1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC. 25 * Copyright 2019 Joyent, Inc. 26 */ 27 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/txg.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/vdev_trim.h> 33 #include <sys/refcount.h> 34 #include <sys/metaslab_impl.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/zap.h> 37 #include <sys/dmu_tx.h> 38 39 /* 40 * TRIM is a feature which is used to notify a SSD that some previously 41 * written space is no longer allocated by the pool. This is useful because 42 * writes to a SSD must be performed to blocks which have first been erased. 43 * Ensuring the SSD always has a supply of erased blocks for new writes 44 * helps prevent the performance from deteriorating. 45 * 46 * There are two supported TRIM methods; manual and automatic. 47 * 48 * Manual TRIM: 49 * 50 * A manual TRIM is initiated by running the 'zpool trim' command. A single 51 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for 52 * managing that vdev TRIM process. This involves iterating over all the 53 * metaslabs, calculating the unallocated space ranges, and then issuing the 54 * required TRIM I/Os. 55 * 56 * While a metaslab is being actively trimmed it is not eligible to perform 57 * new allocations. After traversing all of the metaslabs the thread is 58 * terminated. Finally, both the requested options and current progress of 59 * the TRIM are regularly written to the pool. This allows the TRIM to be 60 * suspended and resumed as needed. 61 * 62 * Automatic TRIM: 63 * 64 * An automatic TRIM is enabled by setting the 'autotrim' pool property 65 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each 66 * top-level (not leaf) vdev in the pool. These threads perform the same 67 * core TRIM process as a manual TRIM, but with a few key differences. 68 * 69 * 1) Automatic TRIM happens continuously in the background and operates 70 * solely on recently freed blocks (ms_trim not ms_allocatable). 71 * 72 * 2) Each thread is associated with a top-level (not leaf) vdev. This has 73 * the benefit of simplifying the threading model, it makes it easier 74 * to coordinate administrative commands, and it ensures only a single 75 * metaslab is disabled at a time. Unlike manual TRIM, this means each 76 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its 77 * children. 78 * 79 * 3) There is no automatic TRIM progress information stored on disk, nor 80 * is it reported by 'zpool status'. 81 * 82 * While the automatic TRIM process is highly effective it is more likely 83 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to 84 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently 85 * TRIM and are skipped. This means small amounts of freed space may not 86 * be automatically trimmed. 87 * 88 * Furthermore, devices with attached hot spares and devices being actively 89 * replaced are skipped. This is done to avoid adding additional stress to 90 * a potentially unhealthy device and to minimize the required rebuild time. 91 * 92 * For this reason it may be beneficial to occasionally manually TRIM a pool 93 * even when automatic TRIM is enabled. 94 */ 95 96 /* 97 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths. 98 */ 99 unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024; 100 101 /* 102 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped. 103 */ 104 unsigned int zfs_trim_extent_bytes_min = 32 * 1024; 105 106 /* 107 * Skip uninitialized metaslabs during the TRIM process. This option is 108 * useful for pools constructed from large thinly-provisioned devices where 109 * TRIM operations are slow. As a pool ages an increasing fraction of 110 * the pools metaslabs will be initialized progressively degrading the 111 * usefulness of this option. This setting is stored when starting a 112 * manual TRIM and will persist for the duration of the requested TRIM. 113 */ 114 unsigned int zfs_trim_metaslab_skip = 0; 115 116 /* 117 * Maximum number of queued TRIM I/Os per leaf vdev. The number of 118 * concurrent TRIM I/Os issued to the device is controlled by the 119 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options. 120 */ 121 unsigned int zfs_trim_queue_limit = 10; 122 123 /* 124 * The minimum number of transaction groups between automatic trims of a 125 * metaslab. This setting represents a trade-off between issuing more 126 * efficient TRIM operations, by allowing them to be aggregated longer, 127 * and issuing them promptly so the trimmed space is available. Note 128 * that this value is a minimum; metaslabs can be trimmed less frequently 129 * when there are a large number of ranges which need to be trimmed. 130 * 131 * Increasing this value will allow frees to be aggregated for a longer 132 * time. This can result is larger TRIM operations, and increased memory 133 * usage in order to track the ranges to be trimmed. Decreasing this value 134 * has the opposite effect. The default value of 32 was determined though 135 * testing to be a reasonable compromise. 136 */ 137 unsigned int zfs_trim_txg_batch = 32; 138 139 /* 140 * The trim_args are a control structure which describe how a leaf vdev 141 * should be trimmed. The core elements are the vdev, the metaslab being 142 * trimmed and a range tree containing the extents to TRIM. All provided 143 * ranges must be within the metaslab. 144 */ 145 typedef struct trim_args { 146 /* 147 * These fields are set by the caller of vdev_trim_ranges(). 148 */ 149 vdev_t *trim_vdev; /* Leaf vdev to TRIM */ 150 metaslab_t *trim_msp; /* Disabled metaslab */ 151 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */ 152 trim_type_t trim_type; /* Manual or auto TRIM */ 153 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */ 154 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */ 155 enum trim_flag trim_flags; /* TRIM flags (secure) */ 156 157 /* 158 * These fields are updated by vdev_trim_ranges(). 159 */ 160 hrtime_t trim_start_time; /* Start time */ 161 uint64_t trim_bytes_done; /* Bytes trimmed */ 162 } trim_args_t; 163 164 /* 165 * Determines whether a vdev_trim_thread() should be stopped. 166 */ 167 static boolean_t 168 vdev_trim_should_stop(vdev_t *vd) 169 { 170 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) || 171 vd->vdev_detached || vd->vdev_top->vdev_removing); 172 } 173 174 /* 175 * Determines whether a vdev_autotrim_thread() should be stopped. 176 */ 177 static boolean_t 178 vdev_autotrim_should_stop(vdev_t *tvd) 179 { 180 return (tvd->vdev_autotrim_exit_wanted || 181 !vdev_writeable(tvd) || tvd->vdev_removing || 182 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF); 183 } 184 185 /* 186 * The sync task for updating the on-disk state of a manual TRIM. This 187 * is scheduled by vdev_trim_change_state(). 188 */ 189 static void 190 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx) 191 { 192 /* 193 * We pass in the guid instead of the vdev_t since the vdev may 194 * have been freed prior to the sync task being processed. This 195 * happens when a vdev is detached as we call spa_config_vdev_exit(), 196 * stop the trimming thread, schedule the sync task, and free 197 * the vdev. Later when the scheduled sync task is invoked, it would 198 * find that the vdev has been freed. 199 */ 200 uint64_t guid = *(uint64_t *)arg; 201 uint64_t txg = dmu_tx_get_txg(tx); 202 kmem_free(arg, sizeof (uint64_t)); 203 204 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 205 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 206 return; 207 208 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK]; 209 vd->vdev_trim_offset[txg & TXG_MASK] = 0; 210 211 VERIFY3U(vd->vdev_leaf_zap, !=, 0); 212 213 objset_t *mos = vd->vdev_spa->spa_meta_objset; 214 215 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) { 216 217 if (vd->vdev_trim_last_offset == UINT64_MAX) 218 last_offset = 0; 219 220 vd->vdev_trim_last_offset = last_offset; 221 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 222 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 223 sizeof (last_offset), 1, &last_offset, tx)); 224 } 225 226 if (vd->vdev_trim_action_time > 0) { 227 uint64_t val = (uint64_t)vd->vdev_trim_action_time; 228 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 229 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val), 230 1, &val, tx)); 231 } 232 233 if (vd->vdev_trim_rate > 0) { 234 uint64_t rate = (uint64_t)vd->vdev_trim_rate; 235 236 if (rate == UINT64_MAX) 237 rate = 0; 238 239 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 240 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx)); 241 } 242 243 uint64_t partial = vd->vdev_trim_partial; 244 if (partial == UINT64_MAX) 245 partial = 0; 246 247 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 248 sizeof (partial), 1, &partial, tx)); 249 250 uint64_t secure = vd->vdev_trim_secure; 251 if (secure == UINT64_MAX) 252 secure = 0; 253 254 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 255 sizeof (secure), 1, &secure, tx)); 256 257 258 uint64_t trim_state = vd->vdev_trim_state; 259 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 260 sizeof (trim_state), 1, &trim_state, tx)); 261 } 262 263 /* 264 * Update the on-disk state of a manual TRIM. This is called to request 265 * that a TRIM be started/suspended/canceled, or to change one of the 266 * TRIM options (partial, secure, rate). 267 */ 268 static void 269 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state, 270 uint64_t rate, boolean_t partial, boolean_t secure) 271 { 272 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 273 spa_t *spa = vd->vdev_spa; 274 275 if (new_state == vd->vdev_trim_state) 276 return; 277 278 /* 279 * Copy the vd's guid, this will be freed by the sync task. 280 */ 281 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 282 *guid = vd->vdev_guid; 283 284 /* 285 * If we're suspending, then preserve the original start time. 286 */ 287 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) { 288 vd->vdev_trim_action_time = gethrestime_sec(); 289 } 290 291 /* 292 * If we're activating, then preserve the requested rate and trim 293 * method. Setting the last offset and rate to UINT64_MAX is used 294 * as a sentinel to indicate they should be reset to default values. 295 */ 296 if (new_state == VDEV_TRIM_ACTIVE) { 297 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE || 298 vd->vdev_trim_state == VDEV_TRIM_CANCELED) { 299 vd->vdev_trim_last_offset = UINT64_MAX; 300 vd->vdev_trim_rate = UINT64_MAX; 301 vd->vdev_trim_partial = UINT64_MAX; 302 vd->vdev_trim_secure = UINT64_MAX; 303 } 304 305 if (rate != 0) 306 vd->vdev_trim_rate = rate; 307 308 if (partial != 0) 309 vd->vdev_trim_partial = partial; 310 311 if (secure != 0) 312 vd->vdev_trim_secure = secure; 313 } 314 315 boolean_t resumed = !!(vd->vdev_trim_state == VDEV_TRIM_SUSPENDED); 316 vd->vdev_trim_state = new_state; 317 318 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 319 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 320 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync, 321 guid, 2, ZFS_SPACE_CHECK_NONE, tx); 322 323 switch (new_state) { 324 case VDEV_TRIM_ACTIVE: 325 spa_event_notify(spa, vd, NULL, 326 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START); 327 spa_history_log_internal(spa, "trim", tx, 328 "vdev=%s activated", vd->vdev_path); 329 break; 330 case VDEV_TRIM_SUSPENDED: 331 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND); 332 spa_history_log_internal(spa, "trim", tx, 333 "vdev=%s suspended", vd->vdev_path); 334 break; 335 case VDEV_TRIM_CANCELED: 336 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL); 337 spa_history_log_internal(spa, "trim", tx, 338 "vdev=%s canceled", vd->vdev_path); 339 break; 340 case VDEV_TRIM_COMPLETE: 341 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH); 342 spa_history_log_internal(spa, "trim", tx, 343 "vdev=%s complete", vd->vdev_path); 344 break; 345 default: 346 panic("invalid state %llu", (unsigned long long)new_state); 347 } 348 349 dmu_tx_commit(tx); 350 } 351 352 /* 353 * The zio_done_func_t done callback for each manual TRIM issued. It is 354 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os, 355 * and limiting the number of in-flight TRIM I/Os. 356 */ 357 static void 358 vdev_trim_cb(zio_t *zio) 359 { 360 vdev_t *vd = zio->io_vd; 361 362 mutex_enter(&vd->vdev_trim_io_lock); 363 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 364 /* 365 * The I/O failed because the vdev was unavailable; roll the 366 * last offset back. (This works because spa_sync waits on 367 * spa_txg_zio before it runs sync tasks.) 368 */ 369 uint64_t *offset = 370 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK]; 371 *offset = MIN(*offset, zio->io_offset); 372 } else { 373 if (zio->io_error != 0) { 374 vd->vdev_stat.vs_trim_errors++; 375 /* 376 * spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 377 * 0, 0, 0, 0, 1, zio->io_orig_size); 378 */ 379 } else { 380 /* 381 * spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 382 * 1, zio->io_orig_size, 0, 0, 0, 0); 383 */ 384 } 385 386 vd->vdev_trim_bytes_done += zio->io_orig_size; 387 } 388 389 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0); 390 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--; 391 cv_broadcast(&vd->vdev_trim_io_cv); 392 mutex_exit(&vd->vdev_trim_io_lock); 393 394 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 395 } 396 397 /* 398 * The zio_done_func_t done callback for each automatic TRIM issued. It 399 * is responsible for updating the TRIM stats and limiting the number of 400 * in-flight TRIM I/Os. Automatic TRIM I/Os are best effort and are 401 * never reissued on failure. 402 */ 403 static void 404 vdev_autotrim_cb(zio_t *zio) 405 { 406 vdev_t *vd = zio->io_vd; 407 408 mutex_enter(&vd->vdev_trim_io_lock); 409 410 if (zio->io_error != 0) { 411 vd->vdev_stat.vs_trim_errors++; 412 /* 413 * spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 414 * 0, 0, 0, 0, 1, zio->io_orig_size); 415 */ 416 } else { 417 /* 418 * spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 419 * 1, zio->io_orig_size, 0, 0, 0, 0); 420 */ 421 422 vd->vdev_autotrim_bytes_done += zio->io_orig_size; 423 } 424 425 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0); 426 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--; 427 cv_broadcast(&vd->vdev_trim_io_cv); 428 mutex_exit(&vd->vdev_trim_io_lock); 429 430 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 431 } 432 433 /* 434 * Returns the average trim rate in bytes/sec for the ta->trim_vdev. 435 */ 436 static uint64_t 437 vdev_trim_calculate_rate(trim_args_t *ta) 438 { 439 return (ta->trim_bytes_done * 1000 / 440 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1)); 441 } 442 443 /* 444 * Issues a physical TRIM and takes care of rate limiting (bytes/sec) 445 * and number of concurrent TRIM I/Os. 446 */ 447 static int 448 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) 449 { 450 vdev_t *vd = ta->trim_vdev; 451 spa_t *spa = vd->vdev_spa; 452 453 mutex_enter(&vd->vdev_trim_io_lock); 454 455 /* 456 * Limit manual TRIM I/Os to the requested rate. This does not 457 * apply to automatic TRIM since no per vdev rate can be specified. 458 */ 459 if (ta->trim_type == TRIM_TYPE_MANUAL) { 460 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) && 461 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) { 462 cv_timedwait_sig(&vd->vdev_trim_io_cv, 463 &vd->vdev_trim_io_lock, ddi_get_lbolt() + 464 MSEC_TO_TICK(10)); 465 } 466 } 467 ta->trim_bytes_done += size; 468 469 /* Limit in-flight trimming I/Os */ 470 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] >= 471 zfs_trim_queue_limit) { 472 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 473 } 474 vd->vdev_trim_inflight[ta->trim_type]++; 475 mutex_exit(&vd->vdev_trim_io_lock); 476 477 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 478 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 479 uint64_t txg = dmu_tx_get_txg(tx); 480 481 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 482 mutex_enter(&vd->vdev_trim_lock); 483 484 if (ta->trim_type == TRIM_TYPE_MANUAL && 485 vd->vdev_trim_offset[txg & TXG_MASK] == 0) { 486 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 487 *guid = vd->vdev_guid; 488 489 /* This is the first write of this txg. */ 490 dsl_sync_task_nowait(spa_get_dsl(spa), 491 vdev_trim_zap_update_sync, guid, 2, 492 ZFS_SPACE_CHECK_RESERVED, tx); 493 } 494 495 /* 496 * We know the vdev_t will still be around since all consumers of 497 * vdev_free must stop the trimming first. 498 */ 499 if ((ta->trim_type == TRIM_TYPE_MANUAL && 500 vdev_trim_should_stop(vd)) || 501 (ta->trim_type == TRIM_TYPE_AUTO && 502 vdev_autotrim_should_stop(vd->vdev_top))) { 503 mutex_enter(&vd->vdev_trim_io_lock); 504 vd->vdev_trim_inflight[ta->trim_type]--; 505 mutex_exit(&vd->vdev_trim_io_lock); 506 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 507 mutex_exit(&vd->vdev_trim_lock); 508 dmu_tx_commit(tx); 509 return (SET_ERROR(EINTR)); 510 } 511 mutex_exit(&vd->vdev_trim_lock); 512 513 if (ta->trim_type == TRIM_TYPE_MANUAL) 514 vd->vdev_trim_offset[txg & TXG_MASK] = start + size; 515 516 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd, 517 start, size, ta->trim_type == TRIM_TYPE_MANUAL ? 518 vdev_trim_cb : vdev_autotrim_cb, NULL, 519 ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, ta->trim_flags)); 520 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */ 521 522 dmu_tx_commit(tx); 523 524 return (0); 525 } 526 527 /* 528 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree. 529 * Additional parameters describing how the TRIM should be performed must 530 * be set in the trim_args structure. See the trim_args definition for 531 * additional information. 532 */ 533 static int 534 vdev_trim_ranges(trim_args_t *ta) 535 { 536 vdev_t *vd = ta->trim_vdev; 537 zfs_btree_t *t = &ta->trim_tree->rt_root; 538 zfs_btree_index_t idx; 539 uint64_t extent_bytes_max = ta->trim_extent_bytes_max; 540 uint64_t extent_bytes_min = ta->trim_extent_bytes_min; 541 spa_t *spa = vd->vdev_spa; 542 543 ta->trim_start_time = gethrtime(); 544 ta->trim_bytes_done = 0; 545 546 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL; 547 rs = zfs_btree_next(t, &idx, &idx)) { 548 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs, 549 ta->trim_tree); 550 551 if (extent_bytes_min && size < extent_bytes_min) { 552 /* 553 * spa_iostats_trim_add(spa, ta->trim_type, 554 * 0, 0, 1, size, 0, 0); 555 */ 556 continue; 557 } 558 559 /* Split range into legally-sized physical chunks */ 560 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1; 561 562 for (uint64_t w = 0; w < writes_required; w++) { 563 int error; 564 565 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE + 566 rs_get_start(rs, ta->trim_tree) + 567 (w *extent_bytes_max), MIN(size - 568 (w * extent_bytes_max), extent_bytes_max)); 569 if (error != 0) { 570 return (error); 571 } 572 } 573 } 574 575 return (0); 576 } 577 578 /* 579 * Calculates the completion percentage of a manual TRIM. 580 */ 581 static void 582 vdev_trim_calculate_progress(vdev_t *vd) 583 { 584 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 585 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 586 ASSERT(vd->vdev_leaf_zap != 0); 587 588 vd->vdev_trim_bytes_est = 0; 589 vd->vdev_trim_bytes_done = 0; 590 591 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 592 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 593 mutex_enter(&msp->ms_lock); 594 595 uint64_t ms_free = msp->ms_size - 596 metaslab_allocated_space(msp); 597 598 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) 599 ms_free /= vd->vdev_top->vdev_children; 600 601 /* 602 * Convert the metaslab range to a physical range 603 * on our vdev. We use this to determine if we are 604 * in the middle of this metaslab range. 605 */ 606 range_seg64_t logical_rs, physical_rs; 607 logical_rs.rs_start = msp->ms_start; 608 logical_rs.rs_end = msp->ms_start + msp->ms_size; 609 vdev_xlate(vd, &logical_rs, &physical_rs); 610 611 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) { 612 vd->vdev_trim_bytes_est += ms_free; 613 mutex_exit(&msp->ms_lock); 614 continue; 615 } else if (vd->vdev_trim_last_offset > physical_rs.rs_end) { 616 vd->vdev_trim_bytes_done += ms_free; 617 vd->vdev_trim_bytes_est += ms_free; 618 mutex_exit(&msp->ms_lock); 619 continue; 620 } 621 622 /* 623 * If we get here, we're in the middle of trimming this 624 * metaslab. Load it and walk the free tree for more 625 * accurate progress estimation. 626 */ 627 VERIFY0(metaslab_load(msp)); 628 629 range_tree_t *rt = msp->ms_allocatable; 630 zfs_btree_t *bt = &rt->rt_root; 631 zfs_btree_index_t idx; 632 for (range_seg_t *rs = zfs_btree_first(bt, &idx); 633 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) { 634 logical_rs.rs_start = rs_get_start(rs, rt); 635 logical_rs.rs_end = rs_get_end(rs, rt); 636 vdev_xlate(vd, &logical_rs, &physical_rs); 637 638 uint64_t size = physical_rs.rs_end - 639 physical_rs.rs_start; 640 vd->vdev_trim_bytes_est += size; 641 if (vd->vdev_trim_last_offset >= physical_rs.rs_end) { 642 vd->vdev_trim_bytes_done += size; 643 } else if (vd->vdev_trim_last_offset > 644 physical_rs.rs_start && 645 vd->vdev_trim_last_offset <= 646 physical_rs.rs_end) { 647 vd->vdev_trim_bytes_done += 648 vd->vdev_trim_last_offset - 649 physical_rs.rs_start; 650 } 651 } 652 mutex_exit(&msp->ms_lock); 653 } 654 } 655 656 /* 657 * Load from disk the vdev's manual TRIM information. This includes the 658 * state, progress, and options provided when initiating the manual TRIM. 659 */ 660 static int 661 vdev_trim_load(vdev_t *vd) 662 { 663 int err = 0; 664 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 665 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 666 ASSERT(vd->vdev_leaf_zap != 0); 667 668 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE || 669 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) { 670 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 671 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 672 sizeof (vd->vdev_trim_last_offset), 1, 673 &vd->vdev_trim_last_offset); 674 if (err == ENOENT) { 675 vd->vdev_trim_last_offset = 0; 676 err = 0; 677 } 678 679 if (err == 0) { 680 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 681 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE, 682 sizeof (vd->vdev_trim_rate), 1, 683 &vd->vdev_trim_rate); 684 if (err == ENOENT) { 685 vd->vdev_trim_rate = 0; 686 err = 0; 687 } 688 } 689 690 if (err == 0) { 691 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 692 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 693 sizeof (vd->vdev_trim_partial), 1, 694 &vd->vdev_trim_partial); 695 if (err == ENOENT) { 696 vd->vdev_trim_partial = 0; 697 err = 0; 698 } 699 } 700 701 if (err == 0) { 702 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 703 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 704 sizeof (vd->vdev_trim_secure), 1, 705 &vd->vdev_trim_secure); 706 if (err == ENOENT) { 707 vd->vdev_trim_secure = 0; 708 err = 0; 709 } 710 } 711 } 712 713 vdev_trim_calculate_progress(vd); 714 715 return (err); 716 } 717 718 /* 719 * Convert the logical range into a physical range and add it to the 720 * range tree passed in the trim_args_t. 721 */ 722 static void 723 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size) 724 { 725 trim_args_t *ta = arg; 726 vdev_t *vd = ta->trim_vdev; 727 range_seg64_t logical_rs, physical_rs; 728 logical_rs.rs_start = start; 729 logical_rs.rs_end = start + size; 730 731 /* 732 * Every range to be trimmed must be part of ms_allocatable. 733 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this 734 * is always the case. 735 */ 736 if (zfs_flags & ZFS_DEBUG_TRIM) { 737 metaslab_t *msp = ta->trim_msp; 738 VERIFY0(metaslab_load(msp)); 739 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 740 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 741 } 742 743 ASSERT(vd->vdev_ops->vdev_op_leaf); 744 vdev_xlate(vd, &logical_rs, &physical_rs); 745 746 IMPLY(vd->vdev_top == vd, 747 logical_rs.rs_start == physical_rs.rs_start); 748 IMPLY(vd->vdev_top == vd, 749 logical_rs.rs_end == physical_rs.rs_end); 750 751 /* 752 * Only a manual trim will be traversing the vdev sequentially. 753 * For an auto trim all valid ranges should be added. 754 */ 755 if (ta->trim_type == TRIM_TYPE_MANUAL) { 756 757 /* Only add segments that we have not visited yet */ 758 if (physical_rs.rs_end <= vd->vdev_trim_last_offset) 759 return; 760 761 /* Pick up where we left off mid-range. */ 762 if (vd->vdev_trim_last_offset > physical_rs.rs_start) { 763 ASSERT3U(physical_rs.rs_end, >, 764 vd->vdev_trim_last_offset); 765 physical_rs.rs_start = vd->vdev_trim_last_offset; 766 } 767 } 768 769 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 770 771 /* 772 * With raidz, it's possible that the logical range does not live on 773 * this leaf vdev. We only add the physical range to this vdev's if it 774 * has a length greater than 0. 775 */ 776 if (physical_rs.rs_end > physical_rs.rs_start) { 777 range_tree_add(ta->trim_tree, physical_rs.rs_start, 778 physical_rs.rs_end - physical_rs.rs_start); 779 } else { 780 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 781 } 782 } 783 784 /* 785 * Each manual TRIM thread is responsible for trimming the unallocated 786 * space for each leaf vdev. This is accomplished by sequentially iterating 787 * over its top-level metaslabs and issuing TRIM I/O for the space described 788 * by its ms_allocatable. While a metaslab is undergoing trimming it is 789 * not eligible for new allocations. 790 */ 791 static void 792 vdev_trim_thread(void *arg) 793 { 794 vdev_t *vd = arg; 795 spa_t *spa = vd->vdev_spa; 796 trim_args_t ta; 797 int error = 0; 798 799 /* 800 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by 801 * vdev_trim(). Wait for the updated values to be reflected 802 * in the zap in order to start with the requested settings. 803 */ 804 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 805 806 ASSERT(vdev_is_concrete(vd)); 807 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 808 809 vd->vdev_trim_last_offset = 0; 810 vd->vdev_trim_rate = 0; 811 vd->vdev_trim_partial = 0; 812 vd->vdev_trim_secure = 0; 813 814 VERIFY0(vdev_trim_load(vd)); 815 816 ta.trim_vdev = vd; 817 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 818 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min; 819 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 820 ta.trim_type = TRIM_TYPE_MANUAL; 821 ta.trim_flags = 0; 822 823 /* 824 * When a secure TRIM has been requested infer that the intent 825 * is that everything must be trimmed. Override the default 826 * minimum TRIM size to prevent ranges from being skipped. 827 */ 828 if (vd->vdev_trim_secure) { 829 ta.trim_flags |= ZIO_TRIM_SECURE; 830 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 831 } 832 833 uint64_t ms_count = 0; 834 for (uint64_t i = 0; !vd->vdev_detached && 835 i < vd->vdev_top->vdev_ms_count; i++) { 836 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 837 838 /* 839 * If we've expanded the top-level vdev or it's our 840 * first pass, calculate our progress. 841 */ 842 if (vd->vdev_top->vdev_ms_count != ms_count) { 843 vdev_trim_calculate_progress(vd); 844 ms_count = vd->vdev_top->vdev_ms_count; 845 } 846 847 spa_config_exit(spa, SCL_CONFIG, FTAG); 848 metaslab_disable(msp); 849 mutex_enter(&msp->ms_lock); 850 VERIFY0(metaslab_load(msp)); 851 852 /* 853 * If a partial TRIM was requested skip metaslabs which have 854 * never been initialized and thus have never been written. 855 */ 856 if (msp->ms_sm == NULL && vd->vdev_trim_partial) { 857 mutex_exit(&msp->ms_lock); 858 metaslab_enable(msp, B_FALSE, B_FALSE); 859 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 860 vdev_trim_calculate_progress(vd); 861 continue; 862 } 863 864 ta.trim_msp = msp; 865 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta); 866 range_tree_vacate(msp->ms_trim, NULL, NULL); 867 mutex_exit(&msp->ms_lock); 868 869 error = vdev_trim_ranges(&ta); 870 metaslab_enable(msp, B_TRUE, B_FALSE); 871 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 872 873 range_tree_vacate(ta.trim_tree, NULL, NULL); 874 if (error != 0) 875 break; 876 } 877 878 spa_config_exit(spa, SCL_CONFIG, FTAG); 879 mutex_enter(&vd->vdev_trim_io_lock); 880 while (vd->vdev_trim_inflight[0] > 0) { 881 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 882 } 883 mutex_exit(&vd->vdev_trim_io_lock); 884 885 range_tree_destroy(ta.trim_tree); 886 887 mutex_enter(&vd->vdev_trim_lock); 888 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 889 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 890 vd->vdev_trim_rate, vd->vdev_trim_partial, 891 vd->vdev_trim_secure); 892 } 893 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0); 894 895 /* 896 * Drop the vdev_trim_lock while we sync out the txg since it's 897 * possible that a device might be trying to come online and must 898 * check to see if it needs to restart a trim. That thread will be 899 * holding the spa_config_lock which would prevent the txg_wait_synced 900 * from completing. 901 */ 902 mutex_exit(&vd->vdev_trim_lock); 903 txg_wait_synced(spa_get_dsl(spa), 0); 904 mutex_enter(&vd->vdev_trim_lock); 905 906 vd->vdev_trim_thread = NULL; 907 cv_broadcast(&vd->vdev_trim_cv); 908 mutex_exit(&vd->vdev_trim_lock); 909 } 910 911 /* 912 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock, 913 * the vdev_t must be a leaf and cannot already be manually trimming. 914 */ 915 void 916 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure) 917 { 918 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 919 ASSERT(vd->vdev_ops->vdev_op_leaf); 920 ASSERT(vdev_is_concrete(vd)); 921 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 922 ASSERT(!vd->vdev_detached); 923 ASSERT(!vd->vdev_trim_exit_wanted); 924 ASSERT(!vd->vdev_top->vdev_removing); 925 926 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure); 927 vd->vdev_trim_thread = thread_create(NULL, 0, 928 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 929 } 930 931 /* 932 * Wait for the trimming thread to be terminated (canceled or stopped). 933 */ 934 static void 935 vdev_trim_stop_wait_impl(vdev_t *vd) 936 { 937 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 938 939 while (vd->vdev_trim_thread != NULL) 940 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock); 941 942 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 943 vd->vdev_trim_exit_wanted = B_FALSE; 944 } 945 946 /* 947 * Wait for vdev trim threads which were listed to cleanly exit. 948 */ 949 void 950 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list) 951 { 952 vdev_t *vd; 953 954 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 955 956 while ((vd = list_remove_head(vd_list)) != NULL) { 957 mutex_enter(&vd->vdev_trim_lock); 958 vdev_trim_stop_wait_impl(vd); 959 mutex_exit(&vd->vdev_trim_lock); 960 } 961 } 962 963 /* 964 * Stop trimming a device, with the resultant trimming state being tgt_state. 965 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is 966 * provided the stopping vdev is inserted in to the list. Callers are then 967 * required to call vdev_trim_stop_wait() to block for all the trim threads 968 * to exit. The caller must hold vdev_trim_lock and must not be writing to 969 * the spa config, as the trimming thread may try to enter the config as a 970 * reader before exiting. 971 */ 972 void 973 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list) 974 { 975 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 976 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 977 ASSERT(vd->vdev_ops->vdev_op_leaf); 978 ASSERT(vdev_is_concrete(vd)); 979 980 /* 981 * Allow cancel requests to proceed even if the trim thread has 982 * stopped. 983 */ 984 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED) 985 return; 986 987 vdev_trim_change_state(vd, tgt_state, 0, 0, 0); 988 vd->vdev_trim_exit_wanted = B_TRUE; 989 990 if (vd_list == NULL) { 991 vdev_trim_stop_wait_impl(vd); 992 } else { 993 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 994 list_insert_tail(vd_list, vd); 995 } 996 } 997 998 /* 999 * Requests that all listed vdevs stop trimming. 1000 */ 1001 static void 1002 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state, 1003 list_t *vd_list) 1004 { 1005 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 1006 mutex_enter(&vd->vdev_trim_lock); 1007 vdev_trim_stop(vd, tgt_state, vd_list); 1008 mutex_exit(&vd->vdev_trim_lock); 1009 return; 1010 } 1011 1012 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1013 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state, 1014 vd_list); 1015 } 1016 } 1017 1018 /* 1019 * Convenience function to stop trimming of a vdev tree and set all trim 1020 * thread pointers to NULL. 1021 */ 1022 void 1023 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state) 1024 { 1025 spa_t *spa = vd->vdev_spa; 1026 list_t vd_list; 1027 1028 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1029 1030 list_create(&vd_list, sizeof (vdev_t), 1031 offsetof(vdev_t, vdev_trim_node)); 1032 1033 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list); 1034 vdev_trim_stop_wait(spa, &vd_list); 1035 1036 if (vd->vdev_spa->spa_sync_on) { 1037 /* Make sure that our state has been synced to disk */ 1038 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1039 } 1040 1041 list_destroy(&vd_list); 1042 } 1043 1044 /* 1045 * Conditionally restarts a manual TRIM given its on-disk state. 1046 */ 1047 void 1048 vdev_trim_restart(vdev_t *vd) 1049 { 1050 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1051 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 1052 1053 if (vd->vdev_leaf_zap != 0) { 1054 mutex_enter(&vd->vdev_trim_lock); 1055 uint64_t trim_state = VDEV_TRIM_NONE; 1056 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1057 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 1058 sizeof (trim_state), 1, &trim_state); 1059 ASSERT(err == 0 || err == ENOENT); 1060 vd->vdev_trim_state = trim_state; 1061 1062 uint64_t timestamp = 0; 1063 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1064 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME, 1065 sizeof (timestamp), 1, ×tamp); 1066 ASSERT(err == 0 || err == ENOENT); 1067 vd->vdev_trim_action_time = (time_t)timestamp; 1068 1069 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED || 1070 vd->vdev_offline) { 1071 /* load progress for reporting, but don't resume */ 1072 VERIFY0(vdev_trim_load(vd)); 1073 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE && 1074 vdev_writeable(vd) && !vd->vdev_top->vdev_removing && 1075 vd->vdev_trim_thread == NULL) { 1076 VERIFY0(vdev_trim_load(vd)); 1077 vdev_trim(vd, vd->vdev_trim_rate, 1078 vd->vdev_trim_partial, vd->vdev_trim_secure); 1079 } 1080 1081 mutex_exit(&vd->vdev_trim_lock); 1082 } 1083 1084 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1085 vdev_trim_restart(vd->vdev_child[i]); 1086 } 1087 } 1088 1089 /* 1090 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that 1091 * every TRIM range is contained within ms_allocatable. 1092 */ 1093 static void 1094 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size) 1095 { 1096 trim_args_t *ta = arg; 1097 metaslab_t *msp = ta->trim_msp; 1098 1099 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 1100 VERIFY3U(msp->ms_disabled, >, 0); 1101 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 1102 } 1103 1104 /* 1105 * Each automatic TRIM thread is responsible for managing the trimming of a 1106 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk. 1107 * 1108 * N.B. This behavior is different from a manual TRIM where a thread 1109 * is created for each leaf vdev, instead of each top-level vdev. 1110 */ 1111 static void 1112 vdev_autotrim_thread(void *arg) 1113 { 1114 vdev_t *vd = arg; 1115 spa_t *spa = vd->vdev_spa; 1116 int shift = 0; 1117 1118 mutex_enter(&vd->vdev_autotrim_lock); 1119 ASSERT3P(vd->vdev_top, ==, vd); 1120 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL); 1121 mutex_exit(&vd->vdev_autotrim_lock); 1122 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1123 1124 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max; 1125 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min; 1126 1127 while (!vdev_autotrim_should_stop(vd)) { 1128 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1); 1129 boolean_t issued_trim = B_FALSE; 1130 1131 /* 1132 * All of the metaslabs are divided in to groups of size 1133 * num_metaslabs / zfs_trim_txg_batch. Each of these groups 1134 * is composed of metaslabs which are spread evenly over the 1135 * device. 1136 * 1137 * For example, when zfs_trim_txg_batch = 32 (default) then 1138 * group 0 will contain metaslabs 0, 32, 64, ...; 1139 * group 1 will contain metaslabs 1, 33, 65, ...; 1140 * group 2 will contain metaslabs 2, 34, 66, ...; and so on. 1141 * 1142 * On each pass through the while() loop one of these groups 1143 * is selected. This is accomplished by using a shift value 1144 * to select the starting metaslab, then striding over the 1145 * metaslabs using the zfs_trim_txg_batch size. This is 1146 * done to accomplish two things. 1147 * 1148 * 1) By dividing the metaslabs into groups, and making sure 1149 * that each group takes a minimum of one txg to process. 1150 * Then zfs_trim_txg_batch controls the minimum number of 1151 * txgs which must occur before a metaslab is revisited. 1152 * 1153 * 2) Selecting non-consecutive metaslabs distributes the 1154 * TRIM commands for a group evenly over the entire device. 1155 * This can be advantageous for certain types of devices. 1156 */ 1157 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count; 1158 i += txgs_per_trim) { 1159 metaslab_t *msp = vd->vdev_ms[i]; 1160 range_tree_t *trim_tree; 1161 1162 spa_config_exit(spa, SCL_CONFIG, FTAG); 1163 metaslab_disable(msp); 1164 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1165 1166 mutex_enter(&msp->ms_lock); 1167 1168 /* 1169 * Skip the metaslab when it has never been allocated 1170 * or when there are no recent frees to trim. 1171 */ 1172 if (msp->ms_sm == NULL || 1173 range_tree_is_empty(msp->ms_trim)) { 1174 mutex_exit(&msp->ms_lock); 1175 metaslab_enable(msp, B_FALSE, B_FALSE); 1176 continue; 1177 } 1178 1179 /* 1180 * Skip the metaslab when it has already been disabled. 1181 * This may happen when a manual TRIM or initialize 1182 * operation is running concurrently. In the case 1183 * of a manual TRIM, the ms_trim tree will have been 1184 * vacated. Only ranges added after the manual TRIM 1185 * disabled the metaslab will be included in the tree. 1186 * These will be processed when the automatic TRIM 1187 * next revisits this metaslab. 1188 */ 1189 if (msp->ms_disabled > 1) { 1190 mutex_exit(&msp->ms_lock); 1191 metaslab_enable(msp, B_FALSE, B_FALSE); 1192 continue; 1193 } 1194 1195 /* 1196 * Allocate an empty range tree which is swapped in 1197 * for the existing ms_trim tree while it is processed. 1198 */ 1199 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 1200 0, 0); 1201 range_tree_swap(&msp->ms_trim, &trim_tree); 1202 ASSERT(range_tree_is_empty(msp->ms_trim)); 1203 1204 /* 1205 * There are two cases when constructing the per-vdev 1206 * trim trees for a metaslab. If the top-level vdev 1207 * has no children then it is also a leaf and should 1208 * be trimmed. Otherwise our children are the leaves 1209 * and a trim tree should be constructed for each. 1210 */ 1211 trim_args_t *tap; 1212 uint64_t children = vd->vdev_children; 1213 if (children == 0) { 1214 children = 1; 1215 tap = kmem_zalloc(sizeof (trim_args_t) * 1216 children, KM_SLEEP); 1217 tap[0].trim_vdev = vd; 1218 } else { 1219 tap = kmem_zalloc(sizeof (trim_args_t) * 1220 children, KM_SLEEP); 1221 1222 for (uint64_t c = 0; c < children; c++) { 1223 tap[c].trim_vdev = vd->vdev_child[c]; 1224 } 1225 } 1226 1227 for (uint64_t c = 0; c < children; c++) { 1228 trim_args_t *ta = &tap[c]; 1229 vdev_t *cvd = ta->trim_vdev; 1230 1231 ta->trim_msp = msp; 1232 ta->trim_extent_bytes_max = extent_bytes_max; 1233 ta->trim_extent_bytes_min = extent_bytes_min; 1234 ta->trim_type = TRIM_TYPE_AUTO; 1235 ta->trim_flags = 0; 1236 1237 if (cvd->vdev_detached || 1238 !vdev_writeable(cvd) || 1239 !cvd->vdev_has_trim || 1240 cvd->vdev_trim_thread != NULL) { 1241 continue; 1242 } 1243 1244 /* 1245 * When a device has an attached hot spare, or 1246 * is being replaced it will not be trimmed. 1247 * This is done to avoid adding additional 1248 * stress to a potentially unhealthy device, 1249 * and to minimize the required rebuild time. 1250 */ 1251 if (!cvd->vdev_ops->vdev_op_leaf) 1252 continue; 1253 1254 ta->trim_tree = range_tree_create(NULL, 1255 RANGE_SEG64, NULL, 0, 0); 1256 range_tree_walk(trim_tree, 1257 vdev_trim_range_add, ta); 1258 } 1259 1260 mutex_exit(&msp->ms_lock); 1261 spa_config_exit(spa, SCL_CONFIG, FTAG); 1262 1263 /* 1264 * Issue the TRIM I/Os for all ranges covered by the 1265 * TRIM trees. These ranges are safe to TRIM because 1266 * no new allocations will be performed until the call 1267 * to metaslab_enabled() below. 1268 */ 1269 for (uint64_t c = 0; c < children; c++) { 1270 trim_args_t *ta = &tap[c]; 1271 1272 /* 1273 * Always yield to a manual TRIM if one has 1274 * been started for the child vdev. 1275 */ 1276 if (ta->trim_tree == NULL || 1277 ta->trim_vdev->vdev_trim_thread != NULL) { 1278 continue; 1279 } 1280 1281 /* 1282 * After this point metaslab_enable() must be 1283 * called with the sync flag set. This is done 1284 * here because vdev_trim_ranges() is allowed 1285 * to be interrupted (EINTR) before issuing all 1286 * of the required TRIM I/Os. 1287 */ 1288 issued_trim = B_TRUE; 1289 1290 int error = vdev_trim_ranges(ta); 1291 if (error) 1292 break; 1293 } 1294 1295 /* 1296 * Verify every range which was trimmed is still 1297 * contained within the ms_allocatable tree. 1298 */ 1299 if (zfs_flags & ZFS_DEBUG_TRIM) { 1300 mutex_enter(&msp->ms_lock); 1301 VERIFY0(metaslab_load(msp)); 1302 VERIFY3P(tap[0].trim_msp, ==, msp); 1303 range_tree_walk(trim_tree, 1304 vdev_trim_range_verify, &tap[0]); 1305 mutex_exit(&msp->ms_lock); 1306 } 1307 1308 range_tree_vacate(trim_tree, NULL, NULL); 1309 range_tree_destroy(trim_tree); 1310 1311 metaslab_enable(msp, issued_trim, B_FALSE); 1312 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1313 1314 for (uint64_t c = 0; c < children; c++) { 1315 trim_args_t *ta = &tap[c]; 1316 1317 if (ta->trim_tree == NULL) 1318 continue; 1319 1320 range_tree_vacate(ta->trim_tree, NULL, NULL); 1321 range_tree_destroy(ta->trim_tree); 1322 } 1323 1324 kmem_free(tap, sizeof (trim_args_t) * children); 1325 } 1326 1327 spa_config_exit(spa, SCL_CONFIG, FTAG); 1328 1329 /* 1330 * After completing the group of metaslabs wait for the next 1331 * open txg. This is done to make sure that a minimum of 1332 * zfs_trim_txg_batch txgs will occur before these metaslabs 1333 * are trimmed again. 1334 */ 1335 txg_wait_open(spa_get_dsl(spa), 0, issued_trim); 1336 1337 shift++; 1338 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1339 } 1340 1341 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1342 vdev_t *cvd = vd->vdev_child[c]; 1343 mutex_enter(&cvd->vdev_trim_io_lock); 1344 1345 while (cvd->vdev_trim_inflight[1] > 0) { 1346 cv_wait(&cvd->vdev_trim_io_cv, 1347 &cvd->vdev_trim_io_lock); 1348 } 1349 mutex_exit(&cvd->vdev_trim_io_lock); 1350 } 1351 1352 spa_config_exit(spa, SCL_CONFIG, FTAG); 1353 1354 /* 1355 * When exiting because the autotrim property was set to off, then 1356 * abandon any unprocessed ms_trim ranges to reclaim the memory. 1357 */ 1358 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) { 1359 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 1360 metaslab_t *msp = vd->vdev_ms[i]; 1361 1362 mutex_enter(&msp->ms_lock); 1363 range_tree_vacate(msp->ms_trim, NULL, NULL); 1364 mutex_exit(&msp->ms_lock); 1365 } 1366 } 1367 1368 mutex_enter(&vd->vdev_autotrim_lock); 1369 ASSERT(vd->vdev_autotrim_thread != NULL); 1370 vd->vdev_autotrim_thread = NULL; 1371 cv_broadcast(&vd->vdev_autotrim_cv); 1372 mutex_exit(&vd->vdev_autotrim_lock); 1373 } 1374 1375 /* 1376 * Starts an autotrim thread, if needed, for each top-level vdev which can be 1377 * trimmed. A top-level vdev which has been evacuated will never be trimmed. 1378 */ 1379 void 1380 vdev_autotrim(spa_t *spa) 1381 { 1382 vdev_t *root_vd = spa->spa_root_vdev; 1383 1384 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1385 vdev_t *tvd = root_vd->vdev_child[i]; 1386 1387 mutex_enter(&tvd->vdev_autotrim_lock); 1388 if (vdev_writeable(tvd) && !tvd->vdev_removing && 1389 tvd->vdev_autotrim_thread == NULL) { 1390 ASSERT3P(tvd->vdev_top, ==, tvd); 1391 1392 tvd->vdev_autotrim_thread = thread_create(NULL, 0, 1393 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN, 1394 maxclsyspri); 1395 ASSERT(tvd->vdev_autotrim_thread != NULL); 1396 } 1397 mutex_exit(&tvd->vdev_autotrim_lock); 1398 } 1399 } 1400 1401 /* 1402 * Wait for the vdev_autotrim_thread associated with the passed top-level 1403 * vdev to be terminated (canceled or stopped). 1404 */ 1405 void 1406 vdev_autotrim_stop_wait(vdev_t *tvd) 1407 { 1408 mutex_enter(&tvd->vdev_autotrim_lock); 1409 if (tvd->vdev_autotrim_thread != NULL) { 1410 tvd->vdev_autotrim_exit_wanted = B_TRUE; 1411 1412 while (tvd->vdev_autotrim_thread != NULL) { 1413 cv_wait(&tvd->vdev_autotrim_cv, 1414 &tvd->vdev_autotrim_lock); 1415 } 1416 1417 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL); 1418 tvd->vdev_autotrim_exit_wanted = B_FALSE; 1419 } 1420 mutex_exit(&tvd->vdev_autotrim_lock); 1421 } 1422 1423 /* 1424 * Wait for all of the vdev_autotrim_thread associated with the pool to 1425 * be terminated (canceled or stopped). 1426 */ 1427 void 1428 vdev_autotrim_stop_all(spa_t *spa) 1429 { 1430 vdev_t *root_vd = spa->spa_root_vdev; 1431 1432 for (uint64_t i = 0; i < root_vd->vdev_children; i++) 1433 vdev_autotrim_stop_wait(root_vd->vdev_child[i]); 1434 } 1435 1436 /* 1437 * Conditionally restart all of the vdev_autotrim_thread's for the pool. 1438 */ 1439 void 1440 vdev_autotrim_restart(spa_t *spa) 1441 { 1442 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1443 1444 if (spa->spa_autotrim) 1445 vdev_autotrim(spa); 1446 } 1447