1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 /* 28 * This file contains the top half of the zfs directory structure 29 * implementation. The bottom half is in zap_leaf.c. 30 * 31 * The zdir is an extendable hash data structure. There is a table of 32 * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are 33 * each a constant size and hold a variable number of directory entries. 34 * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. 35 * 36 * The pointer table holds a power of 2 number of pointers. 37 * (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to 38 * by the pointer at index i in the table holds entries whose hash value 39 * has a zd_prefix_len - bit prefix 40 */ 41 42 #include <sys/spa.h> 43 #include <sys/dmu.h> 44 #include <sys/zfs_context.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/zap.h> 48 #include <sys/refcount.h> 49 #include <sys/zap_impl.h> 50 #include <sys/zap_leaf.h> 51 52 int fzap_default_block_shift = 14; /* 16k blocksize */ 53 54 extern inline zap_phys_t *zap_f_phys(zap_t *zap); 55 56 static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); 57 58 void 59 fzap_byteswap(void *vbuf, size_t size) 60 { 61 uint64_t block_type = *(uint64_t *)vbuf; 62 63 if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) 64 zap_leaf_byteswap(vbuf, size); 65 else { 66 /* it's a ptrtbl block */ 67 byteswap_uint64_array(vbuf, size); 68 } 69 } 70 71 void 72 fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) 73 { 74 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 75 zap->zap_ismicro = FALSE; 76 77 zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync; 78 zap->zap_dbu.dbu_evict_func_async = NULL; 79 80 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 81 zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1; 82 83 zap_phys_t *zp = zap_f_phys(zap); 84 /* 85 * explicitly zero it since it might be coming from an 86 * initialized microzap 87 */ 88 bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size); 89 zp->zap_block_type = ZBT_HEADER; 90 zp->zap_magic = ZAP_MAGIC; 91 92 zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); 93 94 zp->zap_freeblk = 2; /* block 1 will be the first leaf */ 95 zp->zap_num_leafs = 1; 96 zp->zap_num_entries = 0; 97 zp->zap_salt = zap->zap_salt; 98 zp->zap_normflags = zap->zap_normflags; 99 zp->zap_flags = flags; 100 101 /* block 1 will be the first leaf */ 102 for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++) 103 ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; 104 105 /* 106 * set up block 1 - the first leaf 107 */ 108 dmu_buf_t *db; 109 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, 110 1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH)); 111 dmu_buf_will_dirty(db, tx); 112 113 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 114 l->l_dbuf = db; 115 116 zap_leaf_init(l, zp->zap_normflags != 0); 117 118 kmem_free(l, sizeof (zap_leaf_t)); 119 dmu_buf_rele(db, FTAG); 120 } 121 122 static int 123 zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) 124 { 125 if (RW_WRITE_HELD(&zap->zap_rwlock)) 126 return (1); 127 if (rw_tryupgrade(&zap->zap_rwlock)) { 128 dmu_buf_will_dirty(zap->zap_dbuf, tx); 129 return (1); 130 } 131 return (0); 132 } 133 134 /* 135 * Generic routines for dealing with the pointer & cookie tables. 136 */ 137 138 static int 139 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, 140 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), 141 dmu_tx_t *tx) 142 { 143 uint64_t newblk; 144 int bs = FZAP_BLOCK_SHIFT(zap); 145 int hepb = 1<<(bs-4); 146 /* hepb = half the number of entries in a block */ 147 148 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 149 ASSERT(tbl->zt_blk != 0); 150 ASSERT(tbl->zt_numblks > 0); 151 152 if (tbl->zt_nextblk != 0) { 153 newblk = tbl->zt_nextblk; 154 } else { 155 newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); 156 tbl->zt_nextblk = newblk; 157 ASSERT0(tbl->zt_blks_copied); 158 dmu_prefetch(zap->zap_objset, zap->zap_object, 0, 159 tbl->zt_blk << bs, tbl->zt_numblks << bs, 160 ZIO_PRIORITY_SYNC_READ); 161 } 162 163 /* 164 * Copy the ptrtbl from the old to new location. 165 */ 166 167 uint64_t b = tbl->zt_blks_copied; 168 dmu_buf_t *db_old; 169 int err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 170 (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH); 171 if (err != 0) 172 return (err); 173 174 /* first half of entries in old[b] go to new[2*b+0] */ 175 dmu_buf_t *db_new; 176 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, 177 (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 178 dmu_buf_will_dirty(db_new, tx); 179 transfer_func(db_old->db_data, db_new->db_data, hepb); 180 dmu_buf_rele(db_new, FTAG); 181 182 /* second half of entries in old[b] go to new[2*b+1] */ 183 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, 184 (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 185 dmu_buf_will_dirty(db_new, tx); 186 transfer_func((uint64_t *)db_old->db_data + hepb, 187 db_new->db_data, hepb); 188 dmu_buf_rele(db_new, FTAG); 189 190 dmu_buf_rele(db_old, FTAG); 191 192 tbl->zt_blks_copied++; 193 194 dprintf("copied block %llu of %llu\n", 195 tbl->zt_blks_copied, tbl->zt_numblks); 196 197 if (tbl->zt_blks_copied == tbl->zt_numblks) { 198 (void) dmu_free_range(zap->zap_objset, zap->zap_object, 199 tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); 200 201 tbl->zt_blk = newblk; 202 tbl->zt_numblks *= 2; 203 tbl->zt_shift++; 204 tbl->zt_nextblk = 0; 205 tbl->zt_blks_copied = 0; 206 207 dprintf("finished; numblocks now %llu (%lluk entries)\n", 208 tbl->zt_numblks, 1<<(tbl->zt_shift-10)); 209 } 210 211 return (0); 212 } 213 214 static int 215 zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, 216 dmu_tx_t *tx) 217 { 218 int bs = FZAP_BLOCK_SHIFT(zap); 219 220 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 221 ASSERT(tbl->zt_blk != 0); 222 223 dprintf("storing %llx at index %llx\n", val, idx); 224 225 uint64_t blk = idx >> (bs-3); 226 uint64_t off = idx & ((1<<(bs-3))-1); 227 228 dmu_buf_t *db; 229 int err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 230 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 231 if (err != 0) 232 return (err); 233 dmu_buf_will_dirty(db, tx); 234 235 if (tbl->zt_nextblk != 0) { 236 uint64_t idx2 = idx * 2; 237 uint64_t blk2 = idx2 >> (bs-3); 238 uint64_t off2 = idx2 & ((1<<(bs-3))-1); 239 dmu_buf_t *db2; 240 241 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 242 (tbl->zt_nextblk + blk2) << bs, FTAG, &db2, 243 DMU_READ_NO_PREFETCH); 244 if (err != 0) { 245 dmu_buf_rele(db, FTAG); 246 return (err); 247 } 248 dmu_buf_will_dirty(db2, tx); 249 ((uint64_t *)db2->db_data)[off2] = val; 250 ((uint64_t *)db2->db_data)[off2+1] = val; 251 dmu_buf_rele(db2, FTAG); 252 } 253 254 ((uint64_t *)db->db_data)[off] = val; 255 dmu_buf_rele(db, FTAG); 256 257 return (0); 258 } 259 260 static int 261 zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) 262 { 263 int bs = FZAP_BLOCK_SHIFT(zap); 264 265 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 266 267 uint64_t blk = idx >> (bs-3); 268 uint64_t off = idx & ((1<<(bs-3))-1); 269 270 /* 271 * Note: this is equivalent to dmu_buf_hold(), but we use 272 * _dnode_enter / _by_dnode because it's faster because we don't 273 * have to hold the dnode. 274 */ 275 dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf); 276 dmu_buf_t *db; 277 int err = dmu_buf_hold_by_dnode(dn, 278 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 279 dmu_buf_dnode_exit(zap->zap_dbuf); 280 if (err != 0) 281 return (err); 282 *valp = ((uint64_t *)db->db_data)[off]; 283 dmu_buf_rele(db, FTAG); 284 285 if (tbl->zt_nextblk != 0) { 286 /* 287 * read the nextblk for the sake of i/o error checking, 288 * so that zap_table_load() will catch errors for 289 * zap_table_store. 290 */ 291 blk = (idx*2) >> (bs-3); 292 293 dn = dmu_buf_dnode_enter(zap->zap_dbuf); 294 err = dmu_buf_hold_by_dnode(dn, 295 (tbl->zt_nextblk + blk) << bs, FTAG, &db, 296 DMU_READ_NO_PREFETCH); 297 dmu_buf_dnode_exit(zap->zap_dbuf); 298 if (err == 0) 299 dmu_buf_rele(db, FTAG); 300 } 301 return (err); 302 } 303 304 /* 305 * Routines for growing the ptrtbl. 306 */ 307 308 static void 309 zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) 310 { 311 for (int i = 0; i < n; i++) { 312 uint64_t lb = src[i]; 313 dst[2 * i + 0] = lb; 314 dst[2 * i + 1] = lb; 315 } 316 } 317 318 static int 319 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) 320 { 321 /* 322 * The pointer table should never use more hash bits than we 323 * have (otherwise we'd be using useless zero bits to index it). 324 * If we are within 2 bits of running out, stop growing, since 325 * this is already an aberrant condition. 326 */ 327 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) 328 return (SET_ERROR(ENOSPC)); 329 330 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 331 /* 332 * We are outgrowing the "embedded" ptrtbl (the one 333 * stored in the header block). Give it its own entire 334 * block, which will double the size of the ptrtbl. 335 */ 336 ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, 337 ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 338 ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk); 339 340 uint64_t newblk = zap_allocate_blocks(zap, 1); 341 dmu_buf_t *db_new; 342 int err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 343 newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new, 344 DMU_READ_NO_PREFETCH); 345 if (err != 0) 346 return (err); 347 dmu_buf_will_dirty(db_new, tx); 348 zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 349 db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 350 dmu_buf_rele(db_new, FTAG); 351 352 zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk; 353 zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1; 354 zap_f_phys(zap)->zap_ptrtbl.zt_shift++; 355 356 ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, 357 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << 358 (FZAP_BLOCK_SHIFT(zap)-3)); 359 360 return (0); 361 } else { 362 return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl, 363 zap_ptrtbl_transfer, tx)); 364 } 365 } 366 367 static void 368 zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) 369 { 370 dmu_buf_will_dirty(zap->zap_dbuf, tx); 371 mutex_enter(&zap->zap_f.zap_num_entries_mtx); 372 ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta); 373 zap_f_phys(zap)->zap_num_entries += delta; 374 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 375 } 376 377 static uint64_t 378 zap_allocate_blocks(zap_t *zap, int nblocks) 379 { 380 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 381 uint64_t newblk = zap_f_phys(zap)->zap_freeblk; 382 zap_f_phys(zap)->zap_freeblk += nblocks; 383 return (newblk); 384 } 385 386 static void 387 zap_leaf_evict_sync(void *dbu) 388 { 389 zap_leaf_t *l = dbu; 390 391 rw_destroy(&l->l_rwlock); 392 kmem_free(l, sizeof (zap_leaf_t)); 393 } 394 395 static zap_leaf_t * 396 zap_create_leaf(zap_t *zap, dmu_tx_t *tx) 397 { 398 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 399 400 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 401 402 rw_init(&l->l_rwlock, 0, 0, 0); 403 rw_enter(&l->l_rwlock, RW_WRITER); 404 l->l_blkid = zap_allocate_blocks(zap, 1); 405 l->l_dbuf = NULL; 406 407 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, 408 l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf, 409 DMU_READ_NO_PREFETCH)); 410 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); 411 VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu)); 412 dmu_buf_will_dirty(l->l_dbuf, tx); 413 414 zap_leaf_init(l, zap->zap_normflags != 0); 415 416 zap_f_phys(zap)->zap_num_leafs++; 417 418 return (l); 419 } 420 421 int 422 fzap_count(zap_t *zap, uint64_t *count) 423 { 424 ASSERT(!zap->zap_ismicro); 425 mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ 426 *count = zap_f_phys(zap)->zap_num_entries; 427 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 428 return (0); 429 } 430 431 /* 432 * Routines for obtaining zap_leaf_t's 433 */ 434 435 void 436 zap_put_leaf(zap_leaf_t *l) 437 { 438 rw_exit(&l->l_rwlock); 439 dmu_buf_rele(l->l_dbuf, NULL); 440 } 441 442 static zap_leaf_t * 443 zap_open_leaf(uint64_t blkid, dmu_buf_t *db) 444 { 445 ASSERT(blkid != 0); 446 447 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 448 rw_init(&l->l_rwlock, 0, 0, 0); 449 rw_enter(&l->l_rwlock, RW_WRITER); 450 l->l_blkid = blkid; 451 l->l_bs = highbit64(db->db_size) - 1; 452 l->l_dbuf = db; 453 454 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); 455 zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu); 456 457 rw_exit(&l->l_rwlock); 458 if (winner != NULL) { 459 /* someone else set it first */ 460 zap_leaf_evict_sync(&l->l_dbu); 461 l = winner; 462 } 463 464 /* 465 * lhr_pad was previously used for the next leaf in the leaf 466 * chain. There should be no chained leafs (as we have removed 467 * support for them). 468 */ 469 ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1); 470 471 /* 472 * There should be more hash entries than there can be 473 * chunks to put in the hash table 474 */ 475 ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); 476 477 /* The chunks should begin at the end of the hash table */ 478 ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, 479 &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); 480 481 /* The chunks should end at the end of the block */ 482 ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - 483 (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size); 484 485 return (l); 486 } 487 488 static int 489 zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, 490 zap_leaf_t **lp) 491 { 492 dmu_buf_t *db; 493 494 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 495 496 int bs = FZAP_BLOCK_SHIFT(zap); 497 dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf); 498 int err = dmu_buf_hold_by_dnode(dn, 499 blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH); 500 dmu_buf_dnode_exit(zap->zap_dbuf); 501 if (err != 0) 502 return (err); 503 504 ASSERT3U(db->db_object, ==, zap->zap_object); 505 ASSERT3U(db->db_offset, ==, blkid << bs); 506 ASSERT3U(db->db_size, ==, 1 << bs); 507 ASSERT(blkid != 0); 508 509 zap_leaf_t *l = dmu_buf_get_user(db); 510 511 if (l == NULL) 512 l = zap_open_leaf(blkid, db); 513 514 rw_enter(&l->l_rwlock, lt); 515 /* 516 * Must lock before dirtying, otherwise zap_leaf_phys(l) could change, 517 * causing ASSERT below to fail. 518 */ 519 if (lt == RW_WRITER) 520 dmu_buf_will_dirty(db, tx); 521 ASSERT3U(l->l_blkid, ==, blkid); 522 ASSERT3P(l->l_dbuf, ==, db); 523 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF); 524 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 525 526 *lp = l; 527 return (0); 528 } 529 530 static int 531 zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) 532 { 533 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 534 535 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 536 ASSERT3U(idx, <, 537 (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift)); 538 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 539 return (0); 540 } else { 541 return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl, 542 idx, valp)); 543 } 544 } 545 546 static int 547 zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) 548 { 549 ASSERT(tx != NULL); 550 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 551 552 if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) { 553 ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; 554 return (0); 555 } else { 556 return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl, 557 idx, blk, tx)); 558 } 559 } 560 561 static int 562 zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) 563 { 564 uint64_t blk; 565 566 ASSERT(zap->zap_dbuf == NULL || 567 zap_f_phys(zap) == zap->zap_dbuf->db_data); 568 569 /* Reality check for corrupt zap objects (leaf or header). */ 570 if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF && 571 zap_f_phys(zap)->zap_block_type != ZBT_HEADER) || 572 zap_f_phys(zap)->zap_magic != ZAP_MAGIC) { 573 return (SET_ERROR(EIO)); 574 } 575 576 uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 577 int err = zap_idx_to_blk(zap, idx, &blk); 578 if (err != 0) 579 return (err); 580 err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); 581 582 ASSERT(err || 583 ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) == 584 zap_leaf_phys(*lp)->l_hdr.lh_prefix); 585 return (err); 586 } 587 588 static int 589 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, 590 void *tag, dmu_tx_t *tx, zap_leaf_t **lp) 591 { 592 zap_t *zap = zn->zn_zap; 593 uint64_t hash = zn->zn_hash; 594 int err; 595 int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len; 596 597 ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 598 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 599 600 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 601 zap_leaf_phys(l)->l_hdr.lh_prefix); 602 603 if (zap_tryupgradedir(zap, tx) == 0 || 604 old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) { 605 /* We failed to upgrade, or need to grow the pointer table */ 606 objset_t *os = zap->zap_objset; 607 uint64_t object = zap->zap_object; 608 609 zap_put_leaf(l); 610 zap_unlockdir(zap, tag); 611 err = zap_lockdir(os, object, tx, RW_WRITER, 612 FALSE, FALSE, tag, &zn->zn_zap); 613 zap = zn->zn_zap; 614 if (err != 0) 615 return (err); 616 ASSERT(!zap->zap_ismicro); 617 618 while (old_prefix_len == 619 zap_f_phys(zap)->zap_ptrtbl.zt_shift) { 620 err = zap_grow_ptrtbl(zap, tx); 621 if (err != 0) 622 return (err); 623 } 624 625 err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); 626 if (err != 0) 627 return (err); 628 629 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) { 630 /* it split while our locks were down */ 631 *lp = l; 632 return (0); 633 } 634 } 635 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 636 ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 637 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 638 zap_leaf_phys(l)->l_hdr.lh_prefix); 639 640 int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - 641 (old_prefix_len + 1); 642 uint64_t sibling = 643 (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; 644 645 /* check for i/o errors before doing zap_leaf_split */ 646 for (int i = 0; i < (1ULL << prefix_diff); i++) { 647 uint64_t blk; 648 err = zap_idx_to_blk(zap, sibling + i, &blk); 649 if (err != 0) 650 return (err); 651 ASSERT3U(blk, ==, l->l_blkid); 652 } 653 654 zap_leaf_t *nl = zap_create_leaf(zap, tx); 655 zap_leaf_split(l, nl, zap->zap_normflags != 0); 656 657 /* set sibling pointers */ 658 for (int i = 0; i < (1ULL << prefix_diff); i++) { 659 err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx); 660 ASSERT0(err); /* we checked for i/o errors above */ 661 } 662 663 if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) { 664 /* we want the sibling */ 665 zap_put_leaf(l); 666 *lp = nl; 667 } else { 668 zap_put_leaf(nl); 669 *lp = l; 670 } 671 672 return (0); 673 } 674 675 static void 676 zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, 677 void *tag, dmu_tx_t *tx) 678 { 679 zap_t *zap = zn->zn_zap; 680 int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; 681 int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift && 682 zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); 683 684 zap_put_leaf(l); 685 686 if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) { 687 /* 688 * We are in the middle of growing the pointer table, or 689 * this leaf will soon make us grow it. 690 */ 691 if (zap_tryupgradedir(zap, tx) == 0) { 692 objset_t *os = zap->zap_objset; 693 uint64_t zapobj = zap->zap_object; 694 695 zap_unlockdir(zap, tag); 696 int err = zap_lockdir(os, zapobj, tx, 697 RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap); 698 zap = zn->zn_zap; 699 if (err != 0) 700 return; 701 } 702 703 /* could have finished growing while our locks were down */ 704 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift) 705 (void) zap_grow_ptrtbl(zap, tx); 706 } 707 } 708 709 static int 710 fzap_checkname(zap_name_t *zn) 711 { 712 if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) 713 return (SET_ERROR(ENAMETOOLONG)); 714 return (0); 715 } 716 717 static int 718 fzap_checksize(uint64_t integer_size, uint64_t num_integers) 719 { 720 /* Only integer sizes supported by C */ 721 switch (integer_size) { 722 case 1: 723 case 2: 724 case 4: 725 case 8: 726 break; 727 default: 728 return (SET_ERROR(EINVAL)); 729 } 730 731 if (integer_size * num_integers > ZAP_MAXVALUELEN) 732 return (E2BIG); 733 734 return (0); 735 } 736 737 static int 738 fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) 739 { 740 int err = fzap_checkname(zn); 741 if (err != 0) 742 return (err); 743 return (fzap_checksize(integer_size, num_integers)); 744 } 745 746 /* 747 * Routines for manipulating attributes. 748 */ 749 int 750 fzap_lookup(zap_name_t *zn, 751 uint64_t integer_size, uint64_t num_integers, void *buf, 752 char *realname, int rn_len, boolean_t *ncp) 753 { 754 zap_leaf_t *l; 755 zap_entry_handle_t zeh; 756 757 int err = fzap_checkname(zn); 758 if (err != 0) 759 return (err); 760 761 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 762 if (err != 0) 763 return (err); 764 err = zap_leaf_lookup(l, zn, &zeh); 765 if (err == 0) { 766 if ((err = fzap_checksize(integer_size, num_integers)) != 0) { 767 zap_put_leaf(l); 768 return (err); 769 } 770 771 err = zap_entry_read(&zeh, integer_size, num_integers, buf); 772 (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); 773 if (ncp) { 774 *ncp = zap_entry_normalization_conflict(&zeh, 775 zn, NULL, zn->zn_zap); 776 } 777 } 778 779 zap_put_leaf(l); 780 return (err); 781 } 782 783 int 784 fzap_add_cd(zap_name_t *zn, 785 uint64_t integer_size, uint64_t num_integers, 786 const void *val, uint32_t cd, void *tag, dmu_tx_t *tx) 787 { 788 zap_leaf_t *l; 789 int err; 790 zap_entry_handle_t zeh; 791 zap_t *zap = zn->zn_zap; 792 793 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 794 ASSERT(!zap->zap_ismicro); 795 ASSERT(fzap_check(zn, integer_size, num_integers) == 0); 796 797 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 798 if (err != 0) 799 return (err); 800 retry: 801 err = zap_leaf_lookup(l, zn, &zeh); 802 if (err == 0) { 803 err = SET_ERROR(EEXIST); 804 goto out; 805 } 806 if (err != ENOENT) 807 goto out; 808 809 err = zap_entry_create(l, zn, cd, 810 integer_size, num_integers, val, &zeh); 811 812 if (err == 0) { 813 zap_increment_num_entries(zap, 1, tx); 814 } else if (err == EAGAIN) { 815 err = zap_expand_leaf(zn, l, tag, tx, &l); 816 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 817 if (err == 0) 818 goto retry; 819 } 820 821 out: 822 if (zap != NULL) 823 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); 824 return (err); 825 } 826 827 int 828 fzap_add(zap_name_t *zn, 829 uint64_t integer_size, uint64_t num_integers, 830 const void *val, void *tag, dmu_tx_t *tx) 831 { 832 int err = fzap_check(zn, integer_size, num_integers); 833 if (err != 0) 834 return (err); 835 836 return (fzap_add_cd(zn, integer_size, num_integers, 837 val, ZAP_NEED_CD, tag, tx)); 838 } 839 840 int 841 fzap_update(zap_name_t *zn, 842 int integer_size, uint64_t num_integers, const void *val, 843 void *tag, dmu_tx_t *tx) 844 { 845 zap_leaf_t *l; 846 int err; 847 boolean_t create; 848 zap_entry_handle_t zeh; 849 zap_t *zap = zn->zn_zap; 850 851 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 852 err = fzap_check(zn, integer_size, num_integers); 853 if (err != 0) 854 return (err); 855 856 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 857 if (err != 0) 858 return (err); 859 retry: 860 err = zap_leaf_lookup(l, zn, &zeh); 861 create = (err == ENOENT); 862 ASSERT(err == 0 || err == ENOENT); 863 864 if (create) { 865 err = zap_entry_create(l, zn, ZAP_NEED_CD, 866 integer_size, num_integers, val, &zeh); 867 if (err == 0) 868 zap_increment_num_entries(zap, 1, tx); 869 } else { 870 err = zap_entry_update(&zeh, integer_size, num_integers, val); 871 } 872 873 if (err == EAGAIN) { 874 err = zap_expand_leaf(zn, l, tag, tx, &l); 875 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 876 if (err == 0) 877 goto retry; 878 } 879 880 if (zap != NULL) 881 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); 882 return (err); 883 } 884 885 int 886 fzap_length(zap_name_t *zn, 887 uint64_t *integer_size, uint64_t *num_integers) 888 { 889 zap_leaf_t *l; 890 int err; 891 zap_entry_handle_t zeh; 892 893 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 894 if (err != 0) 895 return (err); 896 err = zap_leaf_lookup(l, zn, &zeh); 897 if (err != 0) 898 goto out; 899 900 if (integer_size != 0) 901 *integer_size = zeh.zeh_integer_size; 902 if (num_integers != 0) 903 *num_integers = zeh.zeh_num_integers; 904 out: 905 zap_put_leaf(l); 906 return (err); 907 } 908 909 int 910 fzap_remove(zap_name_t *zn, dmu_tx_t *tx) 911 { 912 zap_leaf_t *l; 913 int err; 914 zap_entry_handle_t zeh; 915 916 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); 917 if (err != 0) 918 return (err); 919 err = zap_leaf_lookup(l, zn, &zeh); 920 if (err == 0) { 921 zap_entry_remove(&zeh); 922 zap_increment_num_entries(zn->zn_zap, -1, tx); 923 } 924 zap_put_leaf(l); 925 return (err); 926 } 927 928 void 929 fzap_prefetch(zap_name_t *zn) 930 { 931 uint64_t blk; 932 zap_t *zap = zn->zn_zap; 933 934 uint64_t idx = ZAP_HASH_IDX(zn->zn_hash, 935 zap_f_phys(zap)->zap_ptrtbl.zt_shift); 936 if (zap_idx_to_blk(zap, idx, &blk) != 0) 937 return; 938 int bs = FZAP_BLOCK_SHIFT(zap); 939 dmu_prefetch(zap->zap_objset, zap->zap_object, 0, blk << bs, 1 << bs, 940 ZIO_PRIORITY_SYNC_READ); 941 } 942 943 /* 944 * Helper functions for consumers. 945 */ 946 947 uint64_t 948 zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, 949 const char *name, dmu_tx_t *tx) 950 { 951 uint64_t new_obj = zap_create(os, ot, DMU_OT_NONE, 0, tx); 952 VERIFY(new_obj != 0); 953 VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj, 954 tx)); 955 956 return (new_obj); 957 } 958 959 int 960 zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, 961 char *name) 962 { 963 zap_cursor_t zc; 964 int err; 965 966 if (mask == 0) 967 mask = -1ULL; 968 969 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 970 for (zap_cursor_init(&zc, os, zapobj); 971 (err = zap_cursor_retrieve(&zc, za)) == 0; 972 zap_cursor_advance(&zc)) { 973 if ((za->za_first_integer & mask) == (value & mask)) { 974 (void) strcpy(name, za->za_name); 975 break; 976 } 977 } 978 zap_cursor_fini(&zc); 979 kmem_free(za, sizeof (*za)); 980 return (err); 981 } 982 983 int 984 zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) 985 { 986 zap_cursor_t zc; 987 int err = 0; 988 989 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 990 for (zap_cursor_init(&zc, os, fromobj); 991 zap_cursor_retrieve(&zc, za) == 0; 992 (void) zap_cursor_advance(&zc)) { 993 if (za->za_integer_length != 8 || za->za_num_integers != 1) { 994 err = SET_ERROR(EINVAL); 995 break; 996 } 997 err = zap_add(os, intoobj, za->za_name, 998 8, 1, &za->za_first_integer, tx); 999 if (err != 0) 1000 break; 1001 } 1002 zap_cursor_fini(&zc); 1003 kmem_free(za, sizeof (*za)); 1004 return (err); 1005 } 1006 1007 int 1008 zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1009 uint64_t value, dmu_tx_t *tx) 1010 { 1011 zap_cursor_t zc; 1012 int err = 0; 1013 1014 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 1015 for (zap_cursor_init(&zc, os, fromobj); 1016 zap_cursor_retrieve(&zc, za) == 0; 1017 (void) zap_cursor_advance(&zc)) { 1018 if (za->za_integer_length != 8 || za->za_num_integers != 1) { 1019 err = SET_ERROR(EINVAL); 1020 break; 1021 } 1022 err = zap_add(os, intoobj, za->za_name, 1023 8, 1, &value, tx); 1024 if (err != 0) 1025 break; 1026 } 1027 zap_cursor_fini(&zc); 1028 kmem_free(za, sizeof (*za)); 1029 return (err); 1030 } 1031 1032 int 1033 zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1034 dmu_tx_t *tx) 1035 { 1036 zap_cursor_t zc; 1037 int err = 0; 1038 1039 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 1040 for (zap_cursor_init(&zc, os, fromobj); 1041 zap_cursor_retrieve(&zc, za) == 0; 1042 (void) zap_cursor_advance(&zc)) { 1043 uint64_t delta = 0; 1044 1045 if (za->za_integer_length != 8 || za->za_num_integers != 1) { 1046 err = SET_ERROR(EINVAL); 1047 break; 1048 } 1049 1050 err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta); 1051 if (err != 0 && err != ENOENT) 1052 break; 1053 delta += za->za_first_integer; 1054 err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx); 1055 if (err != 0) 1056 break; 1057 } 1058 zap_cursor_fini(&zc); 1059 kmem_free(za, sizeof (*za)); 1060 return (err); 1061 } 1062 1063 int 1064 zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1065 { 1066 char name[20]; 1067 1068 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1069 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1070 } 1071 1072 int 1073 zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1074 { 1075 char name[20]; 1076 1077 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1078 return (zap_remove(os, obj, name, tx)); 1079 } 1080 1081 int 1082 zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) 1083 { 1084 char name[20]; 1085 1086 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1087 return (zap_lookup(os, obj, name, 8, 1, &value)); 1088 } 1089 1090 int 1091 zap_add_int_key(objset_t *os, uint64_t obj, 1092 uint64_t key, uint64_t value, dmu_tx_t *tx) 1093 { 1094 char name[20]; 1095 1096 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1097 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1098 } 1099 1100 int 1101 zap_update_int_key(objset_t *os, uint64_t obj, 1102 uint64_t key, uint64_t value, dmu_tx_t *tx) 1103 { 1104 char name[20]; 1105 1106 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1107 return (zap_update(os, obj, name, 8, 1, &value, tx)); 1108 } 1109 1110 int 1111 zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep) 1112 { 1113 char name[20]; 1114 1115 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1116 return (zap_lookup(os, obj, name, 8, 1, valuep)); 1117 } 1118 1119 int 1120 zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, 1121 dmu_tx_t *tx) 1122 { 1123 uint64_t value = 0; 1124 1125 if (delta == 0) 1126 return (0); 1127 1128 int err = zap_lookup(os, obj, name, 8, 1, &value); 1129 if (err != 0 && err != ENOENT) 1130 return (err); 1131 value += delta; 1132 if (value == 0) 1133 err = zap_remove(os, obj, name, tx); 1134 else 1135 err = zap_update(os, obj, name, 8, 1, &value, tx); 1136 return (err); 1137 } 1138 1139 int 1140 zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 1141 dmu_tx_t *tx) 1142 { 1143 char name[20]; 1144 1145 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1146 return (zap_increment(os, obj, name, delta, tx)); 1147 } 1148 1149 /* 1150 * Routines for iterating over the attributes. 1151 */ 1152 1153 int 1154 fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) 1155 { 1156 int err = ENOENT; 1157 zap_entry_handle_t zeh; 1158 zap_leaf_t *l; 1159 1160 /* retrieve the next entry at or after zc_hash/zc_cd */ 1161 /* if no entry, return ENOENT */ 1162 1163 if (zc->zc_leaf && 1164 (ZAP_HASH_IDX(zc->zc_hash, 1165 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) != 1166 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) { 1167 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1168 zap_put_leaf(zc->zc_leaf); 1169 zc->zc_leaf = NULL; 1170 } 1171 1172 again: 1173 if (zc->zc_leaf == NULL) { 1174 err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, 1175 &zc->zc_leaf); 1176 if (err != 0) 1177 return (err); 1178 } else { 1179 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1180 } 1181 l = zc->zc_leaf; 1182 1183 err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); 1184 1185 if (err == ENOENT) { 1186 uint64_t nocare = 1187 (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1; 1188 zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; 1189 zc->zc_cd = 0; 1190 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0 || 1191 zc->zc_hash == 0) { 1192 zc->zc_hash = -1ULL; 1193 } else { 1194 zap_put_leaf(zc->zc_leaf); 1195 zc->zc_leaf = NULL; 1196 goto again; 1197 } 1198 } 1199 1200 if (err == 0) { 1201 zc->zc_hash = zeh.zeh_hash; 1202 zc->zc_cd = zeh.zeh_cd; 1203 za->za_integer_length = zeh.zeh_integer_size; 1204 za->za_num_integers = zeh.zeh_num_integers; 1205 if (zeh.zeh_num_integers == 0) { 1206 za->za_first_integer = 0; 1207 } else { 1208 err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); 1209 ASSERT(err == 0 || err == EOVERFLOW); 1210 } 1211 err = zap_entry_read_name(zap, &zeh, 1212 sizeof (za->za_name), za->za_name); 1213 ASSERT(err == 0); 1214 1215 za->za_normalization_conflict = 1216 zap_entry_normalization_conflict(&zeh, 1217 NULL, za->za_name, zap); 1218 } 1219 rw_exit(&zc->zc_leaf->l_rwlock); 1220 return (err); 1221 } 1222 1223 static void 1224 zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) 1225 { 1226 uint64_t lastblk = 0; 1227 1228 /* 1229 * NB: if a leaf has more pointers than an entire ptrtbl block 1230 * can hold, then it'll be accounted for more than once, since 1231 * we won't have lastblk. 1232 */ 1233 for (int i = 0; i < len; i++) { 1234 zap_leaf_t *l; 1235 1236 if (tbl[i] == lastblk) 1237 continue; 1238 lastblk = tbl[i]; 1239 1240 int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); 1241 if (err == 0) { 1242 zap_leaf_stats(zap, l, zs); 1243 zap_put_leaf(l); 1244 } 1245 } 1246 } 1247 1248 void 1249 fzap_get_stats(zap_t *zap, zap_stats_t *zs) 1250 { 1251 int bs = FZAP_BLOCK_SHIFT(zap); 1252 zs->zs_blocksize = 1ULL << bs; 1253 1254 /* 1255 * Set zap_phys_t fields 1256 */ 1257 zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs; 1258 zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries; 1259 zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk; 1260 zs->zs_block_type = zap_f_phys(zap)->zap_block_type; 1261 zs->zs_magic = zap_f_phys(zap)->zap_magic; 1262 zs->zs_salt = zap_f_phys(zap)->zap_salt; 1263 1264 /* 1265 * Set zap_ptrtbl fields 1266 */ 1267 zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift; 1268 zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk; 1269 zs->zs_ptrtbl_blks_copied = 1270 zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied; 1271 zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk; 1272 zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks; 1273 zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; 1274 1275 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 1276 /* the ptrtbl is entirely in the header block. */ 1277 zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1278 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); 1279 } else { 1280 dmu_prefetch(zap->zap_objset, zap->zap_object, 0, 1281 zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs, 1282 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs, 1283 ZIO_PRIORITY_SYNC_READ); 1284 1285 for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks; 1286 b++) { 1287 dmu_buf_t *db; 1288 int err; 1289 1290 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 1291 (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs, 1292 FTAG, &db, DMU_READ_NO_PREFETCH); 1293 if (err == 0) { 1294 zap_stats_ptrtbl(zap, db->db_data, 1295 1<<(bs-3), zs); 1296 dmu_buf_rele(db, FTAG); 1297 } 1298 } 1299 } 1300 } 1301