1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC. 25 * Copyright 2019 Joyent, Inc. 26 * Copyright 2023 RackTop Systems, Inc. 27 */ 28 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/txg.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/vdev_trim.h> 34 #include <sys/refcount.h> 35 #include <sys/metaslab_impl.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/zap.h> 38 #include <sys/dmu_tx.h> 39 40 /* 41 * TRIM is a feature which is used to notify a SSD that some previously 42 * written space is no longer allocated by the pool. This is useful because 43 * writes to a SSD must be performed to blocks which have first been erased. 44 * Ensuring the SSD always has a supply of erased blocks for new writes 45 * helps prevent the performance from deteriorating. 46 * 47 * There are two supported TRIM methods; manual and automatic. 48 * 49 * Manual TRIM: 50 * 51 * A manual TRIM is initiated by running the 'zpool trim' command. A single 52 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for 53 * managing that vdev TRIM process. This involves iterating over all the 54 * metaslabs, calculating the unallocated space ranges, and then issuing the 55 * required TRIM I/Os. 56 * 57 * While a metaslab is being actively trimmed it is not eligible to perform 58 * new allocations. After traversing all of the metaslabs the thread is 59 * terminated. Finally, both the requested options and current progress of 60 * the TRIM are regularly written to the pool. This allows the TRIM to be 61 * suspended and resumed as needed. 62 * 63 * Automatic TRIM: 64 * 65 * An automatic TRIM is enabled by setting the 'autotrim' pool property 66 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each 67 * top-level (not leaf) vdev in the pool. These threads perform the same 68 * core TRIM process as a manual TRIM, but with a few key differences. 69 * 70 * 1) Automatic TRIM happens continuously in the background and operates 71 * solely on recently freed blocks (ms_trim not ms_allocatable). 72 * 73 * 2) Each thread is associated with a top-level (not leaf) vdev. This has 74 * the benefit of simplifying the threading model, it makes it easier 75 * to coordinate administrative commands, and it ensures only a single 76 * metaslab is disabled at a time. Unlike manual TRIM, this means each 77 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its 78 * children. 79 * 80 * 3) There is no automatic TRIM progress information stored on disk, nor 81 * is it reported by 'zpool status'. 82 * 83 * While the automatic TRIM process is highly effective it is more likely 84 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to 85 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently 86 * TRIM and are skipped. This means small amounts of freed space may not 87 * be automatically trimmed. 88 * 89 * Furthermore, devices with attached hot spares and devices being actively 90 * replaced are skipped. This is done to avoid adding additional stress to 91 * a potentially unhealthy device and to minimize the required rebuild time. 92 * 93 * For this reason it may be beneficial to occasionally manually TRIM a pool 94 * even when automatic TRIM is enabled. 95 */ 96 97 /* 98 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths. 99 */ 100 unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024; 101 102 /* 103 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped. 104 */ 105 unsigned int zfs_trim_extent_bytes_min = 32 * 1024; 106 107 /* 108 * Skip uninitialized metaslabs during the TRIM process. This option is 109 * useful for pools constructed from large thinly-provisioned devices where 110 * TRIM operations are slow. As a pool ages an increasing fraction of 111 * the pools metaslabs will be initialized progressively degrading the 112 * usefulness of this option. This setting is stored when starting a 113 * manual TRIM and will persist for the duration of the requested TRIM. 114 */ 115 unsigned int zfs_trim_metaslab_skip = 0; 116 117 /* 118 * Maximum number of queued TRIM I/Os per leaf vdev. The number of 119 * concurrent TRIM I/Os issued to the device is controlled by the 120 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options. 121 */ 122 unsigned int zfs_trim_queue_limit = 10; 123 124 /* 125 * The minimum number of transaction groups between automatic trims of a 126 * metaslab. This setting represents a trade-off between issuing more 127 * efficient TRIM operations, by allowing them to be aggregated longer, 128 * and issuing them promptly so the trimmed space is available. Note 129 * that this value is a minimum; metaslabs can be trimmed less frequently 130 * when there are a large number of ranges which need to be trimmed. 131 * 132 * Increasing this value will allow frees to be aggregated for a longer 133 * time. This can result is larger TRIM operations, and increased memory 134 * usage in order to track the ranges to be trimmed. Decreasing this value 135 * has the opposite effect. The default value of 32 was determined though 136 * testing to be a reasonable compromise. 137 */ 138 unsigned int zfs_trim_txg_batch = 32; 139 140 /* 141 * The trim_args are a control structure which describe how a leaf vdev 142 * should be trimmed. The core elements are the vdev, the metaslab being 143 * trimmed and a range tree containing the extents to TRIM. All provided 144 * ranges must be within the metaslab. 145 */ 146 typedef struct trim_args { 147 /* 148 * These fields are set by the caller of vdev_trim_ranges(). 149 */ 150 vdev_t *trim_vdev; /* Leaf vdev to TRIM */ 151 metaslab_t *trim_msp; /* Disabled metaslab */ 152 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */ 153 trim_type_t trim_type; /* Manual or auto TRIM */ 154 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */ 155 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */ 156 enum trim_flag trim_flags; /* TRIM flags (secure) */ 157 158 /* 159 * These fields are updated by vdev_trim_ranges(). 160 */ 161 hrtime_t trim_start_time; /* Start time */ 162 uint64_t trim_bytes_done; /* Bytes trimmed */ 163 } trim_args_t; 164 165 /* 166 * Determines whether a vdev_trim_thread() should be stopped. 167 */ 168 static boolean_t 169 vdev_trim_should_stop(vdev_t *vd) 170 { 171 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) || 172 vd->vdev_detached || vd->vdev_top->vdev_removing); 173 } 174 175 /* 176 * Determines whether a vdev_autotrim_thread() should be stopped. 177 */ 178 static boolean_t 179 vdev_autotrim_should_stop(vdev_t *tvd) 180 { 181 return (tvd->vdev_autotrim_exit_wanted || 182 !vdev_writeable(tvd) || tvd->vdev_removing || 183 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF); 184 } 185 186 /* 187 * The sync task for updating the on-disk state of a manual TRIM. This 188 * is scheduled by vdev_trim_change_state(). 189 */ 190 static void 191 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx) 192 { 193 /* 194 * We pass in the guid instead of the vdev_t since the vdev may 195 * have been freed prior to the sync task being processed. This 196 * happens when a vdev is detached as we call spa_config_vdev_exit(), 197 * stop the trimming thread, schedule the sync task, and free 198 * the vdev. Later when the scheduled sync task is invoked, it would 199 * find that the vdev has been freed. 200 */ 201 uint64_t guid = *(uint64_t *)arg; 202 uint64_t txg = dmu_tx_get_txg(tx); 203 kmem_free(arg, sizeof (uint64_t)); 204 205 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 206 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 207 return; 208 209 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK]; 210 vd->vdev_trim_offset[txg & TXG_MASK] = 0; 211 212 VERIFY3U(vd->vdev_leaf_zap, !=, 0); 213 214 objset_t *mos = vd->vdev_spa->spa_meta_objset; 215 216 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) { 217 218 if (vd->vdev_trim_last_offset == UINT64_MAX) 219 last_offset = 0; 220 221 vd->vdev_trim_last_offset = last_offset; 222 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 223 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 224 sizeof (last_offset), 1, &last_offset, tx)); 225 } 226 227 if (vd->vdev_trim_action_time > 0) { 228 uint64_t val = (uint64_t)vd->vdev_trim_action_time; 229 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 230 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val), 231 1, &val, tx)); 232 } 233 234 if (vd->vdev_trim_rate > 0) { 235 uint64_t rate = (uint64_t)vd->vdev_trim_rate; 236 237 if (rate == UINT64_MAX) 238 rate = 0; 239 240 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 241 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx)); 242 } 243 244 uint64_t partial = vd->vdev_trim_partial; 245 if (partial == UINT64_MAX) 246 partial = 0; 247 248 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 249 sizeof (partial), 1, &partial, tx)); 250 251 uint64_t secure = vd->vdev_trim_secure; 252 if (secure == UINT64_MAX) 253 secure = 0; 254 255 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 256 sizeof (secure), 1, &secure, tx)); 257 258 259 uint64_t trim_state = vd->vdev_trim_state; 260 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 261 sizeof (trim_state), 1, &trim_state, tx)); 262 } 263 264 /* 265 * Update the on-disk state of a manual TRIM. This is called to request 266 * that a TRIM be started/suspended/canceled, or to change one of the 267 * TRIM options (partial, secure, rate). 268 */ 269 static void 270 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state, 271 uint64_t rate, boolean_t partial, boolean_t secure) 272 { 273 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 274 spa_t *spa = vd->vdev_spa; 275 276 if (new_state == vd->vdev_trim_state) 277 return; 278 279 /* 280 * Copy the vd's guid, this will be freed by the sync task. 281 */ 282 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 283 *guid = vd->vdev_guid; 284 285 /* 286 * If we're suspending, then preserve the original start time. 287 */ 288 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) { 289 vd->vdev_trim_action_time = gethrestime_sec(); 290 } 291 292 /* 293 * If we're activating, then preserve the requested rate and trim 294 * method. Setting the last offset and rate to UINT64_MAX is used 295 * as a sentinel to indicate they should be reset to default values. 296 */ 297 if (new_state == VDEV_TRIM_ACTIVE) { 298 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE || 299 vd->vdev_trim_state == VDEV_TRIM_CANCELED) { 300 vd->vdev_trim_last_offset = UINT64_MAX; 301 vd->vdev_trim_rate = UINT64_MAX; 302 vd->vdev_trim_partial = UINT64_MAX; 303 vd->vdev_trim_secure = UINT64_MAX; 304 } 305 306 if (rate != 0) 307 vd->vdev_trim_rate = rate; 308 309 if (partial != 0) 310 vd->vdev_trim_partial = partial; 311 312 if (secure != 0) 313 vd->vdev_trim_secure = secure; 314 } 315 316 boolean_t resumed = !!(vd->vdev_trim_state == VDEV_TRIM_SUSPENDED); 317 vd->vdev_trim_state = new_state; 318 319 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 320 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 321 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync, 322 guid, 2, ZFS_SPACE_CHECK_NONE, tx); 323 324 switch (new_state) { 325 case VDEV_TRIM_ACTIVE: 326 spa_event_notify(spa, vd, NULL, 327 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START); 328 spa_history_log_internal(spa, "trim", tx, 329 "vdev=%s activated", vd->vdev_path); 330 break; 331 case VDEV_TRIM_SUSPENDED: 332 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND); 333 spa_history_log_internal(spa, "trim", tx, 334 "vdev=%s suspended", vd->vdev_path); 335 break; 336 case VDEV_TRIM_CANCELED: 337 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL); 338 spa_history_log_internal(spa, "trim", tx, 339 "vdev=%s canceled", vd->vdev_path); 340 break; 341 case VDEV_TRIM_COMPLETE: 342 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH); 343 spa_history_log_internal(spa, "trim", tx, 344 "vdev=%s complete", vd->vdev_path); 345 break; 346 default: 347 panic("invalid state %llu", (unsigned long long)new_state); 348 } 349 350 dmu_tx_commit(tx); 351 } 352 353 /* 354 * The zio_done_func_t done callback for each manual TRIM issued. It is 355 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os, 356 * and limiting the number of in-flight TRIM I/Os. 357 */ 358 static void 359 vdev_trim_cb(zio_t *zio) 360 { 361 vdev_t *vd = zio->io_vd; 362 363 mutex_enter(&vd->vdev_trim_io_lock); 364 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 365 /* 366 * The I/O failed because the vdev was unavailable; roll the 367 * last offset back. (This works because spa_sync waits on 368 * spa_txg_zio before it runs sync tasks.) 369 */ 370 uint64_t *offset = 371 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK]; 372 *offset = MIN(*offset, zio->io_offset); 373 } else { 374 if (zio->io_error != 0) { 375 vd->vdev_stat.vs_trim_errors++; 376 /* 377 * spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 378 * 0, 0, 0, 0, 1, zio->io_orig_size); 379 */ 380 } else { 381 /* 382 * spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 383 * 1, zio->io_orig_size, 0, 0, 0, 0); 384 */ 385 } 386 387 vd->vdev_trim_bytes_done += zio->io_orig_size; 388 } 389 390 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0); 391 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--; 392 cv_broadcast(&vd->vdev_trim_io_cv); 393 mutex_exit(&vd->vdev_trim_io_lock); 394 395 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 396 } 397 398 /* 399 * The zio_done_func_t done callback for each automatic TRIM issued. It 400 * is responsible for updating the TRIM stats and limiting the number of 401 * in-flight TRIM I/Os. Automatic TRIM I/Os are best effort and are 402 * never reissued on failure. 403 */ 404 static void 405 vdev_autotrim_cb(zio_t *zio) 406 { 407 vdev_t *vd = zio->io_vd; 408 409 mutex_enter(&vd->vdev_trim_io_lock); 410 411 if (zio->io_error != 0) { 412 vd->vdev_stat.vs_trim_errors++; 413 /* 414 * spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 415 * 0, 0, 0, 0, 1, zio->io_orig_size); 416 */ 417 } else { 418 /* 419 * spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 420 * 1, zio->io_orig_size, 0, 0, 0, 0); 421 */ 422 423 vd->vdev_autotrim_bytes_done += zio->io_orig_size; 424 } 425 426 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0); 427 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--; 428 cv_broadcast(&vd->vdev_trim_io_cv); 429 mutex_exit(&vd->vdev_trim_io_lock); 430 431 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 432 } 433 434 /* 435 * Returns the average trim rate in bytes/sec for the ta->trim_vdev. 436 */ 437 static uint64_t 438 vdev_trim_calculate_rate(trim_args_t *ta) 439 { 440 return (ta->trim_bytes_done * 1000 / 441 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1)); 442 } 443 444 /* 445 * Issues a physical TRIM and takes care of rate limiting (bytes/sec) 446 * and number of concurrent TRIM I/Os. 447 */ 448 static int 449 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) 450 { 451 vdev_t *vd = ta->trim_vdev; 452 spa_t *spa = vd->vdev_spa; 453 454 mutex_enter(&vd->vdev_trim_io_lock); 455 456 /* 457 * Limit manual TRIM I/Os to the requested rate. This does not 458 * apply to automatic TRIM since no per vdev rate can be specified. 459 */ 460 if (ta->trim_type == TRIM_TYPE_MANUAL) { 461 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) && 462 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) { 463 cv_timedwait_sig(&vd->vdev_trim_io_cv, 464 &vd->vdev_trim_io_lock, ddi_get_lbolt() + 465 MSEC_TO_TICK(10)); 466 } 467 } 468 ta->trim_bytes_done += size; 469 470 /* Limit in-flight trimming I/Os */ 471 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] >= 472 zfs_trim_queue_limit) { 473 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 474 } 475 vd->vdev_trim_inflight[ta->trim_type]++; 476 mutex_exit(&vd->vdev_trim_io_lock); 477 478 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 479 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 480 uint64_t txg = dmu_tx_get_txg(tx); 481 482 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 483 mutex_enter(&vd->vdev_trim_lock); 484 485 if (ta->trim_type == TRIM_TYPE_MANUAL && 486 vd->vdev_trim_offset[txg & TXG_MASK] == 0) { 487 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 488 *guid = vd->vdev_guid; 489 490 /* This is the first write of this txg. */ 491 dsl_sync_task_nowait(spa_get_dsl(spa), 492 vdev_trim_zap_update_sync, guid, 2, 493 ZFS_SPACE_CHECK_RESERVED, tx); 494 } 495 496 /* 497 * We know the vdev_t will still be around since all consumers of 498 * vdev_free must stop the trimming first. 499 */ 500 if ((ta->trim_type == TRIM_TYPE_MANUAL && 501 vdev_trim_should_stop(vd)) || 502 (ta->trim_type == TRIM_TYPE_AUTO && 503 vdev_autotrim_should_stop(vd->vdev_top))) { 504 mutex_enter(&vd->vdev_trim_io_lock); 505 vd->vdev_trim_inflight[ta->trim_type]--; 506 mutex_exit(&vd->vdev_trim_io_lock); 507 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 508 mutex_exit(&vd->vdev_trim_lock); 509 dmu_tx_commit(tx); 510 return (SET_ERROR(EINTR)); 511 } 512 mutex_exit(&vd->vdev_trim_lock); 513 514 if (ta->trim_type == TRIM_TYPE_MANUAL) 515 vd->vdev_trim_offset[txg & TXG_MASK] = start + size; 516 517 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd, 518 start, size, ta->trim_type == TRIM_TYPE_MANUAL ? 519 vdev_trim_cb : vdev_autotrim_cb, NULL, 520 ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, ta->trim_flags)); 521 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */ 522 523 dmu_tx_commit(tx); 524 525 return (0); 526 } 527 528 /* 529 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree. 530 * Additional parameters describing how the TRIM should be performed must 531 * be set in the trim_args structure. See the trim_args definition for 532 * additional information. 533 */ 534 static int 535 vdev_trim_ranges(trim_args_t *ta) 536 { 537 vdev_t *vd = ta->trim_vdev; 538 zfs_btree_t *t = &ta->trim_tree->rt_root; 539 zfs_btree_index_t idx; 540 uint64_t extent_bytes_max = ta->trim_extent_bytes_max; 541 uint64_t extent_bytes_min = ta->trim_extent_bytes_min; 542 spa_t *spa = vd->vdev_spa; 543 int error = 0; 544 545 ta->trim_start_time = gethrtime(); 546 ta->trim_bytes_done = 0; 547 548 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL; 549 rs = zfs_btree_next(t, &idx, &idx)) { 550 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs, 551 ta->trim_tree); 552 553 if (extent_bytes_min && size < extent_bytes_min) { 554 /* 555 * spa_iostats_trim_add(spa, ta->trim_type, 556 * 0, 0, 1, size, 0, 0); 557 */ 558 continue; 559 } 560 561 /* Split range into legally-sized physical chunks */ 562 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1; 563 564 for (uint64_t w = 0; w < writes_required; w++) { 565 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE + 566 rs_get_start(rs, ta->trim_tree) + 567 (w *extent_bytes_max), MIN(size - 568 (w * extent_bytes_max), extent_bytes_max)); 569 if (error != 0) { 570 goto done; 571 } 572 } 573 } 574 575 done: 576 /* 577 * Make sure all TRIMs for this metaslab have completed before 578 * returning. TRIM zios have lower priority over regular or syncing 579 * zios, so all TRIM zios for this metaslab must complete before the 580 * metaslab is re-enabled. Otherwise it's possible write zios to 581 * this metaslab could cut ahead of still queued TRIM zios for this 582 * metaslab causing corruption if the ranges overlap. 583 */ 584 mutex_enter(&vd->vdev_trim_io_lock); 585 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) { 586 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 587 } 588 mutex_exit(&vd->vdev_trim_io_lock); 589 590 return (error); 591 } 592 593 /* 594 * Calculates the completion percentage of a manual TRIM. 595 */ 596 static void 597 vdev_trim_calculate_progress(vdev_t *vd) 598 { 599 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 600 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 601 ASSERT(vd->vdev_leaf_zap != 0); 602 603 vd->vdev_trim_bytes_est = 0; 604 vd->vdev_trim_bytes_done = 0; 605 606 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 607 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 608 mutex_enter(&msp->ms_lock); 609 610 uint64_t ms_free = msp->ms_size - 611 metaslab_allocated_space(msp); 612 613 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) 614 ms_free /= vd->vdev_top->vdev_children; 615 616 /* 617 * Convert the metaslab range to a physical range 618 * on our vdev. We use this to determine if we are 619 * in the middle of this metaslab range. 620 */ 621 range_seg64_t logical_rs, physical_rs; 622 logical_rs.rs_start = msp->ms_start; 623 logical_rs.rs_end = msp->ms_start + msp->ms_size; 624 vdev_xlate(vd, &logical_rs, &physical_rs); 625 626 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) { 627 vd->vdev_trim_bytes_est += ms_free; 628 mutex_exit(&msp->ms_lock); 629 continue; 630 } else if (vd->vdev_trim_last_offset > physical_rs.rs_end) { 631 vd->vdev_trim_bytes_done += ms_free; 632 vd->vdev_trim_bytes_est += ms_free; 633 mutex_exit(&msp->ms_lock); 634 continue; 635 } 636 637 /* 638 * If we get here, we're in the middle of trimming this 639 * metaslab. Load it and walk the free tree for more 640 * accurate progress estimation. 641 */ 642 VERIFY0(metaslab_load(msp)); 643 644 range_tree_t *rt = msp->ms_allocatable; 645 zfs_btree_t *bt = &rt->rt_root; 646 zfs_btree_index_t idx; 647 for (range_seg_t *rs = zfs_btree_first(bt, &idx); 648 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) { 649 logical_rs.rs_start = rs_get_start(rs, rt); 650 logical_rs.rs_end = rs_get_end(rs, rt); 651 vdev_xlate(vd, &logical_rs, &physical_rs); 652 653 uint64_t size = physical_rs.rs_end - 654 physical_rs.rs_start; 655 vd->vdev_trim_bytes_est += size; 656 if (vd->vdev_trim_last_offset >= physical_rs.rs_end) { 657 vd->vdev_trim_bytes_done += size; 658 } else if (vd->vdev_trim_last_offset > 659 physical_rs.rs_start && 660 vd->vdev_trim_last_offset <= 661 physical_rs.rs_end) { 662 vd->vdev_trim_bytes_done += 663 vd->vdev_trim_last_offset - 664 physical_rs.rs_start; 665 } 666 } 667 mutex_exit(&msp->ms_lock); 668 } 669 } 670 671 /* 672 * Load from disk the vdev's manual TRIM information. This includes the 673 * state, progress, and options provided when initiating the manual TRIM. 674 */ 675 static int 676 vdev_trim_load(vdev_t *vd) 677 { 678 int err = 0; 679 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 680 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 681 ASSERT(vd->vdev_leaf_zap != 0); 682 683 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE || 684 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) { 685 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 686 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 687 sizeof (vd->vdev_trim_last_offset), 1, 688 &vd->vdev_trim_last_offset); 689 if (err == ENOENT) { 690 vd->vdev_trim_last_offset = 0; 691 err = 0; 692 } 693 694 if (err == 0) { 695 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 696 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE, 697 sizeof (vd->vdev_trim_rate), 1, 698 &vd->vdev_trim_rate); 699 if (err == ENOENT) { 700 vd->vdev_trim_rate = 0; 701 err = 0; 702 } 703 } 704 705 if (err == 0) { 706 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 707 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 708 sizeof (vd->vdev_trim_partial), 1, 709 &vd->vdev_trim_partial); 710 if (err == ENOENT) { 711 vd->vdev_trim_partial = 0; 712 err = 0; 713 } 714 } 715 716 if (err == 0) { 717 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 718 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 719 sizeof (vd->vdev_trim_secure), 1, 720 &vd->vdev_trim_secure); 721 if (err == ENOENT) { 722 vd->vdev_trim_secure = 0; 723 err = 0; 724 } 725 } 726 } 727 728 vdev_trim_calculate_progress(vd); 729 730 return (err); 731 } 732 733 /* 734 * Convert the logical range into a physical range and add it to the 735 * range tree passed in the trim_args_t. 736 */ 737 static void 738 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size) 739 { 740 trim_args_t *ta = arg; 741 vdev_t *vd = ta->trim_vdev; 742 range_seg64_t logical_rs, physical_rs; 743 logical_rs.rs_start = start; 744 logical_rs.rs_end = start + size; 745 746 /* 747 * Every range to be trimmed must be part of ms_allocatable. 748 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this 749 * is always the case. 750 */ 751 if (zfs_flags & ZFS_DEBUG_TRIM) { 752 metaslab_t *msp = ta->trim_msp; 753 VERIFY0(metaslab_load(msp)); 754 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 755 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 756 } 757 758 ASSERT(vd->vdev_ops->vdev_op_leaf); 759 vdev_xlate(vd, &logical_rs, &physical_rs); 760 761 IMPLY(vd->vdev_top == vd, 762 logical_rs.rs_start == physical_rs.rs_start); 763 IMPLY(vd->vdev_top == vd, 764 logical_rs.rs_end == physical_rs.rs_end); 765 766 /* 767 * Only a manual trim will be traversing the vdev sequentially. 768 * For an auto trim all valid ranges should be added. 769 */ 770 if (ta->trim_type == TRIM_TYPE_MANUAL) { 771 772 /* Only add segments that we have not visited yet */ 773 if (physical_rs.rs_end <= vd->vdev_trim_last_offset) 774 return; 775 776 /* Pick up where we left off mid-range. */ 777 if (vd->vdev_trim_last_offset > physical_rs.rs_start) { 778 ASSERT3U(physical_rs.rs_end, >, 779 vd->vdev_trim_last_offset); 780 physical_rs.rs_start = vd->vdev_trim_last_offset; 781 } 782 } 783 784 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 785 786 /* 787 * With raidz, it's possible that the logical range does not live on 788 * this leaf vdev. We only add the physical range to this vdev's if it 789 * has a length greater than 0. 790 */ 791 if (physical_rs.rs_end > physical_rs.rs_start) { 792 range_tree_add(ta->trim_tree, physical_rs.rs_start, 793 physical_rs.rs_end - physical_rs.rs_start); 794 } else { 795 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 796 } 797 } 798 799 /* 800 * Each manual TRIM thread is responsible for trimming the unallocated 801 * space for each leaf vdev. This is accomplished by sequentially iterating 802 * over its top-level metaslabs and issuing TRIM I/O for the space described 803 * by its ms_allocatable. While a metaslab is undergoing trimming it is 804 * not eligible for new allocations. 805 */ 806 static void 807 vdev_trim_thread(void *arg) 808 { 809 vdev_t *vd = arg; 810 spa_t *spa = vd->vdev_spa; 811 trim_args_t ta; 812 int error = 0; 813 814 /* 815 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by 816 * vdev_trim(). Wait for the updated values to be reflected 817 * in the zap in order to start with the requested settings. 818 */ 819 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 820 821 ASSERT(vdev_is_concrete(vd)); 822 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 823 824 vd->vdev_trim_last_offset = 0; 825 vd->vdev_trim_rate = 0; 826 vd->vdev_trim_partial = 0; 827 vd->vdev_trim_secure = 0; 828 829 VERIFY0(vdev_trim_load(vd)); 830 831 ta.trim_vdev = vd; 832 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 833 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min; 834 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 835 ta.trim_type = TRIM_TYPE_MANUAL; 836 ta.trim_flags = 0; 837 838 /* 839 * When a secure TRIM has been requested infer that the intent 840 * is that everything must be trimmed. Override the default 841 * minimum TRIM size to prevent ranges from being skipped. 842 */ 843 if (vd->vdev_trim_secure) { 844 ta.trim_flags |= ZIO_TRIM_SECURE; 845 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 846 } 847 848 uint64_t ms_count = 0; 849 for (uint64_t i = 0; !vd->vdev_detached && 850 i < vd->vdev_top->vdev_ms_count; i++) { 851 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 852 853 /* 854 * If we've expanded the top-level vdev or it's our 855 * first pass, calculate our progress. 856 */ 857 if (vd->vdev_top->vdev_ms_count != ms_count) { 858 vdev_trim_calculate_progress(vd); 859 ms_count = vd->vdev_top->vdev_ms_count; 860 } 861 862 spa_config_exit(spa, SCL_CONFIG, FTAG); 863 metaslab_disable(msp); 864 mutex_enter(&msp->ms_lock); 865 VERIFY0(metaslab_load(msp)); 866 867 /* 868 * If a partial TRIM was requested skip metaslabs which have 869 * never been initialized and thus have never been written. 870 */ 871 if (msp->ms_sm == NULL && vd->vdev_trim_partial) { 872 mutex_exit(&msp->ms_lock); 873 metaslab_enable(msp, B_FALSE, B_FALSE); 874 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 875 vdev_trim_calculate_progress(vd); 876 continue; 877 } 878 879 ta.trim_msp = msp; 880 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta); 881 range_tree_vacate(msp->ms_trim, NULL, NULL); 882 mutex_exit(&msp->ms_lock); 883 884 error = vdev_trim_ranges(&ta); 885 metaslab_enable(msp, B_TRUE, B_FALSE); 886 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 887 888 range_tree_vacate(ta.trim_tree, NULL, NULL); 889 if (error != 0) 890 break; 891 } 892 893 spa_config_exit(spa, SCL_CONFIG, FTAG); 894 895 range_tree_destroy(ta.trim_tree); 896 897 mutex_enter(&vd->vdev_trim_lock); 898 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 899 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 900 vd->vdev_trim_rate, vd->vdev_trim_partial, 901 vd->vdev_trim_secure); 902 } 903 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0); 904 905 /* 906 * Drop the vdev_trim_lock while we sync out the txg since it's 907 * possible that a device might be trying to come online and must 908 * check to see if it needs to restart a trim. That thread will be 909 * holding the spa_config_lock which would prevent the txg_wait_synced 910 * from completing. 911 */ 912 mutex_exit(&vd->vdev_trim_lock); 913 txg_wait_synced(spa_get_dsl(spa), 0); 914 mutex_enter(&vd->vdev_trim_lock); 915 916 vd->vdev_trim_thread = NULL; 917 cv_broadcast(&vd->vdev_trim_cv); 918 mutex_exit(&vd->vdev_trim_lock); 919 } 920 921 /* 922 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock, 923 * the vdev_t must be a leaf and cannot already be manually trimming. 924 */ 925 void 926 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure) 927 { 928 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 929 ASSERT(vd->vdev_ops->vdev_op_leaf); 930 ASSERT(vdev_is_concrete(vd)); 931 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 932 ASSERT(!vd->vdev_detached); 933 ASSERT(!vd->vdev_trim_exit_wanted); 934 ASSERT(!vd->vdev_top->vdev_removing); 935 936 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure); 937 vd->vdev_trim_thread = thread_create(NULL, 0, 938 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 939 } 940 941 /* 942 * Wait for the trimming thread to be terminated (canceled or stopped). 943 */ 944 static void 945 vdev_trim_stop_wait_impl(vdev_t *vd) 946 { 947 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 948 949 while (vd->vdev_trim_thread != NULL) 950 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock); 951 952 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 953 vd->vdev_trim_exit_wanted = B_FALSE; 954 } 955 956 /* 957 * Wait for vdev trim threads which were listed to cleanly exit. 958 */ 959 void 960 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list) 961 { 962 vdev_t *vd; 963 964 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 965 966 while ((vd = list_remove_head(vd_list)) != NULL) { 967 mutex_enter(&vd->vdev_trim_lock); 968 vdev_trim_stop_wait_impl(vd); 969 mutex_exit(&vd->vdev_trim_lock); 970 } 971 } 972 973 /* 974 * Stop trimming a device, with the resultant trimming state being tgt_state. 975 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is 976 * provided the stopping vdev is inserted in to the list. Callers are then 977 * required to call vdev_trim_stop_wait() to block for all the trim threads 978 * to exit. The caller must hold vdev_trim_lock and must not be writing to 979 * the spa config, as the trimming thread may try to enter the config as a 980 * reader before exiting. 981 */ 982 void 983 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list) 984 { 985 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 986 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 987 ASSERT(vd->vdev_ops->vdev_op_leaf); 988 ASSERT(vdev_is_concrete(vd)); 989 990 /* 991 * Allow cancel requests to proceed even if the trim thread has 992 * stopped. 993 */ 994 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED) 995 return; 996 997 vdev_trim_change_state(vd, tgt_state, 0, 0, 0); 998 vd->vdev_trim_exit_wanted = B_TRUE; 999 1000 if (vd_list == NULL) { 1001 vdev_trim_stop_wait_impl(vd); 1002 } else { 1003 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1004 list_insert_tail(vd_list, vd); 1005 } 1006 } 1007 1008 /* 1009 * Requests that all listed vdevs stop trimming. 1010 */ 1011 static void 1012 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state, 1013 list_t *vd_list) 1014 { 1015 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 1016 mutex_enter(&vd->vdev_trim_lock); 1017 vdev_trim_stop(vd, tgt_state, vd_list); 1018 mutex_exit(&vd->vdev_trim_lock); 1019 return; 1020 } 1021 1022 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1023 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state, 1024 vd_list); 1025 } 1026 } 1027 1028 /* 1029 * Convenience function to stop trimming of a vdev tree and set all trim 1030 * thread pointers to NULL. 1031 */ 1032 void 1033 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state) 1034 { 1035 spa_t *spa = vd->vdev_spa; 1036 list_t vd_list; 1037 1038 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1039 1040 list_create(&vd_list, sizeof (vdev_t), 1041 offsetof(vdev_t, vdev_trim_node)); 1042 1043 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list); 1044 vdev_trim_stop_wait(spa, &vd_list); 1045 1046 if (vd->vdev_spa->spa_sync_on) { 1047 /* Make sure that our state has been synced to disk */ 1048 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1049 } 1050 1051 list_destroy(&vd_list); 1052 } 1053 1054 /* 1055 * Conditionally restarts a manual TRIM given its on-disk state. 1056 */ 1057 void 1058 vdev_trim_restart(vdev_t *vd) 1059 { 1060 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1061 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 1062 1063 if (vd->vdev_leaf_zap != 0) { 1064 mutex_enter(&vd->vdev_trim_lock); 1065 uint64_t trim_state = VDEV_TRIM_NONE; 1066 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1067 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 1068 sizeof (trim_state), 1, &trim_state); 1069 ASSERT(err == 0 || err == ENOENT); 1070 vd->vdev_trim_state = trim_state; 1071 1072 uint64_t timestamp = 0; 1073 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1074 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME, 1075 sizeof (timestamp), 1, ×tamp); 1076 ASSERT(err == 0 || err == ENOENT); 1077 vd->vdev_trim_action_time = (time_t)timestamp; 1078 1079 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED || 1080 vd->vdev_offline) { 1081 /* load progress for reporting, but don't resume */ 1082 VERIFY0(vdev_trim_load(vd)); 1083 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE && 1084 vdev_writeable(vd) && !vd->vdev_top->vdev_removing && 1085 vd->vdev_trim_thread == NULL) { 1086 VERIFY0(vdev_trim_load(vd)); 1087 vdev_trim(vd, vd->vdev_trim_rate, 1088 vd->vdev_trim_partial, vd->vdev_trim_secure); 1089 } 1090 1091 mutex_exit(&vd->vdev_trim_lock); 1092 } 1093 1094 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1095 vdev_trim_restart(vd->vdev_child[i]); 1096 } 1097 } 1098 1099 /* 1100 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that 1101 * every TRIM range is contained within ms_allocatable. 1102 */ 1103 static void 1104 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size) 1105 { 1106 trim_args_t *ta = arg; 1107 metaslab_t *msp = ta->trim_msp; 1108 1109 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 1110 VERIFY3U(msp->ms_disabled, >, 0); 1111 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 1112 } 1113 1114 /* 1115 * Each automatic TRIM thread is responsible for managing the trimming of a 1116 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk. 1117 * 1118 * N.B. This behavior is different from a manual TRIM where a thread 1119 * is created for each leaf vdev, instead of each top-level vdev. 1120 */ 1121 static void 1122 vdev_autotrim_thread(void *arg) 1123 { 1124 vdev_t *vd = arg; 1125 spa_t *spa = vd->vdev_spa; 1126 int shift = 0; 1127 1128 mutex_enter(&vd->vdev_autotrim_lock); 1129 ASSERT3P(vd->vdev_top, ==, vd); 1130 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL); 1131 mutex_exit(&vd->vdev_autotrim_lock); 1132 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1133 1134 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max; 1135 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min; 1136 1137 while (!vdev_autotrim_should_stop(vd)) { 1138 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1); 1139 boolean_t issued_trim = B_FALSE; 1140 1141 /* 1142 * All of the metaslabs are divided in to groups of size 1143 * num_metaslabs / zfs_trim_txg_batch. Each of these groups 1144 * is composed of metaslabs which are spread evenly over the 1145 * device. 1146 * 1147 * For example, when zfs_trim_txg_batch = 32 (default) then 1148 * group 0 will contain metaslabs 0, 32, 64, ...; 1149 * group 1 will contain metaslabs 1, 33, 65, ...; 1150 * group 2 will contain metaslabs 2, 34, 66, ...; and so on. 1151 * 1152 * On each pass through the while() loop one of these groups 1153 * is selected. This is accomplished by using a shift value 1154 * to select the starting metaslab, then striding over the 1155 * metaslabs using the zfs_trim_txg_batch size. This is 1156 * done to accomplish two things. 1157 * 1158 * 1) By dividing the metaslabs into groups, and making sure 1159 * that each group takes a minimum of one txg to process. 1160 * Then zfs_trim_txg_batch controls the minimum number of 1161 * txgs which must occur before a metaslab is revisited. 1162 * 1163 * 2) Selecting non-consecutive metaslabs distributes the 1164 * TRIM commands for a group evenly over the entire device. 1165 * This can be advantageous for certain types of devices. 1166 */ 1167 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count; 1168 i += txgs_per_trim) { 1169 metaslab_t *msp = vd->vdev_ms[i]; 1170 range_tree_t *trim_tree; 1171 1172 spa_config_exit(spa, SCL_CONFIG, FTAG); 1173 metaslab_disable(msp); 1174 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1175 1176 mutex_enter(&msp->ms_lock); 1177 1178 /* 1179 * Skip the metaslab when it has never been allocated 1180 * or when there are no recent frees to trim. 1181 */ 1182 if (msp->ms_sm == NULL || 1183 range_tree_is_empty(msp->ms_trim)) { 1184 mutex_exit(&msp->ms_lock); 1185 metaslab_enable(msp, B_FALSE, B_FALSE); 1186 continue; 1187 } 1188 1189 /* 1190 * Skip the metaslab when it has already been disabled. 1191 * This may happen when a manual TRIM or initialize 1192 * operation is running concurrently. In the case 1193 * of a manual TRIM, the ms_trim tree will have been 1194 * vacated. Only ranges added after the manual TRIM 1195 * disabled the metaslab will be included in the tree. 1196 * These will be processed when the automatic TRIM 1197 * next revisits this metaslab. 1198 */ 1199 if (msp->ms_disabled > 1) { 1200 mutex_exit(&msp->ms_lock); 1201 metaslab_enable(msp, B_FALSE, B_FALSE); 1202 continue; 1203 } 1204 1205 /* 1206 * Allocate an empty range tree which is swapped in 1207 * for the existing ms_trim tree while it is processed. 1208 */ 1209 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 1210 0, 0); 1211 range_tree_swap(&msp->ms_trim, &trim_tree); 1212 ASSERT(range_tree_is_empty(msp->ms_trim)); 1213 1214 /* 1215 * There are two cases when constructing the per-vdev 1216 * trim trees for a metaslab. If the top-level vdev 1217 * has no children then it is also a leaf and should 1218 * be trimmed. Otherwise our children are the leaves 1219 * and a trim tree should be constructed for each. 1220 */ 1221 trim_args_t *tap; 1222 uint64_t children = vd->vdev_children; 1223 if (children == 0) { 1224 children = 1; 1225 tap = kmem_zalloc(sizeof (trim_args_t) * 1226 children, KM_SLEEP); 1227 tap[0].trim_vdev = vd; 1228 } else { 1229 tap = kmem_zalloc(sizeof (trim_args_t) * 1230 children, KM_SLEEP); 1231 1232 for (uint64_t c = 0; c < children; c++) { 1233 tap[c].trim_vdev = vd->vdev_child[c]; 1234 } 1235 } 1236 1237 for (uint64_t c = 0; c < children; c++) { 1238 trim_args_t *ta = &tap[c]; 1239 vdev_t *cvd = ta->trim_vdev; 1240 1241 ta->trim_msp = msp; 1242 ta->trim_extent_bytes_max = extent_bytes_max; 1243 ta->trim_extent_bytes_min = extent_bytes_min; 1244 ta->trim_type = TRIM_TYPE_AUTO; 1245 ta->trim_flags = 0; 1246 1247 if (cvd->vdev_detached || 1248 !vdev_writeable(cvd) || 1249 !cvd->vdev_has_trim || 1250 cvd->vdev_trim_thread != NULL) { 1251 continue; 1252 } 1253 1254 /* 1255 * When a device has an attached hot spare, or 1256 * is being replaced it will not be trimmed. 1257 * This is done to avoid adding additional 1258 * stress to a potentially unhealthy device, 1259 * and to minimize the required rebuild time. 1260 */ 1261 if (!cvd->vdev_ops->vdev_op_leaf) 1262 continue; 1263 1264 ta->trim_tree = range_tree_create(NULL, 1265 RANGE_SEG64, NULL, 0, 0); 1266 range_tree_walk(trim_tree, 1267 vdev_trim_range_add, ta); 1268 } 1269 1270 mutex_exit(&msp->ms_lock); 1271 spa_config_exit(spa, SCL_CONFIG, FTAG); 1272 1273 /* 1274 * Issue the TRIM I/Os for all ranges covered by the 1275 * TRIM trees. These ranges are safe to TRIM because 1276 * no new allocations will be performed until the call 1277 * to metaslab_enabled() below. 1278 */ 1279 for (uint64_t c = 0; c < children; c++) { 1280 trim_args_t *ta = &tap[c]; 1281 1282 /* 1283 * Always yield to a manual TRIM if one has 1284 * been started for the child vdev. 1285 */ 1286 if (ta->trim_tree == NULL || 1287 ta->trim_vdev->vdev_trim_thread != NULL) { 1288 continue; 1289 } 1290 1291 /* 1292 * After this point metaslab_enable() must be 1293 * called with the sync flag set. This is done 1294 * here because vdev_trim_ranges() is allowed 1295 * to be interrupted (EINTR) before issuing all 1296 * of the required TRIM I/Os. 1297 */ 1298 issued_trim = B_TRUE; 1299 1300 int error = vdev_trim_ranges(ta); 1301 if (error) 1302 break; 1303 } 1304 1305 /* 1306 * Verify every range which was trimmed is still 1307 * contained within the ms_allocatable tree. 1308 */ 1309 if (zfs_flags & ZFS_DEBUG_TRIM) { 1310 mutex_enter(&msp->ms_lock); 1311 VERIFY0(metaslab_load(msp)); 1312 VERIFY3P(tap[0].trim_msp, ==, msp); 1313 range_tree_walk(trim_tree, 1314 vdev_trim_range_verify, &tap[0]); 1315 mutex_exit(&msp->ms_lock); 1316 } 1317 1318 range_tree_vacate(trim_tree, NULL, NULL); 1319 range_tree_destroy(trim_tree); 1320 1321 metaslab_enable(msp, issued_trim, B_FALSE); 1322 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1323 1324 for (uint64_t c = 0; c < children; c++) { 1325 trim_args_t *ta = &tap[c]; 1326 1327 if (ta->trim_tree == NULL) 1328 continue; 1329 1330 range_tree_vacate(ta->trim_tree, NULL, NULL); 1331 range_tree_destroy(ta->trim_tree); 1332 } 1333 1334 kmem_free(tap, sizeof (trim_args_t) * children); 1335 } 1336 1337 spa_config_exit(spa, SCL_CONFIG, FTAG); 1338 1339 /* 1340 * After completing the group of metaslabs wait for the next 1341 * open txg. This is done to make sure that a minimum of 1342 * zfs_trim_txg_batch txgs will occur before these metaslabs 1343 * are trimmed again. 1344 */ 1345 txg_wait_open(spa_get_dsl(spa), 0, issued_trim); 1346 1347 shift++; 1348 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1349 } 1350 1351 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1352 vdev_t *cvd = vd->vdev_child[c]; 1353 mutex_enter(&cvd->vdev_trim_io_lock); 1354 1355 while (cvd->vdev_trim_inflight[1] > 0) { 1356 cv_wait(&cvd->vdev_trim_io_cv, 1357 &cvd->vdev_trim_io_lock); 1358 } 1359 mutex_exit(&cvd->vdev_trim_io_lock); 1360 } 1361 1362 spa_config_exit(spa, SCL_CONFIG, FTAG); 1363 1364 /* 1365 * When exiting because the autotrim property was set to off, then 1366 * abandon any unprocessed ms_trim ranges to reclaim the memory. 1367 */ 1368 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) { 1369 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 1370 metaslab_t *msp = vd->vdev_ms[i]; 1371 1372 mutex_enter(&msp->ms_lock); 1373 range_tree_vacate(msp->ms_trim, NULL, NULL); 1374 mutex_exit(&msp->ms_lock); 1375 } 1376 } 1377 1378 mutex_enter(&vd->vdev_autotrim_lock); 1379 ASSERT(vd->vdev_autotrim_thread != NULL); 1380 vd->vdev_autotrim_thread = NULL; 1381 cv_broadcast(&vd->vdev_autotrim_cv); 1382 mutex_exit(&vd->vdev_autotrim_lock); 1383 } 1384 1385 /* 1386 * Starts an autotrim thread, if needed, for each top-level vdev which can be 1387 * trimmed. A top-level vdev which has been evacuated will never be trimmed. 1388 */ 1389 void 1390 vdev_autotrim(spa_t *spa) 1391 { 1392 vdev_t *root_vd = spa->spa_root_vdev; 1393 1394 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1395 vdev_t *tvd = root_vd->vdev_child[i]; 1396 1397 mutex_enter(&tvd->vdev_autotrim_lock); 1398 if (vdev_writeable(tvd) && !tvd->vdev_removing && 1399 tvd->vdev_autotrim_thread == NULL) { 1400 ASSERT3P(tvd->vdev_top, ==, tvd); 1401 1402 tvd->vdev_autotrim_thread = thread_create(NULL, 0, 1403 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN, 1404 maxclsyspri); 1405 ASSERT(tvd->vdev_autotrim_thread != NULL); 1406 } 1407 mutex_exit(&tvd->vdev_autotrim_lock); 1408 } 1409 } 1410 1411 /* 1412 * Wait for the vdev_autotrim_thread associated with the passed top-level 1413 * vdev to be terminated (canceled or stopped). 1414 */ 1415 void 1416 vdev_autotrim_stop_wait(vdev_t *tvd) 1417 { 1418 mutex_enter(&tvd->vdev_autotrim_lock); 1419 if (tvd->vdev_autotrim_thread != NULL) { 1420 tvd->vdev_autotrim_exit_wanted = B_TRUE; 1421 1422 while (tvd->vdev_autotrim_thread != NULL) { 1423 cv_wait(&tvd->vdev_autotrim_cv, 1424 &tvd->vdev_autotrim_lock); 1425 } 1426 1427 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL); 1428 tvd->vdev_autotrim_exit_wanted = B_FALSE; 1429 } 1430 mutex_exit(&tvd->vdev_autotrim_lock); 1431 } 1432 1433 /* 1434 * Wait for all of the vdev_autotrim_thread associated with the pool to 1435 * be terminated (canceled or stopped). 1436 */ 1437 void 1438 vdev_autotrim_stop_all(spa_t *spa) 1439 { 1440 vdev_t *root_vd = spa->spa_root_vdev; 1441 1442 for (uint64_t i = 0; i < root_vd->vdev_children; i++) 1443 vdev_autotrim_stop_wait(root_vd->vdev_child[i]); 1444 } 1445 1446 /* 1447 * Conditionally restart all of the vdev_autotrim_thread's for the pool. 1448 */ 1449 void 1450 vdev_autotrim_restart(spa_t *spa) 1451 { 1452 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1453 1454 if (spa->spa_autotrim) 1455 vdev_autotrim(spa); 1456 } 1457