89 90 static uint64_t 91 ldv(int len, const void *addr) 92 { 93 switch (len) { 94 case 1: 95 return (*(uint8_t *)addr); 96 case 2: 97 return (*(uint16_t *)addr); 98 case 4: 99 return (*(uint32_t *)addr); 100 case 8: 101 return (*(uint64_t *)addr); 102 } 103 ASSERT(!"bad int len"); 104 return (0xFEEDFACEDEADBEEFULL); 105 } 106 107 void 108 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) 109 { 110 int i; 111 zap_leaf_t l; 112 dmu_buf_t l_dbuf; 113 114 l_dbuf.db_data = buf; 115 l.l_bs = highbit64(size) - 1; 116 l.l_dbuf = &l_dbuf; 117 118 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 119 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 120 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 121 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 122 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 123 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 124 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 125 126 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 127 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 128 129 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 130 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 131 struct zap_leaf_entry *le; 132 133 switch (lc->l_free.lf_type) { 134 case ZAP_CHUNK_ENTRY: 135 le = &lc->l_entry; 136 137 le->le_type = BSWAP_8(le->le_type); 138 le->le_value_intlen = BSWAP_8(le->le_value_intlen); 139 le->le_next = BSWAP_16(le->le_next); 140 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 141 le->le_name_numints = BSWAP_16(le->le_name_numints); 142 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 143 le->le_value_numints = BSWAP_16(le->le_value_numints); 144 le->le_cd = BSWAP_32(le->le_cd); 145 le->le_hash = BSWAP_64(le->le_hash); 146 break; 147 case ZAP_CHUNK_FREE: 148 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 149 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 150 break; 151 case ZAP_CHUNK_ARRAY: 152 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 153 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 154 /* la_array doesn't need swapping */ 155 break; 156 default: 157 ASSERT(!"bad leaf type"); 158 } 159 } 160 } 161 162 void 163 zap_leaf_init(zap_leaf_t *l, boolean_t sort) 164 { 165 int i; 166 167 l->l_bs = highbit64(l->l_dbuf->db_size) - 1; 168 zap_memset(&zap_leaf_phys(l)->l_hdr, 0, 169 sizeof (struct zap_leaf_header)); 170 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 171 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 172 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 173 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 174 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 175 } 176 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 177 zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF; 178 zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 179 zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 180 if (sort) 181 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 182 } 183 184 /* 185 * Routines which manipulate leaf chunks (l_chunk[]). 186 */ 187 188 static uint16_t 189 zap_leaf_chunk_alloc(zap_leaf_t *l) 190 { 191 int chunk; 192 193 ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0); 194 195 chunk = zap_leaf_phys(l)->l_hdr.lh_freelist; 196 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 197 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 198 199 zap_leaf_phys(l)->l_hdr.lh_freelist = 200 ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 201 202 zap_leaf_phys(l)->l_hdr.lh_nfree--; 203 204 return (chunk); 205 } 206 207 static void 208 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 209 { 210 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 211 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 212 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 213 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 214 215 zlf->lf_type = ZAP_CHUNK_FREE; 216 zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist; 217 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ 218 zap_leaf_phys(l)->l_hdr.lh_freelist = chunk; 219 220 zap_leaf_phys(l)->l_hdr.lh_nfree++; 221 } 222 223 /* 224 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 225 */ 226 227 static uint16_t 228 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 229 int integer_size, int num_integers) 230 { 231 uint16_t chunk_head; 232 uint16_t *chunkp = &chunk_head; 233 int byten = 0; 234 uint64_t value = 0; 235 int shift = (integer_size-1)*8; 236 int len = num_integers; 237 238 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); 239 240 while (len > 0) { 241 uint16_t chunk = zap_leaf_chunk_alloc(l); 242 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 243 int i; 244 245 la->la_type = ZAP_CHUNK_ARRAY; 246 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 247 if (byten == 0) 248 value = ldv(integer_size, buf); 249 la->la_array[i] = value >> shift; 250 value <<= 8; 251 if (++byten == integer_size) { 252 byten = 0; 253 buf += integer_size; 254 if (--len == 0) 255 break; 256 } 257 } 258 259 *chunkp = chunk; 260 chunkp = &la->la_next; 261 } 262 *chunkp = CHAIN_END; 263 264 return (chunk_head); 265 } 266 267 static void 268 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) 269 { 270 uint16_t chunk = *chunkp; 271 272 *chunkp = CHAIN_END; 273 274 while (chunk != CHAIN_END) { 275 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; 276 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, 277 ZAP_CHUNK_ARRAY); 278 zap_leaf_chunk_free(l, chunk); 279 chunk = nextchunk; 280 } 281 } 282 283 /* array_len and buf_len are in integers, not bytes */ 284 static void 285 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 286 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 287 void *buf) 288 { 289 int len = MIN(array_len, buf_len); 290 int byten = 0; 291 uint64_t value = 0; 292 char *p = buf; 293 294 ASSERT3U(array_int_len, <=, buf_int_len); 295 296 /* Fast path for one 8-byte integer */ 297 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 298 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 299 uint8_t *ip = la->la_array; 300 uint64_t *buf64 = buf; 301 302 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 303 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 304 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 305 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 306 return; 307 } 308 309 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 310 if (array_int_len == 1 && buf_int_len == 1 && 311 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 312 while (chunk != CHAIN_END) { 313 struct zap_leaf_array *la = 314 &ZAP_LEAF_CHUNK(l, chunk).l_array; 315 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES); 316 p += ZAP_LEAF_ARRAY_BYTES; 317 chunk = la->la_next; 318 } 319 return; 320 } 321 322 while (len > 0) { 323 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 324 int i; 325 326 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 327 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 328 value = (value << 8) | la->la_array[i]; 329 byten++; 330 if (byten == array_int_len) { 331 stv(buf_int_len, p, value); 332 byten = 0; 333 len--; 334 if (len == 0) 335 return; 336 p += buf_int_len; 337 } 338 } 339 chunk = la->la_next; 340 } 341 } 342 343 static boolean_t 344 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, 345 int chunk, int array_numints) 346 { 347 int bseen = 0; 348 349 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { 350 uint64_t *thiskey; 351 boolean_t match; 352 353 ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); 354 thiskey = kmem_alloc(array_numints * sizeof (*thiskey), 355 KM_SLEEP); 356 357 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints, 358 sizeof (*thiskey), array_numints, thiskey); 359 match = bcmp(thiskey, zn->zn_key_orig, 360 array_numints * sizeof (*thiskey)) == 0; 361 kmem_free(thiskey, array_numints * sizeof (*thiskey)); 362 return (match); 363 } 364 365 ASSERT(zn->zn_key_intlen == 1); 366 if (zn->zn_matchtype & MT_NORMALIZE) { 367 char *thisname = kmem_alloc(array_numints, KM_SLEEP); 368 boolean_t match; 369 370 zap_leaf_array_read(l, chunk, sizeof (char), array_numints, 371 sizeof (char), array_numints, thisname); 372 match = zap_match(zn, thisname); 373 kmem_free(thisname, array_numints); 374 return (match); 375 } 376 377 /* 378 * Fast path for exact matching. 379 * First check that the lengths match, so that we don't read 380 * past the end of the zn_key_orig array. 381 */ 382 if (array_numints != zn->zn_key_orig_numints) 383 return (B_FALSE); 384 while (bseen < array_numints) { 385 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 386 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES); 387 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 388 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread)) 389 break; 390 chunk = la->la_next; 391 bseen += toread; 392 } 393 return (bseen == array_numints); 394 } 395 396 /* 397 * Routines which manipulate leaf entries. 398 */ 399 400 int 401 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) 402 { 403 uint16_t *chunkp; 404 struct zap_leaf_entry *le; 405 406 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 407 408 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); 409 *chunkp != CHAIN_END; chunkp = &le->le_next) { 410 uint16_t chunk = *chunkp; 411 le = ZAP_LEAF_ENTRY(l, chunk); 412 413 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 414 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 415 416 if (le->le_hash != zn->zn_hash) 417 continue; 418 419 /* 420 * NB: the entry chain is always sorted by cd on 421 * normalized zap objects, so this will find the 422 * lowest-cd match for MT_NORMALIZE. 423 */ 424 ASSERT((zn->zn_matchtype == 0) || 425 (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); 426 if (zap_leaf_array_match(l, zn, le->le_name_chunk, 427 le->le_name_numints)) { 428 zeh->zeh_num_integers = le->le_value_numints; 429 zeh->zeh_integer_size = le->le_value_intlen; 430 zeh->zeh_cd = le->le_cd; 431 zeh->zeh_hash = le->le_hash; 432 zeh->zeh_chunkp = chunkp; 433 zeh->zeh_leaf = l; 434 return (0); 435 } 436 } 437 438 return (SET_ERROR(ENOENT)); 439 } 440 441 /* Return (h1,cd1 >= h2,cd2) */ 442 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 443 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 444 445 int 446 zap_leaf_lookup_closest(zap_leaf_t *l, 447 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 448 { 449 uint16_t chunk; 450 uint64_t besth = -1ULL; 451 uint32_t bestcd = -1U; 452 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 453 uint16_t lh; 454 struct zap_leaf_entry *le; 455 456 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 457 458 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 459 for (chunk = zap_leaf_phys(l)->l_hash[lh]; 460 chunk != CHAIN_END; chunk = le->le_next) { 461 le = ZAP_LEAF_ENTRY(l, chunk); 462 463 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 464 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 465 466 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 467 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 468 ASSERT3U(bestlh, >=, lh); 469 bestlh = lh; 470 besth = le->le_hash; 471 bestcd = le->le_cd; 472 473 zeh->zeh_num_integers = le->le_value_numints; 474 zeh->zeh_integer_size = le->le_value_intlen; 475 zeh->zeh_cd = le->le_cd; 476 zeh->zeh_hash = le->le_hash; 477 zeh->zeh_fakechunk = chunk; 478 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 479 zeh->zeh_leaf = l; 480 } 481 } 482 } 483 484 return (bestcd == -1U ? ENOENT : 0); 485 } 486 487 int 488 zap_entry_read(const zap_entry_handle_t *zeh, 489 uint8_t integer_size, uint64_t num_integers, void *buf) 490 { 491 struct zap_leaf_entry *le = 492 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 493 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 494 495 if (le->le_value_intlen > integer_size) 496 return (SET_ERROR(EINVAL)); 497 498 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, 499 le->le_value_intlen, le->le_value_numints, 500 integer_size, num_integers, buf); 501 502 if (zeh->zeh_num_integers > num_integers) 503 return (SET_ERROR(EOVERFLOW)); 504 return (0); 505 506 } 507 508 int 509 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, 510 char *buf) 511 { 512 struct zap_leaf_entry *le = 513 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 514 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 515 516 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 517 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, 518 le->le_name_numints, 8, buflen / 8, buf); 519 } else { 520 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 521 le->le_name_numints, 1, buflen, buf); 522 } 523 if (le->le_name_numints > buflen) 524 return (SET_ERROR(EOVERFLOW)); 525 return (0); 526 } 527 528 int 529 zap_entry_update(zap_entry_handle_t *zeh, 530 uint8_t integer_size, uint64_t num_integers, const void *buf) 531 { 532 int delta_chunks; 533 zap_leaf_t *l = zeh->zeh_leaf; 534 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 535 536 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 537 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); 538 539 if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks) 540 return (SET_ERROR(EAGAIN)); 541 542 zap_leaf_array_free(l, &le->le_value_chunk); 543 le->le_value_chunk = 544 zap_leaf_array_create(l, buf, integer_size, num_integers); 545 le->le_value_numints = num_integers; 546 le->le_value_intlen = integer_size; 547 return (0); 548 } 549 550 void 551 zap_entry_remove(zap_entry_handle_t *zeh) 552 { 553 uint16_t entry_chunk; 554 struct zap_leaf_entry *le; 555 zap_leaf_t *l = zeh->zeh_leaf; 556 557 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 558 559 entry_chunk = *zeh->zeh_chunkp; 560 le = ZAP_LEAF_ENTRY(l, entry_chunk); 561 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 562 563 zap_leaf_array_free(l, &le->le_name_chunk); 564 zap_leaf_array_free(l, &le->le_value_chunk); 565 566 *zeh->zeh_chunkp = le->le_next; 567 zap_leaf_chunk_free(l, entry_chunk); 568 569 zap_leaf_phys(l)->l_hdr.lh_nentries--; 570 } 571 572 int 573 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, 574 uint8_t integer_size, uint64_t num_integers, const void *buf, 575 zap_entry_handle_t *zeh) 576 { 577 uint16_t chunk; 578 uint16_t *chunkp; 579 struct zap_leaf_entry *le; 580 uint64_t valuelen; 581 int numchunks; 582 uint64_t h = zn->zn_hash; 583 584 valuelen = integer_size * num_integers; 585 586 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints * 587 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 588 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 589 return (E2BIG); 590 591 if (cd == ZAP_NEED_CD) { 592 /* find the lowest unused cd */ 593 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { 594 cd = 0; 595 596 for (chunk = *LEAF_HASH_ENTPTR(l, h); 597 chunk != CHAIN_END; chunk = le->le_next) { 598 le = ZAP_LEAF_ENTRY(l, chunk); 599 if (le->le_cd > cd) 600 break; 601 if (le->le_hash == h) { 602 ASSERT3U(cd, ==, le->le_cd); 603 cd++; 604 } 605 } 606 } else { 607 /* old unsorted format; do it the O(n^2) way */ 608 for (cd = 0; ; cd++) { 609 for (chunk = *LEAF_HASH_ENTPTR(l, h); 610 chunk != CHAIN_END; chunk = le->le_next) { 611 le = ZAP_LEAF_ENTRY(l, chunk); 612 if (le->le_hash == h && 613 le->le_cd == cd) { 614 break; 615 } 616 } 617 /* If this cd is not in use, we are good. */ 618 if (chunk == CHAIN_END) 619 break; 620 } 621 } 622 /* 623 * We would run out of space in a block before we could 624 * store enough entries to run out of CD values. 625 */ 626 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); 627 } 628 629 if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks) 630 return (SET_ERROR(EAGAIN)); 631 632 /* make the entry */ 633 chunk = zap_leaf_chunk_alloc(l); 634 le = ZAP_LEAF_ENTRY(l, chunk); 635 le->le_type = ZAP_CHUNK_ENTRY; 636 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, 637 zn->zn_key_intlen, zn->zn_key_orig_numints); 638 le->le_name_numints = zn->zn_key_orig_numints; 639 le->le_value_chunk = 640 zap_leaf_array_create(l, buf, integer_size, num_integers); 641 le->le_value_numints = num_integers; 642 le->le_value_intlen = integer_size; 643 le->le_hash = h; 644 le->le_cd = cd; 645 646 /* link it into the hash chain */ 647 /* XXX if we did the search above, we could just use that */ 648 chunkp = zap_leaf_rehash_entry(l, chunk); 649 650 zap_leaf_phys(l)->l_hdr.lh_nentries++; 651 652 zeh->zeh_leaf = l; 653 zeh->zeh_num_integers = num_integers; 654 zeh->zeh_integer_size = le->le_value_intlen; 655 zeh->zeh_cd = le->le_cd; 656 zeh->zeh_hash = le->le_hash; 657 zeh->zeh_chunkp = chunkp; 658 659 return (0); 660 } 661 662 /* 663 * Determine if there is another entry with the same normalized form. 664 * For performance purposes, either zn or name must be provided (the 665 * other can be NULL). Note, there usually won't be any hash 666 * conflicts, in which case we don't need the concatenated/normalized 667 * form of the name. But all callers have one of these on hand anyway, 668 * so might as well take advantage. A cleaner but slower interface 669 * would accept neither argument, and compute the normalized name as 670 * needed (using zap_name_alloc(zap_entry_read_name(zeh))). 671 */ 672 boolean_t 673 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, 674 const char *name, zap_t *zap) 675 { 676 uint64_t chunk; 677 struct zap_leaf_entry *le; 678 boolean_t allocdzn = B_FALSE; 679 680 if (zap->zap_normflags == 0) 681 return (B_FALSE); 682 683 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); 684 chunk != CHAIN_END; chunk = le->le_next) { 685 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); 686 if (le->le_hash != zeh->zeh_hash) 687 continue; 688 if (le->le_cd == zeh->zeh_cd) 689 continue; 690 691 if (zn == NULL) { 692 zn = zap_name_alloc(zap, name, MT_NORMALIZE); 693 allocdzn = B_TRUE; 694 } 695 if (zap_leaf_array_match(zeh->zeh_leaf, zn, 696 le->le_name_chunk, le->le_name_numints)) { 697 if (allocdzn) 698 zap_name_free(zn); 699 return (B_TRUE); 700 } 701 } 702 if (allocdzn) 703 zap_name_free(zn); 704 return (B_FALSE); 705 } 706 707 /* 708 * Routines for transferring entries between leafs. 709 */ 710 711 static uint16_t * 712 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) 713 { 714 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 715 struct zap_leaf_entry *le2; 716 uint16_t *chunkp; 717 718 /* 719 * keep the entry chain sorted by cd 720 * NB: this will not cause problems for unsorted leafs, though 721 * it is unnecessary there. 722 */ 723 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); 724 *chunkp != CHAIN_END; chunkp = &le2->le_next) { 725 le2 = ZAP_LEAF_ENTRY(l, *chunkp); 726 if (le2->le_cd > le->le_cd) 727 break; 728 } 729 730 le->le_next = *chunkp; 731 *chunkp = entry; 732 return (chunkp); 733 } 734 735 static uint16_t 736 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 737 { 738 uint16_t new_chunk; 739 uint16_t *nchunkp = &new_chunk; 740 741 while (chunk != CHAIN_END) { 742 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 743 struct zap_leaf_array *nla = 744 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 745 struct zap_leaf_array *la = 746 &ZAP_LEAF_CHUNK(l, chunk).l_array; 747 int nextchunk = la->la_next; 748 749 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 750 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); 751 752 *nla = *la; /* structure assignment */ 753 754 zap_leaf_chunk_free(l, chunk); 755 chunk = nextchunk; 756 *nchunkp = nchunk; 757 nchunkp = &nla->la_next; 758 } 759 *nchunkp = CHAIN_END; 760 return (new_chunk); 761 } 762 763 static void 764 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) 765 { 766 struct zap_leaf_entry *le, *nle; 767 uint16_t chunk; 768 769 le = ZAP_LEAF_ENTRY(l, entry); 770 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 771 772 chunk = zap_leaf_chunk_alloc(nl); 773 nle = ZAP_LEAF_ENTRY(nl, chunk); 774 *nle = *le; /* structure assignment */ 775 776 (void) zap_leaf_rehash_entry(nl, chunk); 777 778 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); 779 nle->le_value_chunk = 780 zap_leaf_transfer_array(l, le->le_value_chunk, nl); 781 782 zap_leaf_chunk_free(l, entry); 783 784 zap_leaf_phys(l)->l_hdr.lh_nentries--; 785 zap_leaf_phys(nl)->l_hdr.lh_nentries++; 786 } 787 788 /* 789 * Transfer the entries whose hash prefix ends in 1 to the new leaf. 790 */ 791 void 792 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) 793 { 794 int i; 795 int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len; 796 797 /* set new prefix and prefix_len */ 798 zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1; 799 zap_leaf_phys(l)->l_hdr.lh_prefix_len++; 800 zap_leaf_phys(nl)->l_hdr.lh_prefix = 801 zap_leaf_phys(l)->l_hdr.lh_prefix | 1; 802 zap_leaf_phys(nl)->l_hdr.lh_prefix_len = 803 zap_leaf_phys(l)->l_hdr.lh_prefix_len; 804 805 /* break existing hash chains */ 806 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 807 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 808 809 if (sort) 810 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 811 812 /* 813 * Transfer entries whose hash bit 'bit' is set to nl; rehash 814 * the remaining entries 815 * 816 * NB: We could find entries via the hashtable instead. That 817 * would be O(hashents+numents) rather than O(numblks+numents), 818 * but this accesses memory more sequentially, and when we're 819 * called, the block is usually pretty full. 820 */ 821 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 822 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 823 if (le->le_type != ZAP_CHUNK_ENTRY) 824 continue; 825 826 if (le->le_hash & (1ULL << bit)) 827 zap_leaf_transfer_entry(l, i, nl); 828 else 829 (void) zap_leaf_rehash_entry(l, i); 830 } 831 } 832 833 void 834 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 835 { 836 int i, n; 837 838 n = zap_f_phys(zap)->zap_ptrtbl.zt_shift - 839 zap_leaf_phys(l)->l_hdr.lh_prefix_len; 840 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 841 zs->zs_leafs_with_2n_pointers[n]++; 842 843 844 n = zap_leaf_phys(l)->l_hdr.lh_nentries/5; 845 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 846 zs->zs_blocks_with_n5_entries[n]++; 847 848 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 849 zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 850 (1<<FZAP_BLOCK_SHIFT(zap)); 851 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 852 zs->zs_blocks_n_tenths_full[n]++; 853 854 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 855 int nentries = 0; 856 int chunk = zap_leaf_phys(l)->l_hash[i]; 857 858 while (chunk != CHAIN_END) { 859 struct zap_leaf_entry *le = 860 ZAP_LEAF_ENTRY(l, chunk); 861 862 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) + 863 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * 864 le->le_value_intlen); 865 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 866 zs->zs_entries_using_n_chunks[n]++; 867 868 chunk = le->le_next; 869 nentries++; 870 } 871 872 n = nentries; 873 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 874 zs->zs_buckets_with_n_entries[n]++; 875 } 876 } 877