1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 /* 28 * This file contains the top half of the zfs directory structure 29 * implementation. The bottom half is in zap_leaf.c. 30 * 31 * The zdir is an extendable hash data structure. There is a table of 32 * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are 33 * each a constant size and hold a variable number of directory entries. 34 * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. 35 * 36 * The pointer table holds a power of 2 number of pointers. 37 * (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to 38 * by the pointer at index i in the table holds entries whose hash value 39 * has a zd_prefix_len - bit prefix 40 */ 41 42 #include <sys/spa.h> 43 #include <sys/dmu.h> 44 #include <sys/zfs_context.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/zap.h> 48 #include <sys/refcount.h> 49 #include <sys/zap_impl.h> 50 #include <sys/zap_leaf.h> 51 52 int fzap_default_block_shift = 14; /* 16k blocksize */ 53 54 extern inline zap_phys_t *zap_f_phys(zap_t *zap); 55 56 static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); 57 58 void 59 fzap_byteswap(void *vbuf, size_t size) 60 { 61 uint64_t block_type; 62 63 block_type = *(uint64_t *)vbuf; 64 65 if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) 66 zap_leaf_byteswap(vbuf, size); 67 else { 68 /* it's a ptrtbl block */ 69 byteswap_uint64_array(vbuf, size); 70 } 71 } 72 73 void 74 fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) 75 { 76 dmu_buf_t *db; 77 zap_leaf_t *l; 78 int i; 79 zap_phys_t *zp; 80 81 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 82 zap->zap_ismicro = FALSE; 83 84 zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync; 85 zap->zap_dbu.dbu_evict_func_async = NULL; 86 87 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 88 zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1; 89 90 zp = zap_f_phys(zap); 91 /* 92 * explicitly zero it since it might be coming from an 93 * initialized microzap 94 */ 95 bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size); 96 zp->zap_block_type = ZBT_HEADER; 97 zp->zap_magic = ZAP_MAGIC; 98 99 zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); 100 101 zp->zap_freeblk = 2; /* block 1 will be the first leaf */ 102 zp->zap_num_leafs = 1; 103 zp->zap_num_entries = 0; 104 zp->zap_salt = zap->zap_salt; 105 zp->zap_normflags = zap->zap_normflags; 106 zp->zap_flags = flags; 107 108 /* block 1 will be the first leaf */ 109 for (i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++) 110 ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; 111 112 /* 113 * set up block 1 - the first leaf 114 */ 115 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 116 1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH)); 117 dmu_buf_will_dirty(db, tx); 118 119 l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 120 l->l_dbuf = db; 121 122 zap_leaf_init(l, zp->zap_normflags != 0); 123 124 kmem_free(l, sizeof (zap_leaf_t)); 125 dmu_buf_rele(db, FTAG); 126 } 127 128 static int 129 zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) 130 { 131 if (RW_WRITE_HELD(&zap->zap_rwlock)) 132 return (1); 133 if (rw_tryupgrade(&zap->zap_rwlock)) { 134 dmu_buf_will_dirty(zap->zap_dbuf, tx); 135 return (1); 136 } 137 return (0); 138 } 139 140 /* 141 * Generic routines for dealing with the pointer & cookie tables. 142 */ 143 144 static int 145 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, 146 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), 147 dmu_tx_t *tx) 148 { 149 uint64_t b, newblk; 150 dmu_buf_t *db_old, *db_new; 151 int err; 152 int bs = FZAP_BLOCK_SHIFT(zap); 153 int hepb = 1<<(bs-4); 154 /* hepb = half the number of entries in a block */ 155 156 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 157 ASSERT(tbl->zt_blk != 0); 158 ASSERT(tbl->zt_numblks > 0); 159 160 if (tbl->zt_nextblk != 0) { 161 newblk = tbl->zt_nextblk; 162 } else { 163 newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); 164 tbl->zt_nextblk = newblk; 165 ASSERT0(tbl->zt_blks_copied); 166 dmu_prefetch(zap->zap_objset, zap->zap_object, 0, 167 tbl->zt_blk << bs, tbl->zt_numblks << bs, 168 ZIO_PRIORITY_SYNC_READ); 169 } 170 171 /* 172 * Copy the ptrtbl from the old to new location. 173 */ 174 175 b = tbl->zt_blks_copied; 176 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 177 (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH); 178 if (err) 179 return (err); 180 181 /* first half of entries in old[b] go to new[2*b+0] */ 182 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 183 (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 184 dmu_buf_will_dirty(db_new, tx); 185 transfer_func(db_old->db_data, db_new->db_data, hepb); 186 dmu_buf_rele(db_new, FTAG); 187 188 /* second half of entries in old[b] go to new[2*b+1] */ 189 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 190 (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 191 dmu_buf_will_dirty(db_new, tx); 192 transfer_func((uint64_t *)db_old->db_data + hepb, 193 db_new->db_data, hepb); 194 dmu_buf_rele(db_new, FTAG); 195 196 dmu_buf_rele(db_old, FTAG); 197 198 tbl->zt_blks_copied++; 199 200 dprintf("copied block %llu of %llu\n", 201 tbl->zt_blks_copied, tbl->zt_numblks); 202 203 if (tbl->zt_blks_copied == tbl->zt_numblks) { 204 (void) dmu_free_range(zap->zap_objset, zap->zap_object, 205 tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); 206 207 tbl->zt_blk = newblk; 208 tbl->zt_numblks *= 2; 209 tbl->zt_shift++; 210 tbl->zt_nextblk = 0; 211 tbl->zt_blks_copied = 0; 212 213 dprintf("finished; numblocks now %llu (%lluk entries)\n", 214 tbl->zt_numblks, 1<<(tbl->zt_shift-10)); 215 } 216 217 return (0); 218 } 219 220 static int 221 zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, 222 dmu_tx_t *tx) 223 { 224 int err; 225 uint64_t blk, off; 226 int bs = FZAP_BLOCK_SHIFT(zap); 227 dmu_buf_t *db; 228 229 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 230 ASSERT(tbl->zt_blk != 0); 231 232 dprintf("storing %llx at index %llx\n", val, idx); 233 234 blk = idx >> (bs-3); 235 off = idx & ((1<<(bs-3))-1); 236 237 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 238 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 239 if (err) 240 return (err); 241 dmu_buf_will_dirty(db, tx); 242 243 if (tbl->zt_nextblk != 0) { 244 uint64_t idx2 = idx * 2; 245 uint64_t blk2 = idx2 >> (bs-3); 246 uint64_t off2 = idx2 & ((1<<(bs-3))-1); 247 dmu_buf_t *db2; 248 249 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 250 (tbl->zt_nextblk + blk2) << bs, FTAG, &db2, 251 DMU_READ_NO_PREFETCH); 252 if (err) { 253 dmu_buf_rele(db, FTAG); 254 return (err); 255 } 256 dmu_buf_will_dirty(db2, tx); 257 ((uint64_t *)db2->db_data)[off2] = val; 258 ((uint64_t *)db2->db_data)[off2+1] = val; 259 dmu_buf_rele(db2, FTAG); 260 } 261 262 ((uint64_t *)db->db_data)[off] = val; 263 dmu_buf_rele(db, FTAG); 264 265 return (0); 266 } 267 268 static int 269 zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) 270 { 271 uint64_t blk, off; 272 int err; 273 dmu_buf_t *db; 274 dnode_t *dn; 275 int bs = FZAP_BLOCK_SHIFT(zap); 276 277 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 278 279 blk = idx >> (bs-3); 280 off = idx & ((1<<(bs-3))-1); 281 282 /* 283 * Note: this is equivalent to dmu_buf_hold(), but we use 284 * _dnode_enter / _by_dnode because it's faster because we don't 285 * have to hold the dnode. 286 */ 287 dn = dmu_buf_dnode_enter(zap->zap_dbuf); 288 err = dmu_buf_hold_by_dnode(dn, 289 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 290 dmu_buf_dnode_exit(zap->zap_dbuf); 291 if (err) 292 return (err); 293 *valp = ((uint64_t *)db->db_data)[off]; 294 dmu_buf_rele(db, FTAG); 295 296 if (tbl->zt_nextblk != 0) { 297 /* 298 * read the nextblk for the sake of i/o error checking, 299 * so that zap_table_load() will catch errors for 300 * zap_table_store. 301 */ 302 blk = (idx*2) >> (bs-3); 303 304 dn = dmu_buf_dnode_enter(zap->zap_dbuf); 305 err = dmu_buf_hold_by_dnode(dn, 306 (tbl->zt_nextblk + blk) << bs, FTAG, &db, 307 DMU_READ_NO_PREFETCH); 308 dmu_buf_dnode_exit(zap->zap_dbuf); 309 if (err == 0) 310 dmu_buf_rele(db, FTAG); 311 } 312 return (err); 313 } 314 315 /* 316 * Routines for growing the ptrtbl. 317 */ 318 319 static void 320 zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) 321 { 322 int i; 323 for (i = 0; i < n; i++) { 324 uint64_t lb = src[i]; 325 dst[2*i+0] = lb; 326 dst[2*i+1] = lb; 327 } 328 } 329 330 static int 331 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) 332 { 333 /* 334 * The pointer table should never use more hash bits than we 335 * have (otherwise we'd be using useless zero bits to index it). 336 * If we are within 2 bits of running out, stop growing, since 337 * this is already an aberrant condition. 338 */ 339 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) 340 return (SET_ERROR(ENOSPC)); 341 342 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 343 /* 344 * We are outgrowing the "embedded" ptrtbl (the one 345 * stored in the header block). Give it its own entire 346 * block, which will double the size of the ptrtbl. 347 */ 348 uint64_t newblk; 349 dmu_buf_t *db_new; 350 int err; 351 352 ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, 353 ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 354 ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk); 355 356 newblk = zap_allocate_blocks(zap, 1); 357 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 358 newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new, 359 DMU_READ_NO_PREFETCH); 360 if (err) 361 return (err); 362 dmu_buf_will_dirty(db_new, tx); 363 zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 364 db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 365 dmu_buf_rele(db_new, FTAG); 366 367 zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk; 368 zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1; 369 zap_f_phys(zap)->zap_ptrtbl.zt_shift++; 370 371 ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, 372 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << 373 (FZAP_BLOCK_SHIFT(zap)-3)); 374 375 return (0); 376 } else { 377 return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl, 378 zap_ptrtbl_transfer, tx)); 379 } 380 } 381 382 static void 383 zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) 384 { 385 dmu_buf_will_dirty(zap->zap_dbuf, tx); 386 mutex_enter(&zap->zap_f.zap_num_entries_mtx); 387 ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta); 388 zap_f_phys(zap)->zap_num_entries += delta; 389 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 390 } 391 392 static uint64_t 393 zap_allocate_blocks(zap_t *zap, int nblocks) 394 { 395 uint64_t newblk; 396 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 397 newblk = zap_f_phys(zap)->zap_freeblk; 398 zap_f_phys(zap)->zap_freeblk += nblocks; 399 return (newblk); 400 } 401 402 static void 403 zap_leaf_evict_sync(void *dbu) 404 { 405 zap_leaf_t *l = dbu; 406 407 rw_destroy(&l->l_rwlock); 408 kmem_free(l, sizeof (zap_leaf_t)); 409 } 410 411 static zap_leaf_t * 412 zap_create_leaf(zap_t *zap, dmu_tx_t *tx) 413 { 414 void *winner; 415 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 416 417 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 418 419 rw_init(&l->l_rwlock, 0, 0, 0); 420 rw_enter(&l->l_rwlock, RW_WRITER); 421 l->l_blkid = zap_allocate_blocks(zap, 1); 422 l->l_dbuf = NULL; 423 424 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 425 l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf, 426 DMU_READ_NO_PREFETCH)); 427 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); 428 winner = dmu_buf_set_user(l->l_dbuf, &l->l_dbu); 429 ASSERT(winner == NULL); 430 dmu_buf_will_dirty(l->l_dbuf, tx); 431 432 zap_leaf_init(l, zap->zap_normflags != 0); 433 434 zap_f_phys(zap)->zap_num_leafs++; 435 436 return (l); 437 } 438 439 int 440 fzap_count(zap_t *zap, uint64_t *count) 441 { 442 ASSERT(!zap->zap_ismicro); 443 mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ 444 *count = zap_f_phys(zap)->zap_num_entries; 445 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 446 return (0); 447 } 448 449 /* 450 * Routines for obtaining zap_leaf_t's 451 */ 452 453 void 454 zap_put_leaf(zap_leaf_t *l) 455 { 456 rw_exit(&l->l_rwlock); 457 dmu_buf_rele(l->l_dbuf, NULL); 458 } 459 460 static zap_leaf_t * 461 zap_open_leaf(uint64_t blkid, dmu_buf_t *db) 462 { 463 zap_leaf_t *l, *winner; 464 465 ASSERT(blkid != 0); 466 467 l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 468 rw_init(&l->l_rwlock, 0, 0, 0); 469 rw_enter(&l->l_rwlock, RW_WRITER); 470 l->l_blkid = blkid; 471 l->l_bs = highbit64(db->db_size) - 1; 472 l->l_dbuf = db; 473 474 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); 475 winner = dmu_buf_set_user(db, &l->l_dbu); 476 477 rw_exit(&l->l_rwlock); 478 if (winner != NULL) { 479 /* someone else set it first */ 480 zap_leaf_evict_sync(&l->l_dbu); 481 l = winner; 482 } 483 484 /* 485 * lhr_pad was previously used for the next leaf in the leaf 486 * chain. There should be no chained leafs (as we have removed 487 * support for them). 488 */ 489 ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1); 490 491 /* 492 * There should be more hash entries than there can be 493 * chunks to put in the hash table 494 */ 495 ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); 496 497 /* The chunks should begin at the end of the hash table */ 498 ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, 499 &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); 500 501 /* The chunks should end at the end of the block */ 502 ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - 503 (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size); 504 505 return (l); 506 } 507 508 static int 509 zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, 510 zap_leaf_t **lp) 511 { 512 dmu_buf_t *db; 513 zap_leaf_t *l; 514 int bs = FZAP_BLOCK_SHIFT(zap); 515 int err; 516 517 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 518 519 dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf); 520 err = dmu_buf_hold_by_dnode(dn, 521 blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH); 522 dmu_buf_dnode_exit(zap->zap_dbuf); 523 if (err) 524 return (err); 525 526 ASSERT3U(db->db_object, ==, zap->zap_object); 527 ASSERT3U(db->db_offset, ==, blkid << bs); 528 ASSERT3U(db->db_size, ==, 1 << bs); 529 ASSERT(blkid != 0); 530 531 l = dmu_buf_get_user(db); 532 533 if (l == NULL) 534 l = zap_open_leaf(blkid, db); 535 536 rw_enter(&l->l_rwlock, lt); 537 /* 538 * Must lock before dirtying, otherwise zap_leaf_phys(l) could change, 539 * causing ASSERT below to fail. 540 */ 541 if (lt == RW_WRITER) 542 dmu_buf_will_dirty(db, tx); 543 ASSERT3U(l->l_blkid, ==, blkid); 544 ASSERT3P(l->l_dbuf, ==, db); 545 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF); 546 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 547 548 *lp = l; 549 return (0); 550 } 551 552 static int 553 zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) 554 { 555 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 556 557 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 558 ASSERT3U(idx, <, 559 (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift)); 560 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 561 return (0); 562 } else { 563 return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl, 564 idx, valp)); 565 } 566 } 567 568 static int 569 zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) 570 { 571 ASSERT(tx != NULL); 572 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 573 574 if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) { 575 ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; 576 return (0); 577 } else { 578 return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl, 579 idx, blk, tx)); 580 } 581 } 582 583 static int 584 zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) 585 { 586 uint64_t idx, blk; 587 int err; 588 589 ASSERT(zap->zap_dbuf == NULL || 590 zap_f_phys(zap) == zap->zap_dbuf->db_data); 591 592 /* Reality check for corrupt zap objects (leaf or header). */ 593 if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF && 594 zap_f_phys(zap)->zap_block_type != ZBT_HEADER) || 595 zap_f_phys(zap)->zap_magic != ZAP_MAGIC) { 596 return (SET_ERROR(EIO)); 597 } 598 599 idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 600 err = zap_idx_to_blk(zap, idx, &blk); 601 if (err != 0) 602 return (err); 603 err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); 604 605 ASSERT(err || 606 ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) == 607 zap_leaf_phys(*lp)->l_hdr.lh_prefix); 608 return (err); 609 } 610 611 static int 612 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, 613 void *tag, dmu_tx_t *tx, zap_leaf_t **lp) 614 { 615 zap_t *zap = zn->zn_zap; 616 uint64_t hash = zn->zn_hash; 617 zap_leaf_t *nl; 618 int prefix_diff, i, err; 619 uint64_t sibling; 620 int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len; 621 622 ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 623 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 624 625 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 626 zap_leaf_phys(l)->l_hdr.lh_prefix); 627 628 if (zap_tryupgradedir(zap, tx) == 0 || 629 old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) { 630 /* We failed to upgrade, or need to grow the pointer table */ 631 objset_t *os = zap->zap_objset; 632 uint64_t object = zap->zap_object; 633 634 zap_put_leaf(l); 635 zap_unlockdir(zap, tag); 636 err = zap_lockdir(os, object, tx, RW_WRITER, 637 FALSE, FALSE, tag, &zn->zn_zap); 638 zap = zn->zn_zap; 639 if (err) 640 return (err); 641 ASSERT(!zap->zap_ismicro); 642 643 while (old_prefix_len == 644 zap_f_phys(zap)->zap_ptrtbl.zt_shift) { 645 err = zap_grow_ptrtbl(zap, tx); 646 if (err) 647 return (err); 648 } 649 650 err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); 651 if (err) 652 return (err); 653 654 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) { 655 /* it split while our locks were down */ 656 *lp = l; 657 return (0); 658 } 659 } 660 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 661 ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 662 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 663 zap_leaf_phys(l)->l_hdr.lh_prefix); 664 665 prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - 666 (old_prefix_len + 1); 667 sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; 668 669 /* check for i/o errors before doing zap_leaf_split */ 670 for (i = 0; i < (1ULL<<prefix_diff); i++) { 671 uint64_t blk; 672 err = zap_idx_to_blk(zap, sibling+i, &blk); 673 if (err) 674 return (err); 675 ASSERT3U(blk, ==, l->l_blkid); 676 } 677 678 nl = zap_create_leaf(zap, tx); 679 zap_leaf_split(l, nl, zap->zap_normflags != 0); 680 681 /* set sibling pointers */ 682 for (i = 0; i < (1ULL << prefix_diff); i++) { 683 err = zap_set_idx_to_blk(zap, sibling+i, nl->l_blkid, tx); 684 ASSERT0(err); /* we checked for i/o errors above */ 685 } 686 687 if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) { 688 /* we want the sibling */ 689 zap_put_leaf(l); 690 *lp = nl; 691 } else { 692 zap_put_leaf(nl); 693 *lp = l; 694 } 695 696 return (0); 697 } 698 699 static void 700 zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, 701 void *tag, dmu_tx_t *tx) 702 { 703 zap_t *zap = zn->zn_zap; 704 int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; 705 int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift && 706 zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); 707 708 zap_put_leaf(l); 709 710 if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) { 711 int err; 712 713 /* 714 * We are in the middle of growing the pointer table, or 715 * this leaf will soon make us grow it. 716 */ 717 if (zap_tryupgradedir(zap, tx) == 0) { 718 objset_t *os = zap->zap_objset; 719 uint64_t zapobj = zap->zap_object; 720 721 zap_unlockdir(zap, tag); 722 err = zap_lockdir(os, zapobj, tx, 723 RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap); 724 zap = zn->zn_zap; 725 if (err) 726 return; 727 } 728 729 /* could have finished growing while our locks were down */ 730 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift) 731 (void) zap_grow_ptrtbl(zap, tx); 732 } 733 } 734 735 static int 736 fzap_checkname(zap_name_t *zn) 737 { 738 if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) 739 return (SET_ERROR(ENAMETOOLONG)); 740 return (0); 741 } 742 743 static int 744 fzap_checksize(uint64_t integer_size, uint64_t num_integers) 745 { 746 /* Only integer sizes supported by C */ 747 switch (integer_size) { 748 case 1: 749 case 2: 750 case 4: 751 case 8: 752 break; 753 default: 754 return (SET_ERROR(EINVAL)); 755 } 756 757 if (integer_size * num_integers > ZAP_MAXVALUELEN) 758 return (E2BIG); 759 760 return (0); 761 } 762 763 static int 764 fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) 765 { 766 int err; 767 768 if ((err = fzap_checkname(zn)) != 0) 769 return (err); 770 return (fzap_checksize(integer_size, num_integers)); 771 } 772 773 /* 774 * Routines for manipulating attributes. 775 */ 776 int 777 fzap_lookup(zap_name_t *zn, 778 uint64_t integer_size, uint64_t num_integers, void *buf, 779 char *realname, int rn_len, boolean_t *ncp) 780 { 781 zap_leaf_t *l; 782 int err; 783 zap_entry_handle_t zeh; 784 785 if ((err = fzap_checkname(zn)) != 0) 786 return (err); 787 788 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 789 if (err != 0) 790 return (err); 791 err = zap_leaf_lookup(l, zn, &zeh); 792 if (err == 0) { 793 if ((err = fzap_checksize(integer_size, num_integers)) != 0) { 794 zap_put_leaf(l); 795 return (err); 796 } 797 798 err = zap_entry_read(&zeh, integer_size, num_integers, buf); 799 (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); 800 if (ncp) { 801 *ncp = zap_entry_normalization_conflict(&zeh, 802 zn, NULL, zn->zn_zap); 803 } 804 } 805 806 zap_put_leaf(l); 807 return (err); 808 } 809 810 int 811 fzap_add_cd(zap_name_t *zn, 812 uint64_t integer_size, uint64_t num_integers, 813 const void *val, uint32_t cd, void *tag, dmu_tx_t *tx) 814 { 815 zap_leaf_t *l; 816 int err; 817 zap_entry_handle_t zeh; 818 zap_t *zap = zn->zn_zap; 819 820 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 821 ASSERT(!zap->zap_ismicro); 822 ASSERT(fzap_check(zn, integer_size, num_integers) == 0); 823 824 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 825 if (err != 0) 826 return (err); 827 retry: 828 err = zap_leaf_lookup(l, zn, &zeh); 829 if (err == 0) { 830 err = SET_ERROR(EEXIST); 831 goto out; 832 } 833 if (err != ENOENT) 834 goto out; 835 836 err = zap_entry_create(l, zn, cd, 837 integer_size, num_integers, val, &zeh); 838 839 if (err == 0) { 840 zap_increment_num_entries(zap, 1, tx); 841 } else if (err == EAGAIN) { 842 err = zap_expand_leaf(zn, l, tag, tx, &l); 843 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 844 if (err == 0) 845 goto retry; 846 } 847 848 out: 849 if (zap != NULL) 850 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); 851 return (err); 852 } 853 854 int 855 fzap_add(zap_name_t *zn, 856 uint64_t integer_size, uint64_t num_integers, 857 const void *val, void *tag, dmu_tx_t *tx) 858 { 859 int err = fzap_check(zn, integer_size, num_integers); 860 if (err != 0) 861 return (err); 862 863 return (fzap_add_cd(zn, integer_size, num_integers, 864 val, ZAP_NEED_CD, tag, tx)); 865 } 866 867 int 868 fzap_update(zap_name_t *zn, 869 int integer_size, uint64_t num_integers, const void *val, 870 void *tag, dmu_tx_t *tx) 871 { 872 zap_leaf_t *l; 873 int err, create; 874 zap_entry_handle_t zeh; 875 zap_t *zap = zn->zn_zap; 876 877 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 878 err = fzap_check(zn, integer_size, num_integers); 879 if (err != 0) 880 return (err); 881 882 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 883 if (err != 0) 884 return (err); 885 retry: 886 err = zap_leaf_lookup(l, zn, &zeh); 887 create = (err == ENOENT); 888 ASSERT(err == 0 || err == ENOENT); 889 890 if (create) { 891 err = zap_entry_create(l, zn, ZAP_NEED_CD, 892 integer_size, num_integers, val, &zeh); 893 if (err == 0) 894 zap_increment_num_entries(zap, 1, tx); 895 } else { 896 err = zap_entry_update(&zeh, integer_size, num_integers, val); 897 } 898 899 if (err == EAGAIN) { 900 err = zap_expand_leaf(zn, l, tag, tx, &l); 901 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 902 if (err == 0) 903 goto retry; 904 } 905 906 if (zap != NULL) 907 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); 908 return (err); 909 } 910 911 int 912 fzap_length(zap_name_t *zn, 913 uint64_t *integer_size, uint64_t *num_integers) 914 { 915 zap_leaf_t *l; 916 int err; 917 zap_entry_handle_t zeh; 918 919 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 920 if (err != 0) 921 return (err); 922 err = zap_leaf_lookup(l, zn, &zeh); 923 if (err != 0) 924 goto out; 925 926 if (integer_size) 927 *integer_size = zeh.zeh_integer_size; 928 if (num_integers) 929 *num_integers = zeh.zeh_num_integers; 930 out: 931 zap_put_leaf(l); 932 return (err); 933 } 934 935 int 936 fzap_remove(zap_name_t *zn, dmu_tx_t *tx) 937 { 938 zap_leaf_t *l; 939 int err; 940 zap_entry_handle_t zeh; 941 942 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); 943 if (err != 0) 944 return (err); 945 err = zap_leaf_lookup(l, zn, &zeh); 946 if (err == 0) { 947 zap_entry_remove(&zeh); 948 zap_increment_num_entries(zn->zn_zap, -1, tx); 949 } 950 zap_put_leaf(l); 951 return (err); 952 } 953 954 void 955 fzap_prefetch(zap_name_t *zn) 956 { 957 uint64_t idx, blk; 958 zap_t *zap = zn->zn_zap; 959 int bs; 960 961 idx = ZAP_HASH_IDX(zn->zn_hash, 962 zap_f_phys(zap)->zap_ptrtbl.zt_shift); 963 if (zap_idx_to_blk(zap, idx, &blk) != 0) 964 return; 965 bs = FZAP_BLOCK_SHIFT(zap); 966 dmu_prefetch(zap->zap_objset, zap->zap_object, 0, blk << bs, 1 << bs, 967 ZIO_PRIORITY_SYNC_READ); 968 } 969 970 /* 971 * Helper functions for consumers. 972 */ 973 974 uint64_t 975 zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, 976 const char *name, dmu_tx_t *tx) 977 { 978 uint64_t new_obj; 979 980 VERIFY((new_obj = zap_create(os, ot, DMU_OT_NONE, 0, tx)) > 0); 981 VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj, 982 tx)); 983 984 return (new_obj); 985 } 986 987 int 988 zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, 989 char *name) 990 { 991 zap_cursor_t zc; 992 zap_attribute_t *za; 993 int err; 994 995 if (mask == 0) 996 mask = -1ULL; 997 998 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 999 for (zap_cursor_init(&zc, os, zapobj); 1000 (err = zap_cursor_retrieve(&zc, za)) == 0; 1001 zap_cursor_advance(&zc)) { 1002 if ((za->za_first_integer & mask) == (value & mask)) { 1003 (void) strcpy(name, za->za_name); 1004 break; 1005 } 1006 } 1007 zap_cursor_fini(&zc); 1008 kmem_free(za, sizeof (zap_attribute_t)); 1009 return (err); 1010 } 1011 1012 int 1013 zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) 1014 { 1015 zap_cursor_t zc; 1016 zap_attribute_t za; 1017 int err; 1018 1019 err = 0; 1020 for (zap_cursor_init(&zc, os, fromobj); 1021 zap_cursor_retrieve(&zc, &za) == 0; 1022 (void) zap_cursor_advance(&zc)) { 1023 if (za.za_integer_length != 8 || za.za_num_integers != 1) { 1024 err = SET_ERROR(EINVAL); 1025 break; 1026 } 1027 err = zap_add(os, intoobj, za.za_name, 1028 8, 1, &za.za_first_integer, tx); 1029 if (err) 1030 break; 1031 } 1032 zap_cursor_fini(&zc); 1033 return (err); 1034 } 1035 1036 int 1037 zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1038 uint64_t value, dmu_tx_t *tx) 1039 { 1040 zap_cursor_t zc; 1041 zap_attribute_t za; 1042 int err; 1043 1044 err = 0; 1045 for (zap_cursor_init(&zc, os, fromobj); 1046 zap_cursor_retrieve(&zc, &za) == 0; 1047 (void) zap_cursor_advance(&zc)) { 1048 if (za.za_integer_length != 8 || za.za_num_integers != 1) { 1049 err = SET_ERROR(EINVAL); 1050 break; 1051 } 1052 err = zap_add(os, intoobj, za.za_name, 1053 8, 1, &value, tx); 1054 if (err) 1055 break; 1056 } 1057 zap_cursor_fini(&zc); 1058 return (err); 1059 } 1060 1061 int 1062 zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1063 dmu_tx_t *tx) 1064 { 1065 zap_cursor_t zc; 1066 zap_attribute_t za; 1067 int err; 1068 1069 err = 0; 1070 for (zap_cursor_init(&zc, os, fromobj); 1071 zap_cursor_retrieve(&zc, &za) == 0; 1072 (void) zap_cursor_advance(&zc)) { 1073 uint64_t delta = 0; 1074 1075 if (za.za_integer_length != 8 || za.za_num_integers != 1) { 1076 err = SET_ERROR(EINVAL); 1077 break; 1078 } 1079 1080 err = zap_lookup(os, intoobj, za.za_name, 8, 1, &delta); 1081 if (err != 0 && err != ENOENT) 1082 break; 1083 delta += za.za_first_integer; 1084 err = zap_update(os, intoobj, za.za_name, 8, 1, &delta, tx); 1085 if (err) 1086 break; 1087 } 1088 zap_cursor_fini(&zc); 1089 return (err); 1090 } 1091 1092 int 1093 zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1094 { 1095 char name[20]; 1096 1097 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1098 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1099 } 1100 1101 int 1102 zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1103 { 1104 char name[20]; 1105 1106 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1107 return (zap_remove(os, obj, name, tx)); 1108 } 1109 1110 int 1111 zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) 1112 { 1113 char name[20]; 1114 1115 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1116 return (zap_lookup(os, obj, name, 8, 1, &value)); 1117 } 1118 1119 int 1120 zap_add_int_key(objset_t *os, uint64_t obj, 1121 uint64_t key, uint64_t value, dmu_tx_t *tx) 1122 { 1123 char name[20]; 1124 1125 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1126 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1127 } 1128 1129 int 1130 zap_update_int_key(objset_t *os, uint64_t obj, 1131 uint64_t key, uint64_t value, dmu_tx_t *tx) 1132 { 1133 char name[20]; 1134 1135 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1136 return (zap_update(os, obj, name, 8, 1, &value, tx)); 1137 } 1138 1139 int 1140 zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep) 1141 { 1142 char name[20]; 1143 1144 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1145 return (zap_lookup(os, obj, name, 8, 1, valuep)); 1146 } 1147 1148 int 1149 zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, 1150 dmu_tx_t *tx) 1151 { 1152 uint64_t value = 0; 1153 int err; 1154 1155 if (delta == 0) 1156 return (0); 1157 1158 err = zap_lookup(os, obj, name, 8, 1, &value); 1159 if (err != 0 && err != ENOENT) 1160 return (err); 1161 value += delta; 1162 if (value == 0) 1163 err = zap_remove(os, obj, name, tx); 1164 else 1165 err = zap_update(os, obj, name, 8, 1, &value, tx); 1166 return (err); 1167 } 1168 1169 int 1170 zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 1171 dmu_tx_t *tx) 1172 { 1173 char name[20]; 1174 1175 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1176 return (zap_increment(os, obj, name, delta, tx)); 1177 } 1178 1179 /* 1180 * Routines for iterating over the attributes. 1181 */ 1182 1183 int 1184 fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) 1185 { 1186 int err = ENOENT; 1187 zap_entry_handle_t zeh; 1188 zap_leaf_t *l; 1189 1190 /* retrieve the next entry at or after zc_hash/zc_cd */ 1191 /* if no entry, return ENOENT */ 1192 1193 if (zc->zc_leaf && 1194 (ZAP_HASH_IDX(zc->zc_hash, 1195 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) != 1196 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) { 1197 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1198 zap_put_leaf(zc->zc_leaf); 1199 zc->zc_leaf = NULL; 1200 } 1201 1202 again: 1203 if (zc->zc_leaf == NULL) { 1204 err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, 1205 &zc->zc_leaf); 1206 if (err != 0) 1207 return (err); 1208 } else { 1209 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1210 } 1211 l = zc->zc_leaf; 1212 1213 err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); 1214 1215 if (err == ENOENT) { 1216 uint64_t nocare = 1217 (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1; 1218 zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; 1219 zc->zc_cd = 0; 1220 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0 || 1221 zc->zc_hash == 0) { 1222 zc->zc_hash = -1ULL; 1223 } else { 1224 zap_put_leaf(zc->zc_leaf); 1225 zc->zc_leaf = NULL; 1226 goto again; 1227 } 1228 } 1229 1230 if (err == 0) { 1231 zc->zc_hash = zeh.zeh_hash; 1232 zc->zc_cd = zeh.zeh_cd; 1233 za->za_integer_length = zeh.zeh_integer_size; 1234 za->za_num_integers = zeh.zeh_num_integers; 1235 if (zeh.zeh_num_integers == 0) { 1236 za->za_first_integer = 0; 1237 } else { 1238 err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); 1239 ASSERT(err == 0 || err == EOVERFLOW); 1240 } 1241 err = zap_entry_read_name(zap, &zeh, 1242 sizeof (za->za_name), za->za_name); 1243 ASSERT(err == 0); 1244 1245 za->za_normalization_conflict = 1246 zap_entry_normalization_conflict(&zeh, 1247 NULL, za->za_name, zap); 1248 } 1249 rw_exit(&zc->zc_leaf->l_rwlock); 1250 return (err); 1251 } 1252 1253 static void 1254 zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) 1255 { 1256 int i, err; 1257 uint64_t lastblk = 0; 1258 1259 /* 1260 * NB: if a leaf has more pointers than an entire ptrtbl block 1261 * can hold, then it'll be accounted for more than once, since 1262 * we won't have lastblk. 1263 */ 1264 for (i = 0; i < len; i++) { 1265 zap_leaf_t *l; 1266 1267 if (tbl[i] == lastblk) 1268 continue; 1269 lastblk = tbl[i]; 1270 1271 err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); 1272 if (err == 0) { 1273 zap_leaf_stats(zap, l, zs); 1274 zap_put_leaf(l); 1275 } 1276 } 1277 } 1278 1279 void 1280 fzap_get_stats(zap_t *zap, zap_stats_t *zs) 1281 { 1282 int bs = FZAP_BLOCK_SHIFT(zap); 1283 zs->zs_blocksize = 1ULL << bs; 1284 1285 /* 1286 * Set zap_phys_t fields 1287 */ 1288 zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs; 1289 zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries; 1290 zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk; 1291 zs->zs_block_type = zap_f_phys(zap)->zap_block_type; 1292 zs->zs_magic = zap_f_phys(zap)->zap_magic; 1293 zs->zs_salt = zap_f_phys(zap)->zap_salt; 1294 1295 /* 1296 * Set zap_ptrtbl fields 1297 */ 1298 zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift; 1299 zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk; 1300 zs->zs_ptrtbl_blks_copied = 1301 zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied; 1302 zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk; 1303 zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks; 1304 zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; 1305 1306 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 1307 /* the ptrtbl is entirely in the header block. */ 1308 zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1309 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); 1310 } else { 1311 int b; 1312 1313 dmu_prefetch(zap->zap_objset, zap->zap_object, 0, 1314 zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs, 1315 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs, 1316 ZIO_PRIORITY_SYNC_READ); 1317 1318 for (b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks; 1319 b++) { 1320 dmu_buf_t *db; 1321 int err; 1322 1323 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 1324 (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs, 1325 FTAG, &db, DMU_READ_NO_PREFETCH); 1326 if (err == 0) { 1327 zap_stats_ptrtbl(zap, db->db_data, 1328 1<<(bs-3), zs); 1329 dmu_buf_rele(db, FTAG); 1330 } 1331 } 1332 } 1333 } 1334