1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/zap.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/metaslab.h> 34 #include <sys/metaslab_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/txg.h> 37 #include <sys/avl.h> 38 #include <sys/bpobj.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/arc.h> 43 #include <sys/zfeature.h> 44 #include <sys/vdev_indirect_births.h> 45 #include <sys/vdev_indirect_mapping.h> 46 #include <sys/abd.h> 47 #include <sys/vdev_initialize.h> 48 #include <sys/vdev_trim.h> 49 50 /* 51 * This file contains the necessary logic to remove vdevs from a 52 * storage pool. Currently, the only devices that can be removed 53 * are log, cache, and spare devices; and top level vdevs from a pool 54 * w/o raidz. (Note that members of a mirror can also be removed 55 * by the detach operation.) 56 * 57 * Log vdevs are removed by evacuating them and then turning the vdev 58 * into a hole vdev while holding spa config locks. 59 * 60 * Top level vdevs are removed and converted into an indirect vdev via 61 * a multi-step process: 62 * 63 * - Disable allocations from this device (spa_vdev_remove_top). 64 * 65 * - From a new thread (spa_vdev_remove_thread), copy data from 66 * the removing vdev to a different vdev. The copy happens in open 67 * context (spa_vdev_copy_impl) and issues a sync task 68 * (vdev_mapping_sync) so the sync thread can update the partial 69 * indirect mappings in core and on disk. 70 * 71 * - If a free happens during a removal, it is freed from the 72 * removing vdev, and if it has already been copied, from the new 73 * location as well (free_from_removing_vdev). 74 * 75 * - After the removal is completed, the copy thread converts the vdev 76 * into an indirect vdev (vdev_remove_complete) before instructing 77 * the sync thread to destroy the space maps and finish the removal 78 * (spa_finish_removal). 79 */ 80 81 typedef struct vdev_copy_arg { 82 metaslab_t *vca_msp; 83 uint64_t vca_outstanding_bytes; 84 kcondvar_t vca_cv; 85 kmutex_t vca_lock; 86 } vdev_copy_arg_t; 87 88 /* 89 * The maximum amount of memory we can use for outstanding i/o while 90 * doing a device removal. This determines how much i/o we can have 91 * in flight concurrently. 92 */ 93 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024; 94 95 /* 96 * The largest contiguous segment that we will attempt to allocate when 97 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If 98 * there is a performance problem with attempting to allocate large blocks, 99 * consider decreasing this. 100 * 101 * Note: we will issue I/Os of up to this size. The mpt driver does not 102 * respond well to I/Os larger than 1MB, so we set this to 1MB. (When 103 * mpt processes an I/O larger than 1MB, it needs to do an allocation of 104 * 2 physically contiguous pages; if this allocation fails, mpt will drop 105 * the I/O and hang the device.) 106 */ 107 int zfs_remove_max_segment = 1024 * 1024; 108 109 /* 110 * Allow a remap segment to span free chunks of at most this size. The main 111 * impact of a larger span is that we will read and write larger, more 112 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth 113 * for iops. The value here was chosen to align with 114 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular 115 * reads (but there's no reason it has to be the same). 116 * 117 * Additionally, a higher span will have the following relatively minor 118 * effects: 119 * - the mapping will be smaller, since one entry can cover more allocated 120 * segments 121 * - more of the fragmentation in the removing device will be preserved 122 * - we'll do larger allocations, which may fail and fall back on smaller 123 * allocations 124 */ 125 int vdev_removal_max_span = 32 * 1024; 126 127 /* 128 * This is used by the test suite so that it can ensure that certain 129 * actions happen while in the middle of a removal. 130 */ 131 int zfs_removal_suspend_progress = 0; 132 133 #define VDEV_REMOVAL_ZAP_OBJS "lzap" 134 135 static void spa_vdev_remove_thread(void *arg); 136 137 static void 138 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx) 139 { 140 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset, 141 DMU_POOL_DIRECTORY_OBJECT, 142 DMU_POOL_REMOVING, sizeof (uint64_t), 143 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 144 &spa->spa_removing_phys, tx)); 145 } 146 147 static nvlist_t * 148 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 149 { 150 for (int i = 0; i < count; i++) { 151 uint64_t guid = 152 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID); 153 154 if (guid == target_guid) 155 return (nvpp[i]); 156 } 157 158 return (NULL); 159 } 160 161 static void 162 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 163 nvlist_t *dev_to_remove) 164 { 165 nvlist_t **newdev = NULL; 166 167 if (count > 1) 168 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 169 170 for (int i = 0, j = 0; i < count; i++) { 171 if (dev[i] == dev_to_remove) 172 continue; 173 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 174 } 175 176 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 177 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 178 179 for (int i = 0; i < count - 1; i++) 180 nvlist_free(newdev[i]); 181 182 if (count > 1) 183 kmem_free(newdev, (count - 1) * sizeof (void *)); 184 } 185 186 static spa_vdev_removal_t * 187 spa_vdev_removal_create(vdev_t *vd) 188 { 189 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP); 190 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL); 191 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL); 192 svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 193 svr->svr_vdev_id = vd->vdev_id; 194 195 for (int i = 0; i < TXG_SIZE; i++) { 196 svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL, 197 0, 0); 198 list_create(&svr->svr_new_segments[i], 199 sizeof (vdev_indirect_mapping_entry_t), 200 offsetof(vdev_indirect_mapping_entry_t, vime_node)); 201 } 202 203 return (svr); 204 } 205 206 void 207 spa_vdev_removal_destroy(spa_vdev_removal_t *svr) 208 { 209 for (int i = 0; i < TXG_SIZE; i++) { 210 ASSERT0(svr->svr_bytes_done[i]); 211 ASSERT0(svr->svr_max_offset_to_sync[i]); 212 range_tree_destroy(svr->svr_frees[i]); 213 list_destroy(&svr->svr_new_segments[i]); 214 } 215 216 range_tree_destroy(svr->svr_allocd_segs); 217 mutex_destroy(&svr->svr_lock); 218 cv_destroy(&svr->svr_cv); 219 kmem_free(svr, sizeof (*svr)); 220 } 221 222 /* 223 * This is called as a synctask in the txg in which we will mark this vdev 224 * as removing (in the config stored in the MOS). 225 * 226 * It begins the evacuation of a toplevel vdev by: 227 * - initializing the spa_removing_phys which tracks this removal 228 * - computing the amount of space to remove for accounting purposes 229 * - dirtying all dbufs in the spa_config_object 230 * - creating the spa_vdev_removal 231 * - starting the spa_vdev_remove_thread 232 */ 233 static void 234 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx) 235 { 236 int vdev_id = (uintptr_t)arg; 237 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 238 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 239 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 240 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset; 241 spa_vdev_removal_t *svr = NULL; 242 uint64_t txg = dmu_tx_get_txg(tx); 243 244 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops); 245 svr = spa_vdev_removal_create(vd); 246 247 ASSERT(vd->vdev_removing); 248 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 249 250 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 251 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 252 /* 253 * By activating the OBSOLETE_COUNTS feature, we prevent 254 * the pool from being downgraded and ensure that the 255 * refcounts are precise. 256 */ 257 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 258 uint64_t one = 1; 259 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap, 260 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1, 261 &one, tx)); 262 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0); 263 } 264 265 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx); 266 vd->vdev_indirect_mapping = 267 vdev_indirect_mapping_open(mos, vic->vic_mapping_object); 268 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx); 269 vd->vdev_indirect_births = 270 vdev_indirect_births_open(mos, vic->vic_births_object); 271 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id; 272 spa->spa_removing_phys.sr_start_time = gethrestime_sec(); 273 spa->spa_removing_phys.sr_end_time = 0; 274 spa->spa_removing_phys.sr_state = DSS_SCANNING; 275 spa->spa_removing_phys.sr_to_copy = 0; 276 spa->spa_removing_phys.sr_copied = 0; 277 278 /* 279 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because 280 * there may be space in the defer tree, which is free, but still 281 * counted in vs_alloc. 282 */ 283 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 284 metaslab_t *ms = vd->vdev_ms[i]; 285 if (ms->ms_sm == NULL) 286 continue; 287 288 spa->spa_removing_phys.sr_to_copy += 289 metaslab_allocated_space(ms); 290 291 /* 292 * Space which we are freeing this txg does not need to 293 * be copied. 294 */ 295 spa->spa_removing_phys.sr_to_copy -= 296 range_tree_space(ms->ms_freeing); 297 298 ASSERT0(range_tree_space(ms->ms_freed)); 299 for (int t = 0; t < TXG_SIZE; t++) 300 ASSERT0(range_tree_space(ms->ms_allocating[t])); 301 } 302 303 /* 304 * Sync tasks are called before metaslab_sync(), so there should 305 * be no already-synced metaslabs in the TXG_CLEAN list. 306 */ 307 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL); 308 309 spa_sync_removing_state(spa, tx); 310 311 /* 312 * All blocks that we need to read the most recent mapping must be 313 * stored on concrete vdevs. Therefore, we must dirty anything that 314 * is read before spa_remove_init(). Specifically, the 315 * spa_config_object. (Note that although we already modified the 316 * spa_config_object in spa_sync_removing_state, that may not have 317 * modified all blocks of the object.) 318 */ 319 dmu_object_info_t doi; 320 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi)); 321 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) { 322 dmu_buf_t *dbuf; 323 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT, 324 offset, FTAG, &dbuf, 0)); 325 dmu_buf_will_dirty(dbuf, tx); 326 offset += dbuf->db_size; 327 dmu_buf_rele(dbuf, FTAG); 328 } 329 330 /* 331 * Now that we've allocated the im_object, dirty the vdev to ensure 332 * that the object gets written to the config on disk. 333 */ 334 vdev_config_dirty(vd); 335 336 zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu " 337 "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx), 338 vic->vic_mapping_object); 339 340 spa_history_log_internal(spa, "vdev remove started", tx, 341 "%s vdev %llu %s", spa_name(spa), vd->vdev_id, 342 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 343 /* 344 * Setting spa_vdev_removal causes subsequent frees to call 345 * free_from_removing_vdev(). Note that we don't need any locking 346 * because we are the sync thread, and metaslab_free_impl() is only 347 * called from syncing context (potentially from a zio taskq thread, 348 * but in any case only when there are outstanding free i/os, which 349 * there are not). 350 */ 351 ASSERT3P(spa->spa_vdev_removal, ==, NULL); 352 spa->spa_vdev_removal = svr; 353 svr->svr_thread = thread_create(NULL, 0, 354 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri); 355 } 356 357 /* 358 * When we are opening a pool, we must read the mapping for each 359 * indirect vdev in order from most recently removed to least 360 * recently removed. We do this because the blocks for the mapping 361 * of older indirect vdevs may be stored on more recently removed vdevs. 362 * In order to read each indirect mapping object, we must have 363 * initialized all more recently removed vdevs. 364 */ 365 int 366 spa_remove_init(spa_t *spa) 367 { 368 int error; 369 370 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset, 371 DMU_POOL_DIRECTORY_OBJECT, 372 DMU_POOL_REMOVING, sizeof (uint64_t), 373 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 374 &spa->spa_removing_phys); 375 376 if (error == ENOENT) { 377 spa->spa_removing_phys.sr_state = DSS_NONE; 378 spa->spa_removing_phys.sr_removing_vdev = -1; 379 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 380 spa->spa_indirect_vdevs_loaded = B_TRUE; 381 return (0); 382 } else if (error != 0) { 383 return (error); 384 } 385 386 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) { 387 /* 388 * We are currently removing a vdev. Create and 389 * initialize a spa_vdev_removal_t from the bonus 390 * buffer of the removing vdevs vdev_im_object, and 391 * initialize its partial mapping. 392 */ 393 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 394 vdev_t *vd = vdev_lookup_top(spa, 395 spa->spa_removing_phys.sr_removing_vdev); 396 397 if (vd == NULL) { 398 spa_config_exit(spa, SCL_STATE, FTAG); 399 return (EINVAL); 400 } 401 402 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 403 404 ASSERT(vdev_is_concrete(vd)); 405 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd); 406 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id); 407 ASSERT(vd->vdev_removing); 408 409 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 410 spa->spa_meta_objset, vic->vic_mapping_object); 411 vd->vdev_indirect_births = vdev_indirect_births_open( 412 spa->spa_meta_objset, vic->vic_births_object); 413 spa_config_exit(spa, SCL_STATE, FTAG); 414 415 spa->spa_vdev_removal = svr; 416 } 417 418 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 419 uint64_t indirect_vdev_id = 420 spa->spa_removing_phys.sr_prev_indirect_vdev; 421 while (indirect_vdev_id != UINT64_MAX) { 422 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id); 423 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 424 425 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 426 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 427 spa->spa_meta_objset, vic->vic_mapping_object); 428 vd->vdev_indirect_births = vdev_indirect_births_open( 429 spa->spa_meta_objset, vic->vic_births_object); 430 431 indirect_vdev_id = vic->vic_prev_indirect_vdev; 432 } 433 spa_config_exit(spa, SCL_STATE, FTAG); 434 435 /* 436 * Now that we've loaded all the indirect mappings, we can allow 437 * reads from other blocks (e.g. via predictive prefetch). 438 */ 439 spa->spa_indirect_vdevs_loaded = B_TRUE; 440 return (0); 441 } 442 443 void 444 spa_restart_removal(spa_t *spa) 445 { 446 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 447 448 if (svr == NULL) 449 return; 450 451 /* 452 * In general when this function is called there is no 453 * removal thread running. The only scenario where this 454 * is not true is during spa_import() where this function 455 * is called twice [once from spa_import_impl() and 456 * spa_async_resume()]. Thus, in the scenario where we 457 * import a pool that has an ongoing removal we don't 458 * want to spawn a second thread. 459 */ 460 if (svr->svr_thread != NULL) 461 return; 462 463 if (!spa_writeable(spa)) 464 return; 465 466 zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id); 467 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa, 468 0, &p0, TS_RUN, minclsyspri); 469 } 470 471 /* 472 * Process freeing from a device which is in the middle of being removed. 473 * We must handle this carefully so that we attempt to copy freed data, 474 * and we correctly free already-copied data. 475 */ 476 void 477 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size) 478 { 479 spa_t *spa = vd->vdev_spa; 480 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 481 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 482 uint64_t txg = spa_syncing_txg(spa); 483 uint64_t max_offset_yet = 0; 484 485 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 486 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==, 487 vdev_indirect_mapping_object(vim)); 488 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id); 489 490 mutex_enter(&svr->svr_lock); 491 492 /* 493 * Remove the segment from the removing vdev's spacemap. This 494 * ensures that we will not attempt to copy this space (if the 495 * removal thread has not yet visited it), and also ensures 496 * that we know what is actually allocated on the new vdevs 497 * (needed if we cancel the removal). 498 * 499 * Note: we must do the metaslab_free_concrete() with the svr_lock 500 * held, so that the remove_thread can not load this metaslab and then 501 * visit this offset between the time that we metaslab_free_concrete() 502 * and when we check to see if it has been visited. 503 * 504 * Note: The checkpoint flag is set to false as having/taking 505 * a checkpoint and removing a device can't happen at the same 506 * time. 507 */ 508 ASSERT(!spa_has_checkpoint(spa)); 509 metaslab_free_concrete(vd, offset, size, B_FALSE); 510 511 uint64_t synced_size = 0; 512 uint64_t synced_offset = 0; 513 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim); 514 if (offset < max_offset_synced) { 515 /* 516 * The mapping for this offset is already on disk. 517 * Free from the new location. 518 * 519 * Note that we use svr_max_synced_offset because it is 520 * updated atomically with respect to the in-core mapping. 521 * By contrast, vim_max_offset is not. 522 * 523 * This block may be split between a synced entry and an 524 * in-flight or unvisited entry. Only process the synced 525 * portion of it here. 526 */ 527 synced_size = MIN(size, max_offset_synced - offset); 528 synced_offset = offset; 529 530 ASSERT3U(max_offset_yet, <=, max_offset_synced); 531 max_offset_yet = max_offset_synced; 532 533 DTRACE_PROBE3(remove__free__synced, 534 spa_t *, spa, 535 uint64_t, offset, 536 uint64_t, synced_size); 537 538 size -= synced_size; 539 offset += synced_size; 540 } 541 542 /* 543 * Look at all in-flight txgs starting from the currently syncing one 544 * and see if a section of this free is being copied. By starting from 545 * this txg and iterating forward, we might find that this region 546 * was copied in two different txgs and handle it appropriately. 547 */ 548 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) { 549 int txgoff = (txg + i) & TXG_MASK; 550 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) { 551 /* 552 * The mapping for this offset is in flight, and 553 * will be synced in txg+i. 554 */ 555 uint64_t inflight_size = MIN(size, 556 svr->svr_max_offset_to_sync[txgoff] - offset); 557 558 DTRACE_PROBE4(remove__free__inflight, 559 spa_t *, spa, 560 uint64_t, offset, 561 uint64_t, inflight_size, 562 uint64_t, txg + i); 563 564 /* 565 * We copy data in order of increasing offset. 566 * Therefore the max_offset_to_sync[] must increase 567 * (or be zero, indicating that nothing is being 568 * copied in that txg). 569 */ 570 if (svr->svr_max_offset_to_sync[txgoff] != 0) { 571 ASSERT3U(svr->svr_max_offset_to_sync[txgoff], 572 >=, max_offset_yet); 573 max_offset_yet = 574 svr->svr_max_offset_to_sync[txgoff]; 575 } 576 577 /* 578 * We've already committed to copying this segment: 579 * we have allocated space elsewhere in the pool for 580 * it and have an IO outstanding to copy the data. We 581 * cannot free the space before the copy has 582 * completed, or else the copy IO might overwrite any 583 * new data. To free that space, we record the 584 * segment in the appropriate svr_frees tree and free 585 * the mapped space later, in the txg where we have 586 * completed the copy and synced the mapping (see 587 * vdev_mapping_sync). 588 */ 589 range_tree_add(svr->svr_frees[txgoff], 590 offset, inflight_size); 591 size -= inflight_size; 592 offset += inflight_size; 593 594 /* 595 * This space is already accounted for as being 596 * done, because it is being copied in txg+i. 597 * However, if i!=0, then it is being copied in 598 * a future txg. If we crash after this txg 599 * syncs but before txg+i syncs, then the space 600 * will be free. Therefore we must account 601 * for the space being done in *this* txg 602 * (when it is freed) rather than the future txg 603 * (when it will be copied). 604 */ 605 ASSERT3U(svr->svr_bytes_done[txgoff], >=, 606 inflight_size); 607 svr->svr_bytes_done[txgoff] -= inflight_size; 608 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size; 609 } 610 } 611 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]); 612 613 if (size > 0) { 614 /* 615 * The copy thread has not yet visited this offset. Ensure 616 * that it doesn't. 617 */ 618 619 DTRACE_PROBE3(remove__free__unvisited, 620 spa_t *, spa, 621 uint64_t, offset, 622 uint64_t, size); 623 624 if (svr->svr_allocd_segs != NULL) 625 range_tree_clear(svr->svr_allocd_segs, offset, size); 626 627 /* 628 * Since we now do not need to copy this data, for 629 * accounting purposes we have done our job and can count 630 * it as completed. 631 */ 632 svr->svr_bytes_done[txg & TXG_MASK] += size; 633 } 634 mutex_exit(&svr->svr_lock); 635 636 /* 637 * Now that we have dropped svr_lock, process the synced portion 638 * of this free. 639 */ 640 if (synced_size > 0) { 641 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size); 642 643 /* 644 * Note: this can only be called from syncing context, 645 * and the vdev_indirect_mapping is only changed from the 646 * sync thread, so we don't need svr_lock while doing 647 * metaslab_free_impl_cb. 648 */ 649 boolean_t checkpoint = B_FALSE; 650 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size, 651 metaslab_free_impl_cb, &checkpoint); 652 } 653 } 654 655 /* 656 * Stop an active removal and update the spa_removing phys. 657 */ 658 static void 659 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx) 660 { 661 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 662 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa)); 663 664 /* Ensure the removal thread has completed before we free the svr. */ 665 spa_vdev_remove_suspend(spa); 666 667 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED); 668 669 if (state == DSS_FINISHED) { 670 spa_removing_phys_t *srp = &spa->spa_removing_phys; 671 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 672 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 673 674 if (srp->sr_prev_indirect_vdev != UINT64_MAX) { 675 vdev_t *pvd = vdev_lookup_top(spa, 676 srp->sr_prev_indirect_vdev); 677 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops); 678 } 679 680 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev; 681 srp->sr_prev_indirect_vdev = vd->vdev_id; 682 } 683 spa->spa_removing_phys.sr_state = state; 684 spa->spa_removing_phys.sr_end_time = gethrestime_sec(); 685 686 spa->spa_vdev_removal = NULL; 687 spa_vdev_removal_destroy(svr); 688 689 spa_sync_removing_state(spa, tx); 690 691 vdev_config_dirty(spa->spa_root_vdev); 692 } 693 694 static void 695 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size) 696 { 697 vdev_t *vd = arg; 698 vdev_indirect_mark_obsolete(vd, offset, size); 699 boolean_t checkpoint = B_FALSE; 700 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 701 metaslab_free_impl_cb, &checkpoint); 702 } 703 704 /* 705 * On behalf of the removal thread, syncs an incremental bit more of 706 * the indirect mapping to disk and updates the in-memory mapping. 707 * Called as a sync task in every txg that the removal thread makes progress. 708 */ 709 static void 710 vdev_mapping_sync(void *arg, dmu_tx_t *tx) 711 { 712 spa_vdev_removal_t *svr = arg; 713 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 714 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 715 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 716 uint64_t txg = dmu_tx_get_txg(tx); 717 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 718 719 ASSERT(vic->vic_mapping_object != 0); 720 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 721 722 vdev_indirect_mapping_add_entries(vim, 723 &svr->svr_new_segments[txg & TXG_MASK], tx); 724 vdev_indirect_births_add_entry(vd->vdev_indirect_births, 725 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx); 726 727 /* 728 * Free the copied data for anything that was freed while the 729 * mapping entries were in flight. 730 */ 731 mutex_enter(&svr->svr_lock); 732 range_tree_vacate(svr->svr_frees[txg & TXG_MASK], 733 free_mapped_segment_cb, vd); 734 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=, 735 vdev_indirect_mapping_max_offset(vim)); 736 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0; 737 mutex_exit(&svr->svr_lock); 738 739 spa_sync_removing_state(spa, tx); 740 } 741 742 typedef struct vdev_copy_segment_arg { 743 spa_t *vcsa_spa; 744 dva_t *vcsa_dest_dva; 745 uint64_t vcsa_txg; 746 range_tree_t *vcsa_obsolete_segs; 747 } vdev_copy_segment_arg_t; 748 749 static void 750 unalloc_seg(void *arg, uint64_t start, uint64_t size) 751 { 752 vdev_copy_segment_arg_t *vcsa = arg; 753 spa_t *spa = vcsa->vcsa_spa; 754 blkptr_t bp = { 0 }; 755 756 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL); 757 BP_SET_LSIZE(&bp, size); 758 BP_SET_PSIZE(&bp, size); 759 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 760 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF); 761 BP_SET_TYPE(&bp, DMU_OT_NONE); 762 BP_SET_LEVEL(&bp, 0); 763 BP_SET_DEDUP(&bp, 0); 764 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER); 765 766 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva)); 767 DVA_SET_OFFSET(&bp.blk_dva[0], 768 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start); 769 DVA_SET_ASIZE(&bp.blk_dva[0], size); 770 771 zio_free(spa, vcsa->vcsa_txg, &bp); 772 } 773 774 /* 775 * All reads and writes associated with a call to spa_vdev_copy_segment() 776 * are done. 777 */ 778 static void 779 spa_vdev_copy_segment_done(zio_t *zio) 780 { 781 vdev_copy_segment_arg_t *vcsa = zio->io_private; 782 783 range_tree_vacate(vcsa->vcsa_obsolete_segs, 784 unalloc_seg, vcsa); 785 range_tree_destroy(vcsa->vcsa_obsolete_segs); 786 kmem_free(vcsa, sizeof (*vcsa)); 787 788 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa); 789 } 790 791 /* 792 * The write of the new location is done. 793 */ 794 static void 795 spa_vdev_copy_segment_write_done(zio_t *zio) 796 { 797 vdev_copy_arg_t *vca = zio->io_private; 798 799 abd_free(zio->io_abd); 800 801 mutex_enter(&vca->vca_lock); 802 vca->vca_outstanding_bytes -= zio->io_size; 803 cv_signal(&vca->vca_cv); 804 mutex_exit(&vca->vca_lock); 805 } 806 807 /* 808 * The read of the old location is done. The parent zio is the write to 809 * the new location. Allow it to start. 810 */ 811 static void 812 spa_vdev_copy_segment_read_done(zio_t *zio) 813 { 814 zio_nowait(zio_unique_parent(zio)); 815 } 816 817 /* 818 * If the old and new vdevs are mirrors, we will read both sides of the old 819 * mirror, and write each copy to the corresponding side of the new mirror. 820 * If the old and new vdevs have a different number of children, we will do 821 * this as best as possible. Since we aren't verifying checksums, this 822 * ensures that as long as there's a good copy of the data, we'll have a 823 * good copy after the removal, even if there's silent damage to one side 824 * of the mirror. If we're removing a mirror that has some silent damage, 825 * we'll have exactly the same damage in the new location (assuming that 826 * the new location is also a mirror). 827 * 828 * We accomplish this by creating a tree of zio_t's, with as many writes as 829 * there are "children" of the new vdev (a non-redundant vdev counts as one 830 * child, a 2-way mirror has 2 children, etc). Each write has an associated 831 * read from a child of the old vdev. Typically there will be the same 832 * number of children of the old and new vdevs. However, if there are more 833 * children of the new vdev, some child(ren) of the old vdev will be issued 834 * multiple reads. If there are more children of the old vdev, some copies 835 * will be dropped. 836 * 837 * For example, the tree of zio_t's for a 2-way mirror is: 838 * 839 * null 840 * / \ 841 * write(new vdev, child 0) write(new vdev, child 1) 842 * | | 843 * read(old vdev, child 0) read(old vdev, child 1) 844 * 845 * Child zio's complete before their parents complete. However, zio's 846 * created with zio_vdev_child_io() may be issued before their children 847 * complete. In this case we need to make sure that the children (reads) 848 * complete before the parents (writes) are *issued*. We do this by not 849 * calling zio_nowait() on each write until its corresponding read has 850 * completed. 851 * 852 * The spa_config_lock must be held while zio's created by 853 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does 854 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null" 855 * zio is needed to release the spa_config_lock after all the reads and 856 * writes complete. (Note that we can't grab the config lock for each read, 857 * because it is not reentrant - we could deadlock with a thread waiting 858 * for a write lock.) 859 */ 860 static void 861 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio, 862 vdev_t *source_vd, uint64_t source_offset, 863 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size) 864 { 865 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0); 866 867 mutex_enter(&vca->vca_lock); 868 vca->vca_outstanding_bytes += size; 869 mutex_exit(&vca->vca_lock); 870 871 abd_t *abd = abd_alloc_for_io(size, B_FALSE); 872 873 vdev_t *source_child_vd; 874 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) { 875 /* 876 * Source and dest are both mirrors. Copy from the same 877 * child id as we are copying to (wrapping around if there 878 * are more dest children than source children). 879 */ 880 source_child_vd = 881 source_vd->vdev_child[dest_id % source_vd->vdev_children]; 882 } else { 883 source_child_vd = source_vd; 884 } 885 886 zio_t *write_zio = zio_vdev_child_io(nzio, NULL, 887 dest_child_vd, dest_offset, abd, size, 888 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL, 889 ZIO_FLAG_CANFAIL, 890 spa_vdev_copy_segment_write_done, vca); 891 892 zio_nowait(zio_vdev_child_io(write_zio, NULL, 893 source_child_vd, source_offset, abd, size, 894 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL, 895 ZIO_FLAG_CANFAIL, 896 spa_vdev_copy_segment_read_done, vca)); 897 } 898 899 /* 900 * Allocate a new location for this segment, and create the zio_t's to 901 * read from the old location and write to the new location. 902 */ 903 static int 904 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs, 905 uint64_t maxalloc, uint64_t txg, 906 vdev_copy_arg_t *vca, zio_alloc_list_t *zal) 907 { 908 metaslab_group_t *mg = vd->vdev_mg; 909 spa_t *spa = vd->vdev_spa; 910 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 911 vdev_indirect_mapping_entry_t *entry; 912 dva_t dst = { 0 }; 913 uint64_t start = range_tree_min(segs); 914 915 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE); 916 917 uint64_t size = range_tree_span(segs); 918 if (range_tree_span(segs) > maxalloc) { 919 /* 920 * We can't allocate all the segments. Prefer to end 921 * the allocation at the end of a segment, thus avoiding 922 * additional split blocks. 923 */ 924 range_seg_max_t search; 925 zfs_btree_index_t where; 926 rs_set_start(&search, segs, start + maxalloc); 927 rs_set_end(&search, segs, start + maxalloc); 928 (void) zfs_btree_find(&segs->rt_root, &search, &where); 929 range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where, 930 &where); 931 if (rs != NULL) { 932 size = rs_get_end(rs, segs) - start; 933 } else { 934 /* 935 * There are no segments that end before maxalloc. 936 * I.e. the first segment is larger than maxalloc, 937 * so we must split it. 938 */ 939 size = maxalloc; 940 } 941 } 942 ASSERT3U(size, <=, maxalloc); 943 944 /* 945 * An allocation class might not have any remaining vdevs or space 946 */ 947 metaslab_class_t *mc = mg->mg_class; 948 if (mc != spa_normal_class(spa) && mc->mc_groups <= 1) 949 mc = spa_normal_class(spa); 950 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0, 951 zal, 0); 952 if (error == ENOSPC && mc != spa_normal_class(spa)) { 953 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size, 954 &dst, 0, NULL, txg, 0, zal, 0); 955 } 956 if (error != 0) 957 return (error); 958 959 /* 960 * Determine the ranges that are not actually needed. Offsets are 961 * relative to the start of the range to be copied (i.e. relative to the 962 * local variable "start"). 963 */ 964 range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 965 0, 0); 966 967 zfs_btree_index_t where; 968 range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where); 969 ASSERT3U(rs_get_start(rs, segs), ==, start); 970 uint64_t prev_seg_end = rs_get_end(rs, segs); 971 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) { 972 if (rs_get_start(rs, segs) >= start + size) { 973 break; 974 } else { 975 range_tree_add(obsolete_segs, 976 prev_seg_end - start, 977 rs_get_start(rs, segs) - prev_seg_end); 978 } 979 prev_seg_end = rs_get_end(rs, segs); 980 } 981 /* We don't end in the middle of an obsolete range */ 982 ASSERT3U(start + size, <=, prev_seg_end); 983 984 range_tree_clear(segs, start, size); 985 986 /* 987 * We can't have any padding of the allocated size, otherwise we will 988 * misunderstand what's allocated, and the size of the mapping. 989 * The caller ensures this will be true by passing in a size that is 990 * aligned to the worst (highest) ashift in the pool. 991 */ 992 ASSERT3U(DVA_GET_ASIZE(&dst), ==, size); 993 994 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP); 995 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start); 996 entry->vime_mapping.vimep_dst = dst; 997 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 998 entry->vime_obsolete_count = range_tree_space(obsolete_segs); 999 } 1000 1001 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP); 1002 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst; 1003 vcsa->vcsa_obsolete_segs = obsolete_segs; 1004 vcsa->vcsa_spa = spa; 1005 vcsa->vcsa_txg = txg; 1006 1007 /* 1008 * See comment before spa_vdev_copy_one_child(). 1009 */ 1010 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1011 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL, 1012 spa_vdev_copy_segment_done, vcsa, 0); 1013 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst)); 1014 if (dest_vd->vdev_ops == &vdev_mirror_ops) { 1015 for (int i = 0; i < dest_vd->vdev_children; i++) { 1016 vdev_t *child = dest_vd->vdev_child[i]; 1017 spa_vdev_copy_one_child(vca, nzio, vd, start, 1018 child, DVA_GET_OFFSET(&dst), i, size); 1019 } 1020 } else { 1021 spa_vdev_copy_one_child(vca, nzio, vd, start, 1022 dest_vd, DVA_GET_OFFSET(&dst), -1, size); 1023 } 1024 zio_nowait(nzio); 1025 1026 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry); 1027 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift); 1028 vdev_dirty(vd, 0, NULL, txg); 1029 1030 return (0); 1031 } 1032 1033 /* 1034 * Complete the removal of a toplevel vdev. This is called as a 1035 * synctask in the same txg that we will sync out the new config (to the 1036 * MOS object) which indicates that this vdev is indirect. 1037 */ 1038 static void 1039 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx) 1040 { 1041 spa_vdev_removal_t *svr = arg; 1042 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1043 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1044 1045 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 1046 1047 for (int i = 0; i < TXG_SIZE; i++) { 1048 ASSERT0(svr->svr_bytes_done[i]); 1049 } 1050 1051 ASSERT3U(spa->spa_removing_phys.sr_copied, ==, 1052 spa->spa_removing_phys.sr_to_copy); 1053 1054 vdev_destroy_spacemaps(vd, tx); 1055 1056 /* destroy leaf zaps, if any */ 1057 ASSERT3P(svr->svr_zaplist, !=, NULL); 1058 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL); 1059 pair != NULL; 1060 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) { 1061 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx); 1062 } 1063 fnvlist_free(svr->svr_zaplist); 1064 1065 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx); 1066 /* vd->vdev_path is not available here */ 1067 spa_history_log_internal(spa, "vdev remove completed", tx, 1068 "%s vdev %llu", spa_name(spa), vd->vdev_id); 1069 } 1070 1071 static void 1072 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist) 1073 { 1074 ASSERT3P(zlist, !=, NULL); 1075 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops); 1076 1077 if (vd->vdev_leaf_zap != 0) { 1078 char zkey[32]; 1079 (void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64, 1080 VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap); 1081 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap); 1082 } 1083 1084 for (uint64_t id = 0; id < vd->vdev_children; id++) { 1085 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist); 1086 } 1087 } 1088 1089 static void 1090 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg) 1091 { 1092 vdev_t *ivd; 1093 dmu_tx_t *tx; 1094 spa_t *spa = vd->vdev_spa; 1095 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1096 1097 /* 1098 * First, build a list of leaf zaps to be destroyed. 1099 * This is passed to the sync context thread, 1100 * which does the actual unlinking. 1101 */ 1102 svr->svr_zaplist = fnvlist_alloc(); 1103 vdev_remove_enlist_zaps(vd, svr->svr_zaplist); 1104 1105 ivd = vdev_add_parent(vd, &vdev_indirect_ops); 1106 ivd->vdev_removing = 0; 1107 1108 vd->vdev_leaf_zap = 0; 1109 1110 vdev_remove_child(ivd, vd); 1111 vdev_compact_children(ivd); 1112 1113 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1114 1115 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1116 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr, 1117 0, ZFS_SPACE_CHECK_NONE, tx); 1118 dmu_tx_commit(tx); 1119 1120 /* 1121 * Indicate that this thread has exited. 1122 * After this, we can not use svr. 1123 */ 1124 mutex_enter(&svr->svr_lock); 1125 svr->svr_thread = NULL; 1126 cv_broadcast(&svr->svr_cv); 1127 mutex_exit(&svr->svr_lock); 1128 } 1129 1130 /* 1131 * Complete the removal of a toplevel vdev. This is called in open 1132 * context by the removal thread after we have copied all vdev's data. 1133 */ 1134 static void 1135 vdev_remove_complete(spa_t *spa) 1136 { 1137 uint64_t txg; 1138 1139 /* 1140 * Wait for any deferred frees to be synced before we call 1141 * vdev_metaslab_fini() 1142 */ 1143 txg_wait_synced(spa->spa_dsl_pool, 0); 1144 txg = spa_vdev_enter(spa); 1145 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1146 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1147 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1148 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1149 1150 sysevent_t *ev = spa_event_create(spa, vd, NULL, 1151 ESC_ZFS_VDEV_REMOVE_DEV); 1152 1153 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu", 1154 vd->vdev_id, txg); 1155 1156 /* 1157 * Discard allocation state. 1158 */ 1159 if (vd->vdev_mg != NULL) { 1160 vdev_metaslab_fini(vd); 1161 metaslab_group_destroy(vd->vdev_mg); 1162 vd->vdev_mg = NULL; 1163 spa_log_sm_set_blocklimit(spa); 1164 } 1165 ASSERT0(vd->vdev_stat.vs_space); 1166 ASSERT0(vd->vdev_stat.vs_dspace); 1167 1168 vdev_remove_replace_with_indirect(vd, txg); 1169 1170 /* 1171 * We now release the locks, allowing spa_sync to run and finish the 1172 * removal via vdev_remove_complete_sync in syncing context. 1173 * 1174 * Note that we hold on to the vdev_t that has been replaced. Since 1175 * it isn't part of the vdev tree any longer, it can't be concurrently 1176 * manipulated, even while we don't have the config lock. 1177 */ 1178 (void) spa_vdev_exit(spa, NULL, txg, 0); 1179 1180 /* 1181 * Top ZAP should have been transferred to the indirect vdev in 1182 * vdev_remove_replace_with_indirect. 1183 */ 1184 ASSERT0(vd->vdev_top_zap); 1185 1186 /* 1187 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect. 1188 */ 1189 ASSERT0(vd->vdev_leaf_zap); 1190 1191 txg = spa_vdev_enter(spa); 1192 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1193 /* 1194 * Request to update the config and the config cachefile. 1195 */ 1196 vdev_config_dirty(spa->spa_root_vdev); 1197 (void) spa_vdev_exit(spa, vd, txg, 0); 1198 1199 spa_event_post(ev); 1200 } 1201 1202 /* 1203 * Evacuates a segment of size at most max_alloc from the vdev 1204 * via repeated calls to spa_vdev_copy_segment. If an allocation 1205 * fails, the pool is probably too fragmented to handle such a 1206 * large size, so decrease max_alloc so that the caller will not try 1207 * this size again this txg. 1208 */ 1209 static void 1210 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca, 1211 uint64_t *max_alloc, dmu_tx_t *tx) 1212 { 1213 uint64_t txg = dmu_tx_get_txg(tx); 1214 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1215 1216 mutex_enter(&svr->svr_lock); 1217 1218 /* 1219 * Determine how big of a chunk to copy. We can allocate up 1220 * to max_alloc bytes, and we can span up to vdev_removal_max_span 1221 * bytes of unallocated space at a time. "segs" will track the 1222 * allocated segments that we are copying. We may also be copying 1223 * free segments (of up to vdev_removal_max_span bytes). 1224 */ 1225 range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1226 for (;;) { 1227 range_tree_t *rt = svr->svr_allocd_segs; 1228 range_seg_t *rs = range_tree_first(rt); 1229 1230 if (rs == NULL) 1231 break; 1232 1233 uint64_t seg_length; 1234 1235 if (range_tree_is_empty(segs)) { 1236 /* need to truncate the first seg based on max_alloc */ 1237 seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs, 1238 rt), *max_alloc); 1239 } else { 1240 if (rs_get_start(rs, rt) - range_tree_max(segs) > 1241 vdev_removal_max_span) { 1242 /* 1243 * Including this segment would cause us to 1244 * copy a larger unneeded chunk than is allowed. 1245 */ 1246 break; 1247 } else if (rs_get_end(rs, rt) - range_tree_min(segs) > 1248 *max_alloc) { 1249 /* 1250 * This additional segment would extend past 1251 * max_alloc. Rather than splitting this 1252 * segment, leave it for the next mapping. 1253 */ 1254 break; 1255 } else { 1256 seg_length = rs_get_end(rs, rt) - 1257 rs_get_start(rs, rt); 1258 } 1259 } 1260 1261 range_tree_add(segs, rs_get_start(rs, rt), seg_length); 1262 range_tree_remove(svr->svr_allocd_segs, 1263 rs_get_start(rs, rt), seg_length); 1264 } 1265 1266 if (range_tree_is_empty(segs)) { 1267 mutex_exit(&svr->svr_lock); 1268 range_tree_destroy(segs); 1269 return; 1270 } 1271 1272 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) { 1273 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync, 1274 svr, 0, ZFS_SPACE_CHECK_NONE, tx); 1275 } 1276 1277 svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs); 1278 1279 /* 1280 * Note: this is the amount of *allocated* space 1281 * that we are taking care of each txg. 1282 */ 1283 svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs); 1284 1285 mutex_exit(&svr->svr_lock); 1286 1287 zio_alloc_list_t zal; 1288 metaslab_trace_init(&zal); 1289 uint64_t thismax = SPA_MAXBLOCKSIZE; 1290 while (!range_tree_is_empty(segs)) { 1291 int error = spa_vdev_copy_segment(vd, 1292 segs, thismax, txg, vca, &zal); 1293 1294 if (error == ENOSPC) { 1295 /* 1296 * Cut our segment in half, and don't try this 1297 * segment size again this txg. Note that the 1298 * allocation size must be aligned to the highest 1299 * ashift in the pool, so that the allocation will 1300 * not be padded out to a multiple of the ashift, 1301 * which could cause us to think that this mapping 1302 * is larger than we intended. 1303 */ 1304 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT); 1305 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift); 1306 uint64_t attempted = 1307 MIN(range_tree_span(segs), thismax); 1308 thismax = P2ROUNDUP(attempted / 2, 1309 1 << spa->spa_max_ashift); 1310 /* 1311 * The minimum-size allocation can not fail. 1312 */ 1313 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift); 1314 *max_alloc = attempted - (1 << spa->spa_max_ashift); 1315 } else { 1316 ASSERT0(error); 1317 1318 /* 1319 * We've performed an allocation, so reset the 1320 * alloc trace list. 1321 */ 1322 metaslab_trace_fini(&zal); 1323 metaslab_trace_init(&zal); 1324 } 1325 } 1326 metaslab_trace_fini(&zal); 1327 range_tree_destroy(segs); 1328 } 1329 1330 /* 1331 * The removal thread operates in open context. It iterates over all 1332 * allocated space in the vdev, by loading each metaslab's spacemap. 1333 * For each contiguous segment of allocated space (capping the segment 1334 * size at SPA_MAXBLOCKSIZE), we: 1335 * - Allocate space for it on another vdev. 1336 * - Create a new mapping from the old location to the new location 1337 * (as a record in svr_new_segments). 1338 * - Initiate a logical read zio to get the data off the removing disk. 1339 * - In the read zio's done callback, initiate a logical write zio to 1340 * write it to the new vdev. 1341 * Note that all of this will take effect when a particular TXG syncs. 1342 * The sync thread ensures that all the phys reads and writes for the syncing 1343 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk 1344 * (see vdev_mapping_sync()). 1345 */ 1346 static void 1347 spa_vdev_remove_thread(void *arg) 1348 { 1349 spa_t *spa = arg; 1350 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1351 vdev_copy_arg_t vca; 1352 uint64_t max_alloc = zfs_remove_max_segment; 1353 uint64_t last_txg = 0; 1354 1355 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1356 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1357 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1358 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim); 1359 1360 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops); 1361 ASSERT(vdev_is_concrete(vd)); 1362 ASSERT(vd->vdev_removing); 1363 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 1364 ASSERT(vim != NULL); 1365 1366 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL); 1367 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL); 1368 vca.vca_outstanding_bytes = 0; 1369 1370 mutex_enter(&svr->svr_lock); 1371 1372 /* 1373 * Start from vim_max_offset so we pick up where we left off 1374 * if we are restarting the removal after opening the pool. 1375 */ 1376 uint64_t msi; 1377 for (msi = start_offset >> vd->vdev_ms_shift; 1378 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) { 1379 metaslab_t *msp = vd->vdev_ms[msi]; 1380 ASSERT3U(msi, <=, vd->vdev_ms_count); 1381 1382 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 1383 1384 mutex_enter(&msp->ms_sync_lock); 1385 mutex_enter(&msp->ms_lock); 1386 1387 /* 1388 * Assert nothing in flight -- ms_*tree is empty. 1389 */ 1390 for (int i = 0; i < TXG_SIZE; i++) { 1391 ASSERT0(range_tree_space(msp->ms_allocating[i])); 1392 } 1393 1394 /* 1395 * If the metaslab has ever been allocated from (ms_sm!=NULL), 1396 * read the allocated segments from the space map object 1397 * into svr_allocd_segs. Since we do this while holding 1398 * svr_lock and ms_sync_lock, concurrent frees (which 1399 * would have modified the space map) will wait for us 1400 * to finish loading the spacemap, and then take the 1401 * appropriate action (see free_from_removing_vdev()). 1402 */ 1403 if (msp->ms_sm != NULL) { 1404 VERIFY0(space_map_load(msp->ms_sm, 1405 svr->svr_allocd_segs, SM_ALLOC)); 1406 1407 range_tree_walk(msp->ms_unflushed_allocs, 1408 range_tree_add, svr->svr_allocd_segs); 1409 range_tree_walk(msp->ms_unflushed_frees, 1410 range_tree_remove, svr->svr_allocd_segs); 1411 range_tree_walk(msp->ms_freeing, 1412 range_tree_remove, svr->svr_allocd_segs); 1413 1414 /* 1415 * When we are resuming from a paused removal (i.e. 1416 * when importing a pool with a removal in progress), 1417 * discard any state that we have already processed. 1418 */ 1419 range_tree_clear(svr->svr_allocd_segs, 0, start_offset); 1420 } 1421 mutex_exit(&msp->ms_lock); 1422 mutex_exit(&msp->ms_sync_lock); 1423 1424 vca.vca_msp = msp; 1425 zfs_dbgmsg("copying %llu segments for metaslab %llu", 1426 zfs_btree_numnodes(&svr->svr_allocd_segs->rt_root), 1427 msp->ms_id); 1428 1429 while (!svr->svr_thread_exit && 1430 !range_tree_is_empty(svr->svr_allocd_segs)) { 1431 1432 mutex_exit(&svr->svr_lock); 1433 1434 /* 1435 * We need to periodically drop the config lock so that 1436 * writers can get in. Additionally, we can't wait 1437 * for a txg to sync while holding a config lock 1438 * (since a waiting writer could cause a 3-way deadlock 1439 * with the sync thread, which also gets a config 1440 * lock for reader). So we can't hold the config lock 1441 * while calling dmu_tx_assign(). 1442 */ 1443 spa_config_exit(spa, SCL_CONFIG, FTAG); 1444 1445 /* 1446 * This delay will pause the removal around the point 1447 * specified by zfs_removal_suspend_progress. We do this 1448 * solely from the test suite or during debugging. 1449 */ 1450 uint64_t bytes_copied = 1451 spa->spa_removing_phys.sr_copied; 1452 for (int i = 0; i < TXG_SIZE; i++) 1453 bytes_copied += svr->svr_bytes_done[i]; 1454 while (zfs_removal_suspend_progress && 1455 !svr->svr_thread_exit) 1456 delay(hz); 1457 1458 mutex_enter(&vca.vca_lock); 1459 while (vca.vca_outstanding_bytes > 1460 zfs_remove_max_copy_bytes) { 1461 cv_wait(&vca.vca_cv, &vca.vca_lock); 1462 } 1463 mutex_exit(&vca.vca_lock); 1464 1465 dmu_tx_t *tx = 1466 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1467 1468 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1469 uint64_t txg = dmu_tx_get_txg(tx); 1470 1471 /* 1472 * Reacquire the vdev_config lock. The vdev_t 1473 * that we're removing may have changed, e.g. due 1474 * to a vdev_attach or vdev_detach. 1475 */ 1476 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1477 vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1478 1479 if (txg != last_txg) 1480 max_alloc = zfs_remove_max_segment; 1481 last_txg = txg; 1482 1483 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx); 1484 1485 dmu_tx_commit(tx); 1486 mutex_enter(&svr->svr_lock); 1487 } 1488 } 1489 1490 mutex_exit(&svr->svr_lock); 1491 1492 spa_config_exit(spa, SCL_CONFIG, FTAG); 1493 1494 /* 1495 * Wait for all copies to finish before cleaning up the vca. 1496 */ 1497 txg_wait_synced(spa->spa_dsl_pool, 0); 1498 ASSERT0(vca.vca_outstanding_bytes); 1499 1500 mutex_destroy(&vca.vca_lock); 1501 cv_destroy(&vca.vca_cv); 1502 1503 if (svr->svr_thread_exit) { 1504 mutex_enter(&svr->svr_lock); 1505 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL); 1506 svr->svr_thread = NULL; 1507 cv_broadcast(&svr->svr_cv); 1508 mutex_exit(&svr->svr_lock); 1509 } else { 1510 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 1511 vdev_remove_complete(spa); 1512 } 1513 } 1514 1515 void 1516 spa_vdev_remove_suspend(spa_t *spa) 1517 { 1518 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1519 1520 if (svr == NULL) 1521 return; 1522 1523 mutex_enter(&svr->svr_lock); 1524 svr->svr_thread_exit = B_TRUE; 1525 while (svr->svr_thread != NULL) 1526 cv_wait(&svr->svr_cv, &svr->svr_lock); 1527 svr->svr_thread_exit = B_FALSE; 1528 mutex_exit(&svr->svr_lock); 1529 } 1530 1531 /* ARGSUSED */ 1532 static int 1533 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx) 1534 { 1535 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1536 1537 if (spa->spa_vdev_removal == NULL) 1538 return (ENOTACTIVE); 1539 return (0); 1540 } 1541 1542 /* 1543 * Cancel a removal by freeing all entries from the partial mapping 1544 * and marking the vdev as no longer being removing. 1545 */ 1546 /* ARGSUSED */ 1547 static void 1548 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx) 1549 { 1550 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1551 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1552 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1553 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1554 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1555 objset_t *mos = spa->spa_meta_objset; 1556 1557 ASSERT3P(svr->svr_thread, ==, NULL); 1558 1559 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 1560 if (vdev_obsolete_counts_are_precise(vd)) { 1561 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1562 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1563 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx)); 1564 } 1565 1566 if (vdev_obsolete_sm_object(vd) != 0) { 1567 ASSERT(vd->vdev_obsolete_sm != NULL); 1568 ASSERT3U(vdev_obsolete_sm_object(vd), ==, 1569 space_map_object(vd->vdev_obsolete_sm)); 1570 1571 space_map_free(vd->vdev_obsolete_sm, tx); 1572 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1573 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx)); 1574 space_map_close(vd->vdev_obsolete_sm); 1575 vd->vdev_obsolete_sm = NULL; 1576 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1577 } 1578 for (int i = 0; i < TXG_SIZE; i++) { 1579 ASSERT(list_is_empty(&svr->svr_new_segments[i])); 1580 ASSERT3U(svr->svr_max_offset_to_sync[i], <=, 1581 vdev_indirect_mapping_max_offset(vim)); 1582 } 1583 1584 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 1585 metaslab_t *msp = vd->vdev_ms[msi]; 1586 1587 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim)) 1588 break; 1589 1590 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 1591 1592 mutex_enter(&msp->ms_lock); 1593 1594 /* 1595 * Assert nothing in flight -- ms_*tree is empty. 1596 */ 1597 for (int i = 0; i < TXG_SIZE; i++) 1598 ASSERT0(range_tree_space(msp->ms_allocating[i])); 1599 for (int i = 0; i < TXG_DEFER_SIZE; i++) 1600 ASSERT0(range_tree_space(msp->ms_defer[i])); 1601 ASSERT0(range_tree_space(msp->ms_freed)); 1602 1603 if (msp->ms_sm != NULL) { 1604 mutex_enter(&svr->svr_lock); 1605 VERIFY0(space_map_load(msp->ms_sm, 1606 svr->svr_allocd_segs, SM_ALLOC)); 1607 1608 range_tree_walk(msp->ms_unflushed_allocs, 1609 range_tree_add, svr->svr_allocd_segs); 1610 range_tree_walk(msp->ms_unflushed_frees, 1611 range_tree_remove, svr->svr_allocd_segs); 1612 range_tree_walk(msp->ms_freeing, 1613 range_tree_remove, svr->svr_allocd_segs); 1614 1615 /* 1616 * Clear everything past what has been synced, 1617 * because we have not allocated mappings for it yet. 1618 */ 1619 uint64_t syncd = vdev_indirect_mapping_max_offset(vim); 1620 uint64_t sm_end = msp->ms_sm->sm_start + 1621 msp->ms_sm->sm_size; 1622 if (sm_end > syncd) 1623 range_tree_clear(svr->svr_allocd_segs, 1624 syncd, sm_end - syncd); 1625 1626 mutex_exit(&svr->svr_lock); 1627 } 1628 mutex_exit(&msp->ms_lock); 1629 1630 mutex_enter(&svr->svr_lock); 1631 range_tree_vacate(svr->svr_allocd_segs, 1632 free_mapped_segment_cb, vd); 1633 mutex_exit(&svr->svr_lock); 1634 } 1635 1636 /* 1637 * Note: this must happen after we invoke free_mapped_segment_cb, 1638 * because it adds to the obsolete_segments. 1639 */ 1640 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL); 1641 1642 ASSERT3U(vic->vic_mapping_object, ==, 1643 vdev_indirect_mapping_object(vd->vdev_indirect_mapping)); 1644 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1645 vd->vdev_indirect_mapping = NULL; 1646 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx); 1647 vic->vic_mapping_object = 0; 1648 1649 ASSERT3U(vic->vic_births_object, ==, 1650 vdev_indirect_births_object(vd->vdev_indirect_births)); 1651 vdev_indirect_births_close(vd->vdev_indirect_births); 1652 vd->vdev_indirect_births = NULL; 1653 vdev_indirect_births_free(mos, vic->vic_births_object, tx); 1654 vic->vic_births_object = 0; 1655 1656 /* 1657 * We may have processed some frees from the removing vdev in this 1658 * txg, thus increasing svr_bytes_done; discard that here to 1659 * satisfy the assertions in spa_vdev_removal_destroy(). 1660 * Note that future txg's can not have any bytes_done, because 1661 * future TXG's are only modified from open context, and we have 1662 * already shut down the copying thread. 1663 */ 1664 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0; 1665 spa_finish_removal(spa, DSS_CANCELED, tx); 1666 1667 vd->vdev_removing = B_FALSE; 1668 vdev_config_dirty(vd); 1669 1670 zfs_dbgmsg("canceled device removal for vdev %llu in %llu", 1671 vd->vdev_id, dmu_tx_get_txg(tx)); 1672 spa_history_log_internal(spa, "vdev remove canceled", tx, 1673 "%s vdev %llu %s", spa_name(spa), 1674 vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 1675 } 1676 1677 int 1678 spa_vdev_remove_cancel(spa_t *spa) 1679 { 1680 spa_vdev_remove_suspend(spa); 1681 1682 if (spa->spa_vdev_removal == NULL) 1683 return (ENOTACTIVE); 1684 1685 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id; 1686 1687 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check, 1688 spa_vdev_remove_cancel_sync, NULL, 0, 1689 ZFS_SPACE_CHECK_EXTRA_RESERVED); 1690 1691 if (error == 0) { 1692 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER); 1693 vdev_t *vd = vdev_lookup_top(spa, vdid); 1694 metaslab_group_activate(vd->vdev_mg); 1695 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG); 1696 } 1697 1698 return (error); 1699 } 1700 1701 void 1702 svr_sync(spa_t *spa, dmu_tx_t *tx) 1703 { 1704 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1705 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1706 1707 if (svr == NULL) 1708 return; 1709 1710 /* 1711 * This check is necessary so that we do not dirty the 1712 * DIRECTORY_OBJECT via spa_sync_removing_state() when there 1713 * is nothing to do. Dirtying it every time would prevent us 1714 * from syncing-to-convergence. 1715 */ 1716 if (svr->svr_bytes_done[txgoff] == 0) 1717 return; 1718 1719 /* 1720 * Update progress accounting. 1721 */ 1722 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff]; 1723 svr->svr_bytes_done[txgoff] = 0; 1724 1725 spa_sync_removing_state(spa, tx); 1726 } 1727 1728 static void 1729 vdev_remove_make_hole_and_free(vdev_t *vd) 1730 { 1731 uint64_t id = vd->vdev_id; 1732 spa_t *spa = vd->vdev_spa; 1733 vdev_t *rvd = spa->spa_root_vdev; 1734 1735 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1736 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1737 1738 vdev_free(vd); 1739 1740 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 1741 vdev_add_child(rvd, vd); 1742 vdev_config_dirty(rvd); 1743 1744 /* 1745 * Reassess the health of our root vdev. 1746 */ 1747 vdev_reopen(rvd); 1748 } 1749 1750 /* 1751 * Remove a log device. The config lock is held for the specified TXG. 1752 */ 1753 static int 1754 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg) 1755 { 1756 metaslab_group_t *mg = vd->vdev_mg; 1757 spa_t *spa = vd->vdev_spa; 1758 int error = 0; 1759 1760 ASSERT(vd->vdev_islog); 1761 ASSERT(vd == vd->vdev_top); 1762 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1763 1764 /* 1765 * Stop allocating from this vdev. 1766 */ 1767 metaslab_group_passivate(mg); 1768 1769 /* 1770 * Wait for the youngest allocations and frees to sync, 1771 * and then wait for the deferral of those frees to finish. 1772 */ 1773 spa_vdev_config_exit(spa, NULL, 1774 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 1775 1776 /* 1777 * Evacuate the device. We don't hold the config lock as 1778 * writer since we need to do I/O but we do keep the 1779 * spa_namespace_lock held. Once this completes the device 1780 * should no longer have any blocks allocated on it. 1781 */ 1782 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1783 if (vd->vdev_stat.vs_alloc != 0) 1784 error = spa_reset_logs(spa); 1785 1786 *txg = spa_vdev_config_enter(spa); 1787 1788 if (error != 0) { 1789 metaslab_group_activate(mg); 1790 return (error); 1791 } 1792 ASSERT0(vd->vdev_stat.vs_alloc); 1793 1794 /* 1795 * The evacuation succeeded. Remove any remaining MOS metadata 1796 * associated with this vdev, and wait for these changes to sync. 1797 */ 1798 vd->vdev_removing = B_TRUE; 1799 1800 vdev_dirty_leaves(vd, VDD_DTL, *txg); 1801 vdev_config_dirty(vd); 1802 1803 /* 1804 * When the log space map feature is enabled we look at 1805 * the vdev's top_zap to find the on-disk flush data of 1806 * the metaslab we just flushed. Thus, while removing a 1807 * log vdev we make sure to call vdev_metaslab_fini() 1808 * first, which removes all metaslabs of this vdev from 1809 * spa_metaslabs_by_flushed before vdev_remove_empty() 1810 * destroys the top_zap of this log vdev. 1811 * 1812 * This avoids the scenario where we flush a metaslab 1813 * from the log vdev being removed that doesn't have a 1814 * top_zap and end up failing to lookup its on-disk flush 1815 * data. 1816 * 1817 * We don't call metaslab_group_destroy() right away 1818 * though (it will be called in vdev_free() later) as 1819 * during metaslab_sync() of metaslabs from other vdevs 1820 * we may touch the metaslab group of this vdev through 1821 * metaslab_class_histogram_verify() 1822 */ 1823 vdev_metaslab_fini(vd); 1824 spa_log_sm_set_blocklimit(spa); 1825 1826 spa_history_log_internal(spa, "vdev remove", NULL, 1827 "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id, 1828 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 1829 1830 /* Make sure these changes are sync'ed */ 1831 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 1832 1833 /* Stop initializing and TRIM */ 1834 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED); 1835 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED); 1836 vdev_autotrim_stop_wait(vd); 1837 1838 *txg = spa_vdev_config_enter(spa); 1839 1840 sysevent_t *ev = spa_event_create(spa, vd, NULL, 1841 ESC_ZFS_VDEV_REMOVE_DEV); 1842 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1843 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1844 1845 /* The top ZAP should have been destroyed by vdev_remove_empty. */ 1846 ASSERT0(vd->vdev_top_zap); 1847 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */ 1848 ASSERT0(vd->vdev_leaf_zap); 1849 1850 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1851 1852 if (list_link_active(&vd->vdev_state_dirty_node)) 1853 vdev_state_clean(vd); 1854 if (list_link_active(&vd->vdev_config_dirty_node)) 1855 vdev_config_clean(vd); 1856 1857 ASSERT0(vd->vdev_stat.vs_alloc); 1858 1859 /* 1860 * Clean up the vdev namespace. 1861 */ 1862 vdev_remove_make_hole_and_free(vd); 1863 1864 if (ev != NULL) 1865 spa_event_post(ev); 1866 1867 return (0); 1868 } 1869 1870 static int 1871 spa_vdev_remove_top_check(vdev_t *vd) 1872 { 1873 spa_t *spa = vd->vdev_spa; 1874 1875 if (vd != vd->vdev_top) 1876 return (SET_ERROR(ENOTSUP)); 1877 1878 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)) 1879 return (SET_ERROR(ENOTSUP)); 1880 1881 /* available space in the pool's normal class */ 1882 uint64_t available = dsl_dir_space_available( 1883 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE); 1884 1885 metaslab_class_t *mc = vd->vdev_mg->mg_class; 1886 1887 /* 1888 * When removing a vdev from an allocation class that has 1889 * remaining vdevs, include available space from the class. 1890 */ 1891 if (mc != spa_normal_class(spa) && mc->mc_groups > 1) { 1892 uint64_t class_avail = metaslab_class_get_space(mc) - 1893 metaslab_class_get_alloc(mc); 1894 1895 /* add class space, adjusted for overhead */ 1896 available += (class_avail * 94) / 100; 1897 } 1898 1899 /* 1900 * There has to be enough free space to remove the 1901 * device and leave double the "slop" space (i.e. we 1902 * must leave at least 3% of the pool free, in addition to 1903 * the normal slop space). 1904 */ 1905 if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) { 1906 return (SET_ERROR(ENOSPC)); 1907 } 1908 1909 /* 1910 * There can not be a removal in progress. 1911 */ 1912 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) 1913 return (SET_ERROR(EBUSY)); 1914 1915 /* 1916 * The device must have all its data. 1917 */ 1918 if (!vdev_dtl_empty(vd, DTL_MISSING) || 1919 !vdev_dtl_empty(vd, DTL_OUTAGE)) 1920 return (SET_ERROR(EBUSY)); 1921 1922 /* 1923 * The device must be healthy. 1924 */ 1925 if (!vdev_readable(vd)) 1926 return (SET_ERROR(EIO)); 1927 1928 /* 1929 * All vdevs in normal class must have the same ashift. 1930 */ 1931 if (spa->spa_max_ashift != spa->spa_min_ashift) { 1932 return (SET_ERROR(EINVAL)); 1933 } 1934 1935 /* 1936 * All vdevs in normal class must have the same ashift 1937 * and not be raidz. 1938 */ 1939 vdev_t *rvd = spa->spa_root_vdev; 1940 int num_indirect = 0; 1941 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 1942 vdev_t *cvd = rvd->vdev_child[id]; 1943 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog) 1944 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift); 1945 if (cvd->vdev_ops == &vdev_indirect_ops) 1946 num_indirect++; 1947 if (!vdev_is_concrete(cvd)) 1948 continue; 1949 if (cvd->vdev_ops == &vdev_raidz_ops) 1950 return (SET_ERROR(EINVAL)); 1951 /* 1952 * Need the mirror to be mirror of leaf vdevs only 1953 */ 1954 if (cvd->vdev_ops == &vdev_mirror_ops) { 1955 for (uint64_t cid = 0; 1956 cid < cvd->vdev_children; cid++) { 1957 vdev_t *tmp = cvd->vdev_child[cid]; 1958 if (!tmp->vdev_ops->vdev_op_leaf) 1959 return (SET_ERROR(EINVAL)); 1960 } 1961 } 1962 } 1963 1964 return (0); 1965 } 1966 1967 /* 1968 * Initiate removal of a top-level vdev, reducing the total space in the pool. 1969 * The config lock is held for the specified TXG. Once initiated, 1970 * evacuation of all allocated space (copying it to other vdevs) happens 1971 * in the background (see spa_vdev_remove_thread()), and can be canceled 1972 * (see spa_vdev_remove_cancel()). If successful, the vdev will 1973 * be transformed to an indirect vdev (see spa_vdev_remove_complete()). 1974 */ 1975 static int 1976 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg) 1977 { 1978 spa_t *spa = vd->vdev_spa; 1979 int error; 1980 1981 /* 1982 * Check for errors up-front, so that we don't waste time 1983 * passivating the metaslab group and clearing the ZIL if there 1984 * are errors. 1985 */ 1986 error = spa_vdev_remove_top_check(vd); 1987 if (error != 0) 1988 return (error); 1989 1990 /* 1991 * Stop allocating from this vdev. Note that we must check 1992 * that this is not the only device in the pool before 1993 * passivating, otherwise we will not be able to make 1994 * progress because we can't allocate from any vdevs. 1995 * The above check for sufficient free space serves this 1996 * purpose. 1997 */ 1998 metaslab_group_t *mg = vd->vdev_mg; 1999 metaslab_group_passivate(mg); 2000 2001 /* 2002 * Wait for the youngest allocations and frees to sync, 2003 * and then wait for the deferral of those frees to finish. 2004 */ 2005 spa_vdev_config_exit(spa, NULL, 2006 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2007 2008 /* 2009 * We must ensure that no "stubby" log blocks are allocated 2010 * on the device to be removed. These blocks could be 2011 * written at any time, including while we are in the middle 2012 * of copying them. 2013 */ 2014 error = spa_reset_logs(spa); 2015 2016 /* 2017 * We stop any initializing and TRIM that is currently in progress 2018 * but leave the state as "active". This will allow the process to 2019 * resume if the removal is canceled sometime later. 2020 */ 2021 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE); 2022 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE); 2023 vdev_autotrim_stop_wait(vd); 2024 2025 *txg = spa_vdev_config_enter(spa); 2026 2027 /* 2028 * Things might have changed while the config lock was dropped 2029 * (e.g. space usage). Check for errors again. 2030 */ 2031 if (error == 0) 2032 error = spa_vdev_remove_top_check(vd); 2033 2034 if (error != 0) { 2035 metaslab_group_activate(mg); 2036 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 2037 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 2038 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 2039 return (error); 2040 } 2041 2042 vd->vdev_removing = B_TRUE; 2043 2044 vdev_dirty_leaves(vd, VDD_DTL, *txg); 2045 vdev_config_dirty(vd); 2046 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg); 2047 dsl_sync_task_nowait(spa->spa_dsl_pool, 2048 vdev_remove_initiate_sync, 2049 (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx); 2050 dmu_tx_commit(tx); 2051 2052 return (0); 2053 } 2054 2055 /* 2056 * Remove a device from the pool. 2057 * 2058 * Removing a device from the vdev namespace requires several steps 2059 * and can take a significant amount of time. As a result we use 2060 * the spa_vdev_config_[enter/exit] functions which allow us to 2061 * grab and release the spa_config_lock while still holding the namespace 2062 * lock. During each step the configuration is synced out. 2063 */ 2064 int 2065 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 2066 { 2067 vdev_t *vd; 2068 nvlist_t **spares, **l2cache, *nv; 2069 uint64_t txg = 0; 2070 uint_t nspares, nl2cache; 2071 int error = 0; 2072 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 2073 sysevent_t *ev = NULL; 2074 2075 ASSERT(spa_writeable(spa)); 2076 2077 if (!locked) 2078 txg = spa_vdev_enter(spa); 2079 2080 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2081 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 2082 error = (spa_has_checkpoint(spa)) ? 2083 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 2084 2085 if (!locked) 2086 return (spa_vdev_exit(spa, NULL, txg, error)); 2087 2088 return (error); 2089 } 2090 2091 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 2092 2093 if (spa->spa_spares.sav_vdevs != NULL && 2094 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2095 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 2096 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 2097 /* 2098 * Only remove the hot spare if it's not currently in use 2099 * in this pool. 2100 */ 2101 if (vd == NULL || unspare) { 2102 char *nvstr = fnvlist_lookup_string(nv, 2103 ZPOOL_CONFIG_PATH); 2104 spa_history_log_internal(spa, "vdev remove", NULL, 2105 "%s vdev (%s) %s", spa_name(spa), 2106 VDEV_TYPE_SPARE, nvstr); 2107 if (vd == NULL) 2108 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 2109 ev = spa_event_create(spa, vd, NULL, 2110 ESC_ZFS_VDEV_REMOVE_AUX); 2111 spa_vdev_remove_aux(spa->spa_spares.sav_config, 2112 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 2113 spa_load_spares(spa); 2114 spa->spa_spares.sav_sync = B_TRUE; 2115 } else { 2116 error = SET_ERROR(EBUSY); 2117 } 2118 } else if (spa->spa_l2cache.sav_vdevs != NULL && 2119 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2120 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 2121 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 2122 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH); 2123 spa_history_log_internal(spa, "vdev remove", NULL, 2124 "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr); 2125 /* 2126 * Cache devices can always be removed. 2127 */ 2128 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 2129 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX); 2130 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 2131 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 2132 spa_load_l2cache(spa); 2133 spa->spa_l2cache.sav_sync = B_TRUE; 2134 } else if (vd != NULL && vd->vdev_islog) { 2135 ASSERT(!locked); 2136 error = spa_vdev_remove_log(vd, &txg); 2137 } else if (vd != NULL) { 2138 ASSERT(!locked); 2139 error = spa_vdev_remove_top(vd, &txg); 2140 } else { 2141 /* 2142 * There is no vdev of any kind with the specified guid. 2143 */ 2144 error = SET_ERROR(ENOENT); 2145 } 2146 2147 if (!locked) 2148 error = spa_vdev_exit(spa, NULL, txg, error); 2149 2150 if (ev != NULL) { 2151 if (error != 0) { 2152 spa_event_discard(ev); 2153 } else { 2154 spa_event_post(ev); 2155 } 2156 } 2157 2158 return (error); 2159 } 2160 2161 int 2162 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs) 2163 { 2164 prs->prs_state = spa->spa_removing_phys.sr_state; 2165 2166 if (prs->prs_state == DSS_NONE) 2167 return (SET_ERROR(ENOENT)); 2168 2169 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev; 2170 prs->prs_start_time = spa->spa_removing_phys.sr_start_time; 2171 prs->prs_end_time = spa->spa_removing_phys.sr_end_time; 2172 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy; 2173 prs->prs_copied = spa->spa_removing_phys.sr_copied; 2174 2175 if (spa->spa_vdev_removal != NULL) { 2176 for (int i = 0; i < TXG_SIZE; i++) { 2177 prs->prs_copied += 2178 spa->spa_vdev_removal->svr_bytes_done[i]; 2179 } 2180 } 2181 2182 prs->prs_mapping_memory = 0; 2183 uint64_t indirect_vdev_id = 2184 spa->spa_removing_phys.sr_prev_indirect_vdev; 2185 while (indirect_vdev_id != -1) { 2186 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id]; 2187 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 2188 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 2189 2190 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2191 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim); 2192 indirect_vdev_id = vic->vic_prev_indirect_vdev; 2193 } 2194 2195 return (0); 2196 } 2197