xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_removal.c (revision 6f459ff5b49a8482416f3eab8866c784121ecae3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 
48 /*
49  * This file contains the necessary logic to remove vdevs from a
50  * storage pool.  Currently, the only devices that can be removed
51  * are log, cache, and spare devices; and top level vdevs from a pool
52  * w/o raidz.  (Note that members of a mirror can also be removed
53  * by the detach operation.)
54  *
55  * Log vdevs are removed by evacuating them and then turning the vdev
56  * into a hole vdev while holding spa config locks.
57  *
58  * Top level vdevs are removed and converted into an indirect vdev via
59  * a multi-step process:
60  *
61  *  - Disable allocations from this device (spa_vdev_remove_top).
62  *
63  *  - From a new thread (spa_vdev_remove_thread), copy data from
64  *    the removing vdev to a different vdev.  The copy happens in open
65  *    context (spa_vdev_copy_impl) and issues a sync task
66  *    (vdev_mapping_sync) so the sync thread can update the partial
67  *    indirect mappings in core and on disk.
68  *
69  *  - If a free happens during a removal, it is freed from the
70  *    removing vdev, and if it has already been copied, from the new
71  *    location as well (free_from_removing_vdev).
72  *
73  *  - After the removal is completed, the copy thread converts the vdev
74  *    into an indirect vdev (vdev_remove_complete) before instructing
75  *    the sync thread to destroy the space maps and finish the removal
76  *    (spa_finish_removal).
77  */
78 
79 typedef struct vdev_copy_arg {
80 	metaslab_t	*vca_msp;
81 	uint64_t	vca_outstanding_bytes;
82 	kcondvar_t	vca_cv;
83 	kmutex_t	vca_lock;
84 } vdev_copy_arg_t;
85 
86 typedef struct vdev_copy_seg_arg {
87 	vdev_copy_arg_t	*vcsa_copy_arg;
88 	uint64_t	vcsa_txg;
89 	dva_t		*vcsa_dest_dva;
90 	blkptr_t	*vcsa_dest_bp;
91 } vdev_copy_seg_arg_t;
92 
93 /*
94  * The maximum amount of allowed data we're allowed to copy from a device
95  * at a time when removing it.
96  */
97 int zfs_remove_max_copy_bytes = 8 * 1024 * 1024;
98 
99 /*
100  * The largest contiguous segment that we will attempt to allocate when
101  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
102  * there is a performance problem with attempting to allocate large blocks,
103  * consider decreasing this.
104  *
105  * Note: we will issue I/Os of up to this size.  The mpt driver does not
106  * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
107  * mpt processes an I/O larger than 1MB, it needs to do an allocation of
108  * 2 physically contiguous pages; if this allocation fails, mpt will drop
109  * the I/O and hang the device.)
110  */
111 int zfs_remove_max_segment = 1024 * 1024;
112 
113 #define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
114 
115 static void spa_vdev_remove_thread(void *arg);
116 
117 static void
118 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
119 {
120 	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
121 	    DMU_POOL_DIRECTORY_OBJECT,
122 	    DMU_POOL_REMOVING, sizeof (uint64_t),
123 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
124 	    &spa->spa_removing_phys, tx));
125 }
126 
127 static nvlist_t *
128 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
129 {
130 	for (int i = 0; i < count; i++) {
131 		uint64_t guid =
132 		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
133 
134 		if (guid == target_guid)
135 			return (nvpp[i]);
136 	}
137 
138 	return (NULL);
139 }
140 
141 static void
142 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
143     nvlist_t *dev_to_remove)
144 {
145 	nvlist_t **newdev = NULL;
146 
147 	if (count > 1)
148 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
149 
150 	for (int i = 0, j = 0; i < count; i++) {
151 		if (dev[i] == dev_to_remove)
152 			continue;
153 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
154 	}
155 
156 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
157 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
158 
159 	for (int i = 0; i < count - 1; i++)
160 		nvlist_free(newdev[i]);
161 
162 	if (count > 1)
163 		kmem_free(newdev, (count - 1) * sizeof (void *));
164 }
165 
166 static spa_vdev_removal_t *
167 spa_vdev_removal_create(vdev_t *vd)
168 {
169 	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
170 	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
171 	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
172 	svr->svr_allocd_segs = range_tree_create(NULL, NULL);
173 	svr->svr_vdev = vd;
174 
175 	for (int i = 0; i < TXG_SIZE; i++) {
176 		svr->svr_frees[i] = range_tree_create(NULL, NULL);
177 		list_create(&svr->svr_new_segments[i],
178 		    sizeof (vdev_indirect_mapping_entry_t),
179 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
180 	}
181 
182 	return (svr);
183 }
184 
185 void
186 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
187 {
188 	for (int i = 0; i < TXG_SIZE; i++) {
189 		ASSERT0(svr->svr_bytes_done[i]);
190 		ASSERT0(svr->svr_max_offset_to_sync[i]);
191 		range_tree_destroy(svr->svr_frees[i]);
192 		list_destroy(&svr->svr_new_segments[i]);
193 	}
194 
195 	range_tree_destroy(svr->svr_allocd_segs);
196 	mutex_destroy(&svr->svr_lock);
197 	cv_destroy(&svr->svr_cv);
198 	kmem_free(svr, sizeof (*svr));
199 }
200 
201 /*
202  * This is called as a synctask in the txg in which we will mark this vdev
203  * as removing (in the config stored in the MOS).
204  *
205  * It begins the evacuation of a toplevel vdev by:
206  * - initializing the spa_removing_phys which tracks this removal
207  * - computing the amount of space to remove for accounting purposes
208  * - dirtying all dbufs in the spa_config_object
209  * - creating the spa_vdev_removal
210  * - starting the spa_vdev_remove_thread
211  */
212 static void
213 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
214 {
215 	vdev_t *vd = arg;
216 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
217 	spa_t *spa = vd->vdev_spa;
218 	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
219 	spa_vdev_removal_t *svr = NULL;
220 	uint64_t txg = dmu_tx_get_txg(tx);
221 
222 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
223 	svr = spa_vdev_removal_create(vd);
224 
225 	ASSERT(vd->vdev_removing);
226 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
227 
228 	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
229 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
230 		/*
231 		 * By activating the OBSOLETE_COUNTS feature, we prevent
232 		 * the pool from being downgraded and ensure that the
233 		 * refcounts are precise.
234 		 */
235 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
236 		uint64_t one = 1;
237 		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
238 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
239 		    &one, tx));
240 		ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
241 	}
242 
243 	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
244 	vd->vdev_indirect_mapping =
245 	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
246 	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
247 	vd->vdev_indirect_births =
248 	    vdev_indirect_births_open(mos, vic->vic_births_object);
249 	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
250 	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
251 	spa->spa_removing_phys.sr_end_time = 0;
252 	spa->spa_removing_phys.sr_state = DSS_SCANNING;
253 	spa->spa_removing_phys.sr_to_copy = 0;
254 	spa->spa_removing_phys.sr_copied = 0;
255 
256 	/*
257 	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
258 	 * there may be space in the defer tree, which is free, but still
259 	 * counted in vs_alloc.
260 	 */
261 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
262 		metaslab_t *ms = vd->vdev_ms[i];
263 		if (ms->ms_sm == NULL)
264 			continue;
265 
266 		/*
267 		 * Sync tasks happen before metaslab_sync(), therefore
268 		 * smp_alloc and sm_alloc must be the same.
269 		 */
270 		ASSERT3U(space_map_allocated(ms->ms_sm), ==,
271 		    ms->ms_sm->sm_phys->smp_alloc);
272 
273 		spa->spa_removing_phys.sr_to_copy +=
274 		    space_map_allocated(ms->ms_sm);
275 
276 		/*
277 		 * Space which we are freeing this txg does not need to
278 		 * be copied.
279 		 */
280 		spa->spa_removing_phys.sr_to_copy -=
281 		    range_tree_space(ms->ms_freeingtree);
282 
283 		ASSERT0(range_tree_space(ms->ms_freedtree));
284 		for (int t = 0; t < TXG_SIZE; t++)
285 			ASSERT0(range_tree_space(ms->ms_alloctree[t]));
286 	}
287 
288 	/*
289 	 * Sync tasks are called before metaslab_sync(), so there should
290 	 * be no already-synced metaslabs in the TXG_CLEAN list.
291 	 */
292 	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
293 
294 	spa_sync_removing_state(spa, tx);
295 
296 	/*
297 	 * All blocks that we need to read the most recent mapping must be
298 	 * stored on concrete vdevs.  Therefore, we must dirty anything that
299 	 * is read before spa_remove_init().  Specifically, the
300 	 * spa_config_object.  (Note that although we already modified the
301 	 * spa_config_object in spa_sync_removing_state, that may not have
302 	 * modified all blocks of the object.)
303 	 */
304 	dmu_object_info_t doi;
305 	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
306 	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
307 		dmu_buf_t *dbuf;
308 		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
309 		    offset, FTAG, &dbuf, 0));
310 		dmu_buf_will_dirty(dbuf, tx);
311 		offset += dbuf->db_size;
312 		dmu_buf_rele(dbuf, FTAG);
313 	}
314 
315 	/*
316 	 * Now that we've allocated the im_object, dirty the vdev to ensure
317 	 * that the object gets written to the config on disk.
318 	 */
319 	vdev_config_dirty(vd);
320 
321 	zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
322 	    "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
323 	    vic->vic_mapping_object);
324 
325 	spa_history_log_internal(spa, "vdev remove started", tx,
326 	    "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
327 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
328 	/*
329 	 * Setting spa_vdev_removal causes subsequent frees to call
330 	 * free_from_removing_vdev().  Note that we don't need any locking
331 	 * because we are the sync thread, and metaslab_free_impl() is only
332 	 * called from syncing context (potentially from a zio taskq thread,
333 	 * but in any case only when there are outstanding free i/os, which
334 	 * there are not).
335 	 */
336 	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
337 	spa->spa_vdev_removal = svr;
338 	svr->svr_thread = thread_create(NULL, 0,
339 	    spa_vdev_remove_thread, vd, 0, &p0, TS_RUN, minclsyspri);
340 }
341 
342 /*
343  * When we are opening a pool, we must read the mapping for each
344  * indirect vdev in order from most recently removed to least
345  * recently removed.  We do this because the blocks for the mapping
346  * of older indirect vdevs may be stored on more recently removed vdevs.
347  * In order to read each indirect mapping object, we must have
348  * initialized all more recently removed vdevs.
349  */
350 int
351 spa_remove_init(spa_t *spa)
352 {
353 	int error;
354 
355 	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
356 	    DMU_POOL_DIRECTORY_OBJECT,
357 	    DMU_POOL_REMOVING, sizeof (uint64_t),
358 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
359 	    &spa->spa_removing_phys);
360 
361 	if (error == ENOENT) {
362 		spa->spa_removing_phys.sr_state = DSS_NONE;
363 		spa->spa_removing_phys.sr_removing_vdev = -1;
364 		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
365 		return (0);
366 	} else if (error != 0) {
367 		return (error);
368 	}
369 
370 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
371 		/*
372 		 * We are currently removing a vdev.  Create and
373 		 * initialize a spa_vdev_removal_t from the bonus
374 		 * buffer of the removing vdevs vdev_im_object, and
375 		 * initialize its partial mapping.
376 		 */
377 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
378 		vdev_t *vd = vdev_lookup_top(spa,
379 		    spa->spa_removing_phys.sr_removing_vdev);
380 		spa_config_exit(spa, SCL_STATE, FTAG);
381 
382 		if (vd == NULL)
383 			return (EINVAL);
384 
385 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
386 
387 		ASSERT(vdev_is_concrete(vd));
388 		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
389 		ASSERT(svr->svr_vdev->vdev_removing);
390 
391 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
392 		    spa->spa_meta_objset, vic->vic_mapping_object);
393 		vd->vdev_indirect_births = vdev_indirect_births_open(
394 		    spa->spa_meta_objset, vic->vic_births_object);
395 
396 		spa->spa_vdev_removal = svr;
397 	}
398 
399 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
400 	uint64_t indirect_vdev_id =
401 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
402 	while (indirect_vdev_id != UINT64_MAX) {
403 		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
404 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
405 
406 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
407 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
408 		    spa->spa_meta_objset, vic->vic_mapping_object);
409 		vd->vdev_indirect_births = vdev_indirect_births_open(
410 		    spa->spa_meta_objset, vic->vic_births_object);
411 
412 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
413 	}
414 	spa_config_exit(spa, SCL_STATE, FTAG);
415 
416 	/*
417 	 * Now that we've loaded all the indirect mappings, we can allow
418 	 * reads from other blocks (e.g. via predictive prefetch).
419 	 */
420 	spa->spa_indirect_vdevs_loaded = B_TRUE;
421 	return (0);
422 }
423 
424 void
425 spa_restart_removal(spa_t *spa)
426 {
427 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
428 
429 	if (svr == NULL)
430 		return;
431 
432 	/*
433 	 * In general when this function is called there is no
434 	 * removal thread running. The only scenario where this
435 	 * is not true is during spa_import() where this function
436 	 * is called twice [once from spa_import_impl() and
437 	 * spa_async_resume()]. Thus, in the scenario where we
438 	 * import a pool that has an ongoing removal we don't
439 	 * want to spawn a second thread.
440 	 */
441 	if (svr->svr_thread != NULL)
442 		return;
443 
444 	if (!spa_writeable(spa))
445 		return;
446 
447 	vdev_t *vd = svr->svr_vdev;
448 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
449 
450 	ASSERT3P(vd, !=, NULL);
451 	ASSERT(vd->vdev_removing);
452 
453 	zfs_dbgmsg("restarting removal of %llu at count=%llu",
454 	    vd->vdev_id, vdev_indirect_mapping_num_entries(vim));
455 	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, vd,
456 	    0, &p0, TS_RUN, minclsyspri);
457 }
458 
459 /*
460  * Process freeing from a device which is in the middle of being removed.
461  * We must handle this carefully so that we attempt to copy freed data,
462  * and we correctly free already-copied data.
463  */
464 void
465 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size,
466     uint64_t txg)
467 {
468 	spa_t *spa = vd->vdev_spa;
469 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
470 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
471 	uint64_t max_offset_yet = 0;
472 
473 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
474 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
475 	    vdev_indirect_mapping_object(vim));
476 	ASSERT3P(vd, ==, svr->svr_vdev);
477 	ASSERT3U(spa_syncing_txg(spa), ==, txg);
478 
479 	mutex_enter(&svr->svr_lock);
480 
481 	/*
482 	 * Remove the segment from the removing vdev's spacemap.  This
483 	 * ensures that we will not attempt to copy this space (if the
484 	 * removal thread has not yet visited it), and also ensures
485 	 * that we know what is actually allocated on the new vdevs
486 	 * (needed if we cancel the removal).
487 	 *
488 	 * Note: we must do the metaslab_free_concrete() with the svr_lock
489 	 * held, so that the remove_thread can not load this metaslab and then
490 	 * visit this offset between the time that we metaslab_free_concrete()
491 	 * and when we check to see if it has been visited.
492 	 */
493 	metaslab_free_concrete(vd, offset, size, txg);
494 
495 	uint64_t synced_size = 0;
496 	uint64_t synced_offset = 0;
497 	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
498 	if (offset < max_offset_synced) {
499 		/*
500 		 * The mapping for this offset is already on disk.
501 		 * Free from the new location.
502 		 *
503 		 * Note that we use svr_max_synced_offset because it is
504 		 * updated atomically with respect to the in-core mapping.
505 		 * By contrast, vim_max_offset is not.
506 		 *
507 		 * This block may be split between a synced entry and an
508 		 * in-flight or unvisited entry.  Only process the synced
509 		 * portion of it here.
510 		 */
511 		synced_size = MIN(size, max_offset_synced - offset);
512 		synced_offset = offset;
513 
514 		ASSERT3U(max_offset_yet, <=, max_offset_synced);
515 		max_offset_yet = max_offset_synced;
516 
517 		DTRACE_PROBE3(remove__free__synced,
518 		    spa_t *, spa,
519 		    uint64_t, offset,
520 		    uint64_t, synced_size);
521 
522 		size -= synced_size;
523 		offset += synced_size;
524 	}
525 
526 	/*
527 	 * Look at all in-flight txgs starting from the currently syncing one
528 	 * and see if a section of this free is being copied. By starting from
529 	 * this txg and iterating forward, we might find that this region
530 	 * was copied in two different txgs and handle it appropriately.
531 	 */
532 	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
533 		int txgoff = (txg + i) & TXG_MASK;
534 		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
535 			/*
536 			 * The mapping for this offset is in flight, and
537 			 * will be synced in txg+i.
538 			 */
539 			uint64_t inflight_size = MIN(size,
540 			    svr->svr_max_offset_to_sync[txgoff] - offset);
541 
542 			DTRACE_PROBE4(remove__free__inflight,
543 			    spa_t *, spa,
544 			    uint64_t, offset,
545 			    uint64_t, inflight_size,
546 			    uint64_t, txg + i);
547 
548 			/*
549 			 * We copy data in order of increasing offset.
550 			 * Therefore the max_offset_to_sync[] must increase
551 			 * (or be zero, indicating that nothing is being
552 			 * copied in that txg).
553 			 */
554 			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
555 				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
556 				    >=, max_offset_yet);
557 				max_offset_yet =
558 				    svr->svr_max_offset_to_sync[txgoff];
559 			}
560 
561 			/*
562 			 * We've already committed to copying this segment:
563 			 * we have allocated space elsewhere in the pool for
564 			 * it and have an IO outstanding to copy the data. We
565 			 * cannot free the space before the copy has
566 			 * completed, or else the copy IO might overwrite any
567 			 * new data. To free that space, we record the
568 			 * segment in the appropriate svr_frees tree and free
569 			 * the mapped space later, in the txg where we have
570 			 * completed the copy and synced the mapping (see
571 			 * vdev_mapping_sync).
572 			 */
573 			range_tree_add(svr->svr_frees[txgoff],
574 			    offset, inflight_size);
575 			size -= inflight_size;
576 			offset += inflight_size;
577 
578 			/*
579 			 * This space is already accounted for as being
580 			 * done, because it is being copied in txg+i.
581 			 * However, if i!=0, then it is being copied in
582 			 * a future txg.  If we crash after this txg
583 			 * syncs but before txg+i syncs, then the space
584 			 * will be free.  Therefore we must account
585 			 * for the space being done in *this* txg
586 			 * (when it is freed) rather than the future txg
587 			 * (when it will be copied).
588 			 */
589 			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
590 			    inflight_size);
591 			svr->svr_bytes_done[txgoff] -= inflight_size;
592 			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
593 		}
594 	}
595 	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
596 
597 	if (size > 0) {
598 		/*
599 		 * The copy thread has not yet visited this offset.  Ensure
600 		 * that it doesn't.
601 		 */
602 
603 		DTRACE_PROBE3(remove__free__unvisited,
604 		    spa_t *, spa,
605 		    uint64_t, offset,
606 		    uint64_t, size);
607 
608 		if (svr->svr_allocd_segs != NULL)
609 			range_tree_clear(svr->svr_allocd_segs, offset, size);
610 
611 		/*
612 		 * Since we now do not need to copy this data, for
613 		 * accounting purposes we have done our job and can count
614 		 * it as completed.
615 		 */
616 		svr->svr_bytes_done[txg & TXG_MASK] += size;
617 	}
618 	mutex_exit(&svr->svr_lock);
619 
620 	/*
621 	 * Now that we have dropped svr_lock, process the synced portion
622 	 * of this free.
623 	 */
624 	if (synced_size > 0) {
625 		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size,
626 		    txg);
627 		/*
628 		 * Note: this can only be called from syncing context,
629 		 * and the vdev_indirect_mapping is only changed from the
630 		 * sync thread, so we don't need svr_lock while doing
631 		 * metaslab_free_impl_cb.
632 		 */
633 		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
634 		    metaslab_free_impl_cb, &txg);
635 	}
636 }
637 
638 /*
639  * Stop an active removal and update the spa_removing phys.
640  */
641 static void
642 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
643 {
644 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
645 	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
646 
647 	/* Ensure the removal thread has completed before we free the svr. */
648 	spa_vdev_remove_suspend(spa);
649 
650 	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
651 
652 	if (state == DSS_FINISHED) {
653 		spa_removing_phys_t *srp = &spa->spa_removing_phys;
654 		vdev_t *vd = svr->svr_vdev;
655 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
656 
657 		if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
658 			vdev_t *pvd = vdev_lookup_top(spa,
659 			    srp->sr_prev_indirect_vdev);
660 			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
661 		}
662 
663 		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
664 		srp->sr_prev_indirect_vdev = vd->vdev_id;
665 	}
666 	spa->spa_removing_phys.sr_state = state;
667 	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
668 
669 	spa->spa_vdev_removal = NULL;
670 	spa_vdev_removal_destroy(svr);
671 
672 	spa_sync_removing_state(spa, tx);
673 
674 	vdev_config_dirty(spa->spa_root_vdev);
675 }
676 
677 static void
678 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
679 {
680 	vdev_t *vd = arg;
681 	vdev_indirect_mark_obsolete(vd, offset, size,
682 	    vd->vdev_spa->spa_syncing_txg);
683 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
684 	    metaslab_free_impl_cb, &vd->vdev_spa->spa_syncing_txg);
685 }
686 
687 /*
688  * On behalf of the removal thread, syncs an incremental bit more of
689  * the indirect mapping to disk and updates the in-memory mapping.
690  * Called as a sync task in every txg that the removal thread makes progress.
691  */
692 static void
693 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
694 {
695 	spa_vdev_removal_t *svr = arg;
696 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
697 	vdev_t *vd = svr->svr_vdev;
698 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
699 	uint64_t txg = dmu_tx_get_txg(tx);
700 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
701 
702 	ASSERT(vic->vic_mapping_object != 0);
703 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
704 
705 	vdev_indirect_mapping_add_entries(vim,
706 	    &svr->svr_new_segments[txg & TXG_MASK], tx);
707 	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
708 	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
709 
710 	/*
711 	 * Free the copied data for anything that was freed while the
712 	 * mapping entries were in flight.
713 	 */
714 	mutex_enter(&svr->svr_lock);
715 	range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
716 	    free_mapped_segment_cb, vd);
717 	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
718 	    vdev_indirect_mapping_max_offset(vim));
719 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
720 	mutex_exit(&svr->svr_lock);
721 
722 	spa_sync_removing_state(spa, tx);
723 }
724 
725 static void
726 spa_vdev_copy_segment_write_done(zio_t *zio)
727 {
728 	vdev_copy_seg_arg_t *vcsa = zio->io_private;
729 	vdev_copy_arg_t *vca = vcsa->vcsa_copy_arg;
730 	spa_config_exit(zio->io_spa, SCL_STATE, FTAG);
731 	abd_free(zio->io_abd);
732 
733 	mutex_enter(&vca->vca_lock);
734 	vca->vca_outstanding_bytes -= zio->io_size;
735 	cv_signal(&vca->vca_cv);
736 	mutex_exit(&vca->vca_lock);
737 
738 	ASSERT0(zio->io_error);
739 	kmem_free(vcsa->vcsa_dest_bp, sizeof (blkptr_t));
740 	kmem_free(vcsa, sizeof (vdev_copy_seg_arg_t));
741 }
742 
743 static void
744 spa_vdev_copy_segment_read_done(zio_t *zio)
745 {
746 	vdev_copy_seg_arg_t *vcsa = zio->io_private;
747 	dva_t *dest_dva = vcsa->vcsa_dest_dva;
748 	uint64_t txg = vcsa->vcsa_txg;
749 	spa_t *spa = zio->io_spa;
750 	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(dest_dva));
751 	blkptr_t *bp = NULL;
752 	dva_t *dva = NULL;
753 	uint64_t size = zio->io_size;
754 
755 	ASSERT3P(dest_vd, !=, NULL);
756 	ASSERT0(zio->io_error);
757 
758 	vcsa->vcsa_dest_bp = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
759 	bp = vcsa->vcsa_dest_bp;
760 	dva = bp->blk_dva;
761 
762 	BP_ZERO(bp);
763 
764 	/* initialize with dest_dva */
765 	bcopy(dest_dva, dva, sizeof (dva_t));
766 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
767 
768 	BP_SET_LSIZE(bp, size);
769 	BP_SET_PSIZE(bp, size);
770 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
771 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
772 	BP_SET_TYPE(bp, DMU_OT_NONE);
773 	BP_SET_LEVEL(bp, 0);
774 	BP_SET_DEDUP(bp, 0);
775 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
776 
777 	zio_nowait(zio_rewrite(spa->spa_txg_zio[txg & TXG_MASK], spa,
778 	    txg, bp, zio->io_abd, size,
779 	    spa_vdev_copy_segment_write_done, vcsa,
780 	    ZIO_PRIORITY_REMOVAL, 0, NULL));
781 }
782 
783 static int
784 spa_vdev_copy_segment(vdev_t *vd, uint64_t start, uint64_t size, uint64_t txg,
785     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
786 {
787 	metaslab_group_t *mg = vd->vdev_mg;
788 	spa_t *spa = vd->vdev_spa;
789 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
790 	vdev_indirect_mapping_entry_t *entry;
791 	vdev_copy_seg_arg_t *private;
792 	dva_t dst = { 0 };
793 	blkptr_t blk, *bp = &blk;
794 	dva_t *dva = bp->blk_dva;
795 
796 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
797 
798 	int error = metaslab_alloc_dva(spa, mg->mg_class, size,
799 	    &dst, 0, NULL, txg, 0, zal);
800 	if (error != 0)
801 		return (error);
802 
803 	/*
804 	 * We can't have any padding of the allocated size, otherwise we will
805 	 * misunderstand what's allocated, and the size of the mapping.
806 	 * The caller ensures this will be true by passing in a size that is
807 	 * aligned to the worst (highest) ashift in the pool.
808 	 */
809 	ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
810 
811 	mutex_enter(&vca->vca_lock);
812 	vca->vca_outstanding_bytes += size;
813 	mutex_exit(&vca->vca_lock);
814 
815 	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
816 	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
817 	entry->vime_mapping.vimep_dst = dst;
818 
819 	private = kmem_alloc(sizeof (vdev_copy_seg_arg_t), KM_SLEEP);
820 	private->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
821 	private->vcsa_txg = txg;
822 	private->vcsa_copy_arg = vca;
823 
824 	/*
825 	 * This lock is eventually released by the donefunc for the
826 	 * zio_write_phys that finishes copying the data.
827 	 */
828 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
829 
830 	/*
831 	 * Do logical I/O, letting the redundancy vdevs (like mirror)
832 	 * handle their own I/O instead of duplicating that code here.
833 	 */
834 	BP_ZERO(bp);
835 
836 	DVA_SET_VDEV(&dva[0], vd->vdev_id);
837 	DVA_SET_OFFSET(&dva[0], start);
838 	DVA_SET_GANG(&dva[0], 0);
839 	DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, size));
840 
841 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
842 
843 	BP_SET_LSIZE(bp, size);
844 	BP_SET_PSIZE(bp, size);
845 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
846 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
847 	BP_SET_TYPE(bp, DMU_OT_NONE);
848 	BP_SET_LEVEL(bp, 0);
849 	BP_SET_DEDUP(bp, 0);
850 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
851 
852 	zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa,
853 	    bp, abd_alloc_for_io(size, B_FALSE), size,
854 	    spa_vdev_copy_segment_read_done, private,
855 	    ZIO_PRIORITY_REMOVAL, 0, NULL));
856 
857 	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
858 	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
859 	vdev_dirty(vd, 0, NULL, txg);
860 
861 	return (0);
862 }
863 
864 /*
865  * Complete the removal of a toplevel vdev. This is called as a
866  * synctask in the same txg that we will sync out the new config (to the
867  * MOS object) which indicates that this vdev is indirect.
868  */
869 static void
870 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
871 {
872 	spa_vdev_removal_t *svr = arg;
873 	vdev_t *vd = svr->svr_vdev;
874 	spa_t *spa = vd->vdev_spa;
875 
876 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
877 
878 	for (int i = 0; i < TXG_SIZE; i++) {
879 		ASSERT0(svr->svr_bytes_done[i]);
880 	}
881 
882 	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
883 	    spa->spa_removing_phys.sr_to_copy);
884 
885 	vdev_destroy_spacemaps(vd, tx);
886 
887 	/* destroy leaf zaps, if any */
888 	ASSERT3P(svr->svr_zaplist, !=, NULL);
889 	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
890 	    pair != NULL;
891 	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
892 		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
893 	}
894 	fnvlist_free(svr->svr_zaplist);
895 
896 	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
897 	/* vd->vdev_path is not available here */
898 	spa_history_log_internal(spa, "vdev remove completed",  tx,
899 	    "%s vdev %llu", spa_name(spa), vd->vdev_id);
900 }
901 
902 static void
903 vdev_indirect_state_transfer(vdev_t *ivd, vdev_t *vd)
904 {
905 	ivd->vdev_indirect_config = vd->vdev_indirect_config;
906 
907 	ASSERT3P(ivd->vdev_indirect_mapping, ==, NULL);
908 	ASSERT(vd->vdev_indirect_mapping != NULL);
909 	ivd->vdev_indirect_mapping = vd->vdev_indirect_mapping;
910 	vd->vdev_indirect_mapping = NULL;
911 
912 	ASSERT3P(ivd->vdev_indirect_births, ==, NULL);
913 	ASSERT(vd->vdev_indirect_births != NULL);
914 	ivd->vdev_indirect_births = vd->vdev_indirect_births;
915 	vd->vdev_indirect_births = NULL;
916 
917 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
918 	ASSERT0(range_tree_space(ivd->vdev_obsolete_segments));
919 
920 	if (vd->vdev_obsolete_sm != NULL) {
921 		ASSERT3U(ivd->vdev_asize, ==, vd->vdev_asize);
922 
923 		/*
924 		 * We cannot use space_map_{open,close} because we hold all
925 		 * the config locks as writer.
926 		 */
927 		ASSERT3P(ivd->vdev_obsolete_sm, ==, NULL);
928 		ivd->vdev_obsolete_sm = vd->vdev_obsolete_sm;
929 		vd->vdev_obsolete_sm = NULL;
930 	}
931 }
932 
933 static void
934 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
935 {
936 	ASSERT3P(zlist, !=, NULL);
937 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
938 
939 	if (vd->vdev_leaf_zap != 0) {
940 		char zkey[32];
941 		(void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64,
942 		    VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap);
943 		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
944 	}
945 
946 	for (uint64_t id = 0; id < vd->vdev_children; id++) {
947 		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
948 	}
949 }
950 
951 static void
952 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
953 {
954 	vdev_t *ivd;
955 	dmu_tx_t *tx;
956 	spa_t *spa = vd->vdev_spa;
957 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
958 
959 	/*
960 	 * First, build a list of leaf zaps to be destroyed.
961 	 * This is passed to the sync context thread,
962 	 * which does the actual unlinking.
963 	 */
964 	svr->svr_zaplist = fnvlist_alloc();
965 	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
966 
967 	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
968 
969 	vd->vdev_leaf_zap = 0;
970 
971 	vdev_remove_child(ivd, vd);
972 	vdev_compact_children(ivd);
973 
974 	vdev_indirect_state_transfer(ivd, vd);
975 
976 	svr->svr_vdev = ivd;
977 
978 	ASSERT(!ivd->vdev_removing);
979 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
980 
981 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
982 	dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
983 	    0, ZFS_SPACE_CHECK_NONE, tx);
984 	dmu_tx_commit(tx);
985 
986 	/*
987 	 * Indicate that this thread has exited.
988 	 * After this, we can not use svr.
989 	 */
990 	mutex_enter(&svr->svr_lock);
991 	svr->svr_thread = NULL;
992 	cv_broadcast(&svr->svr_cv);
993 	mutex_exit(&svr->svr_lock);
994 }
995 
996 /*
997  * Complete the removal of a toplevel vdev. This is called in open
998  * context by the removal thread after we have copied all vdev's data.
999  */
1000 static void
1001 vdev_remove_complete(vdev_t *vd)
1002 {
1003 	spa_t *spa = vd->vdev_spa;
1004 	uint64_t txg;
1005 
1006 	/*
1007 	 * Wait for any deferred frees to be synced before we call
1008 	 * vdev_metaslab_fini()
1009 	 */
1010 	txg_wait_synced(spa->spa_dsl_pool, 0);
1011 
1012 	txg = spa_vdev_enter(spa);
1013 	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1014 	    vd->vdev_id, txg);
1015 
1016 	/*
1017 	 * Discard allocation state.
1018 	 */
1019 	if (vd->vdev_mg != NULL) {
1020 		vdev_metaslab_fini(vd);
1021 		metaslab_group_destroy(vd->vdev_mg);
1022 		vd->vdev_mg = NULL;
1023 	}
1024 	ASSERT0(vd->vdev_stat.vs_space);
1025 	ASSERT0(vd->vdev_stat.vs_dspace);
1026 
1027 	vdev_remove_replace_with_indirect(vd, txg);
1028 
1029 	/*
1030 	 * We now release the locks, allowing spa_sync to run and finish the
1031 	 * removal via vdev_remove_complete_sync in syncing context.
1032 	 */
1033 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1034 
1035 	/*
1036 	 * Top ZAP should have been transferred to the indirect vdev in
1037 	 * vdev_remove_replace_with_indirect.
1038 	 */
1039 	ASSERT0(vd->vdev_top_zap);
1040 
1041 	/*
1042 	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1043 	 */
1044 	ASSERT0(vd->vdev_leaf_zap);
1045 
1046 	txg = spa_vdev_enter(spa);
1047 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1048 	/*
1049 	 * Request to update the config and the config cachefile.
1050 	 */
1051 	vdev_config_dirty(spa->spa_root_vdev);
1052 	(void) spa_vdev_exit(spa, vd, txg, 0);
1053 }
1054 
1055 /*
1056  * Evacuates a segment of size at most max_alloc from the vdev
1057  * via repeated calls to spa_vdev_copy_segment. If an allocation
1058  * fails, the pool is probably too fragmented to handle such a
1059  * large size, so decrease max_alloc so that the caller will not try
1060  * this size again this txg.
1061  */
1062 static void
1063 spa_vdev_copy_impl(spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1064     uint64_t *max_alloc, dmu_tx_t *tx)
1065 {
1066 	uint64_t txg = dmu_tx_get_txg(tx);
1067 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1068 
1069 	mutex_enter(&svr->svr_lock);
1070 
1071 	range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1072 	if (rs == NULL) {
1073 		mutex_exit(&svr->svr_lock);
1074 		return;
1075 	}
1076 	uint64_t offset = rs->rs_start;
1077 	uint64_t length = MIN(rs->rs_end - rs->rs_start, *max_alloc);
1078 
1079 	range_tree_remove(svr->svr_allocd_segs, offset, length);
1080 
1081 	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1082 		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1083 		    svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1084 	}
1085 
1086 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = offset + length;
1087 
1088 	/*
1089 	 * Note: this is the amount of *allocated* space
1090 	 * that we are taking care of each txg.
1091 	 */
1092 	svr->svr_bytes_done[txg & TXG_MASK] += length;
1093 
1094 	mutex_exit(&svr->svr_lock);
1095 
1096 	zio_alloc_list_t zal;
1097 	metaslab_trace_init(&zal);
1098 	uint64_t thismax = *max_alloc;
1099 	while (length > 0) {
1100 		uint64_t mylen = MIN(length, thismax);
1101 
1102 		int error = spa_vdev_copy_segment(svr->svr_vdev,
1103 		    offset, mylen, txg, vca, &zal);
1104 
1105 		if (error == ENOSPC) {
1106 			/*
1107 			 * Cut our segment in half, and don't try this
1108 			 * segment size again this txg.  Note that the
1109 			 * allocation size must be aligned to the highest
1110 			 * ashift in the pool, so that the allocation will
1111 			 * not be padded out to a multiple of the ashift,
1112 			 * which could cause us to think that this mapping
1113 			 * is larger than we intended.
1114 			 */
1115 			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1116 			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1117 			thismax = P2ROUNDUP(mylen / 2,
1118 			    1 << spa->spa_max_ashift);
1119 			ASSERT3U(thismax, <, mylen);
1120 			/*
1121 			 * The minimum-size allocation can not fail.
1122 			 */
1123 			ASSERT3U(mylen, >, 1 << spa->spa_max_ashift);
1124 			*max_alloc = mylen - (1 << spa->spa_max_ashift);
1125 		} else {
1126 			ASSERT0(error);
1127 			length -= mylen;
1128 			offset += mylen;
1129 
1130 			/*
1131 			 * We've performed an allocation, so reset the
1132 			 * alloc trace list.
1133 			 */
1134 			metaslab_trace_fini(&zal);
1135 			metaslab_trace_init(&zal);
1136 		}
1137 	}
1138 	metaslab_trace_fini(&zal);
1139 }
1140 
1141 /*
1142  * The removal thread operates in open context.  It iterates over all
1143  * allocated space in the vdev, by loading each metaslab's spacemap.
1144  * For each contiguous segment of allocated space (capping the segment
1145  * size at SPA_MAXBLOCKSIZE), we:
1146  *    - Allocate space for it on another vdev.
1147  *    - Create a new mapping from the old location to the new location
1148  *      (as a record in svr_new_segments).
1149  *    - Initiate a logical read zio to get the data off the removing disk.
1150  *    - In the read zio's done callback, initiate a logical write zio to
1151  *      write it to the new vdev.
1152  * Note that all of this will take effect when a particular TXG syncs.
1153  * The sync thread ensures that all the phys reads and writes for the syncing
1154  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1155  * (see vdev_mapping_sync()).
1156  */
1157 static void
1158 spa_vdev_remove_thread(void *arg)
1159 {
1160 	vdev_t *vd = arg;
1161 	spa_t *spa = vd->vdev_spa;
1162 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1163 	vdev_copy_arg_t vca;
1164 	uint64_t max_alloc = zfs_remove_max_segment;
1165 	uint64_t last_txg = 0;
1166 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1167 	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1168 
1169 	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1170 	ASSERT(vdev_is_concrete(vd));
1171 	ASSERT(vd->vdev_removing);
1172 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1173 	ASSERT3P(svr->svr_vdev, ==, vd);
1174 	ASSERT(vim != NULL);
1175 
1176 	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1177 	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1178 	vca.vca_outstanding_bytes = 0;
1179 
1180 	mutex_enter(&svr->svr_lock);
1181 
1182 	/*
1183 	 * Start from vim_max_offset so we pick up where we left off
1184 	 * if we are restarting the removal after opening the pool.
1185 	 */
1186 	uint64_t msi;
1187 	for (msi = start_offset >> vd->vdev_ms_shift;
1188 	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1189 		metaslab_t *msp = vd->vdev_ms[msi];
1190 		ASSERT3U(msi, <=, vd->vdev_ms_count);
1191 
1192 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1193 
1194 		mutex_enter(&msp->ms_sync_lock);
1195 		mutex_enter(&msp->ms_lock);
1196 
1197 		/*
1198 		 * Assert nothing in flight -- ms_*tree is empty.
1199 		 */
1200 		for (int i = 0; i < TXG_SIZE; i++) {
1201 			ASSERT0(range_tree_space(msp->ms_alloctree[i]));
1202 		}
1203 
1204 		/*
1205 		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1206 		 * read the allocated segments from the space map object
1207 		 * into svr_allocd_segs. Since we do this while holding
1208 		 * svr_lock and ms_sync_lock, concurrent frees (which
1209 		 * would have modified the space map) will wait for us
1210 		 * to finish loading the spacemap, and then take the
1211 		 * appropriate action (see free_from_removing_vdev()).
1212 		 */
1213 		if (msp->ms_sm != NULL) {
1214 			space_map_t *sm = NULL;
1215 
1216 			/*
1217 			 * We have to open a new space map here, because
1218 			 * ms_sm's sm_length and sm_alloc may not reflect
1219 			 * what's in the object contents, if we are in between
1220 			 * metaslab_sync() and metaslab_sync_done().
1221 			 */
1222 			VERIFY0(space_map_open(&sm,
1223 			    spa->spa_dsl_pool->dp_meta_objset,
1224 			    msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1225 			    msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1226 			space_map_update(sm);
1227 			VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1228 			    SM_ALLOC));
1229 			space_map_close(sm);
1230 
1231 			range_tree_walk(msp->ms_freeingtree,
1232 			    range_tree_remove, svr->svr_allocd_segs);
1233 
1234 			/*
1235 			 * When we are resuming from a paused removal (i.e.
1236 			 * when importing a pool with a removal in progress),
1237 			 * discard any state that we have already processed.
1238 			 */
1239 			range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1240 		}
1241 		mutex_exit(&msp->ms_lock);
1242 		mutex_exit(&msp->ms_sync_lock);
1243 
1244 		vca.vca_msp = msp;
1245 		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1246 		    avl_numnodes(&svr->svr_allocd_segs->rt_root),
1247 		    msp->ms_id);
1248 
1249 		while (!svr->svr_thread_exit &&
1250 		    range_tree_space(svr->svr_allocd_segs) != 0) {
1251 
1252 			mutex_exit(&svr->svr_lock);
1253 
1254 			mutex_enter(&vca.vca_lock);
1255 			while (vca.vca_outstanding_bytes >
1256 			    zfs_remove_max_copy_bytes) {
1257 				cv_wait(&vca.vca_cv, &vca.vca_lock);
1258 			}
1259 			mutex_exit(&vca.vca_lock);
1260 
1261 			dmu_tx_t *tx =
1262 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1263 
1264 			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1265 			uint64_t txg = dmu_tx_get_txg(tx);
1266 
1267 			if (txg != last_txg)
1268 				max_alloc = zfs_remove_max_segment;
1269 			last_txg = txg;
1270 
1271 			spa_vdev_copy_impl(svr, &vca, &max_alloc, tx);
1272 
1273 			dmu_tx_commit(tx);
1274 			mutex_enter(&svr->svr_lock);
1275 		}
1276 	}
1277 
1278 	mutex_exit(&svr->svr_lock);
1279 	/*
1280 	 * Wait for all copies to finish before cleaning up the vca.
1281 	 */
1282 	txg_wait_synced(spa->spa_dsl_pool, 0);
1283 	ASSERT0(vca.vca_outstanding_bytes);
1284 
1285 	mutex_destroy(&vca.vca_lock);
1286 	cv_destroy(&vca.vca_cv);
1287 
1288 	if (svr->svr_thread_exit) {
1289 		mutex_enter(&svr->svr_lock);
1290 		range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1291 		svr->svr_thread = NULL;
1292 		cv_broadcast(&svr->svr_cv);
1293 		mutex_exit(&svr->svr_lock);
1294 	} else {
1295 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1296 		vdev_remove_complete(vd);
1297 	}
1298 }
1299 
1300 void
1301 spa_vdev_remove_suspend(spa_t *spa)
1302 {
1303 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1304 
1305 	if (svr == NULL)
1306 		return;
1307 
1308 	mutex_enter(&svr->svr_lock);
1309 	svr->svr_thread_exit = B_TRUE;
1310 	while (svr->svr_thread != NULL)
1311 		cv_wait(&svr->svr_cv, &svr->svr_lock);
1312 	svr->svr_thread_exit = B_FALSE;
1313 	mutex_exit(&svr->svr_lock);
1314 }
1315 
1316 /* ARGSUSED */
1317 static int
1318 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1319 {
1320 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1321 
1322 	if (spa->spa_vdev_removal == NULL)
1323 		return (ENOTACTIVE);
1324 	return (0);
1325 }
1326 
1327 /*
1328  * Cancel a removal by freeing all entries from the partial mapping
1329  * and marking the vdev as no longer being removing.
1330  */
1331 /* ARGSUSED */
1332 static void
1333 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1334 {
1335 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1336 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1337 	vdev_t *vd = svr->svr_vdev;
1338 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1339 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1340 	objset_t *mos = spa->spa_meta_objset;
1341 
1342 	ASSERT3P(svr->svr_thread, ==, NULL);
1343 
1344 	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1345 	if (vdev_obsolete_counts_are_precise(vd)) {
1346 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1347 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1348 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1349 	}
1350 
1351 	if (vdev_obsolete_sm_object(vd) != 0) {
1352 		ASSERT(vd->vdev_obsolete_sm != NULL);
1353 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1354 		    space_map_object(vd->vdev_obsolete_sm));
1355 
1356 		space_map_free(vd->vdev_obsolete_sm, tx);
1357 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1358 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1359 		space_map_close(vd->vdev_obsolete_sm);
1360 		vd->vdev_obsolete_sm = NULL;
1361 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1362 	}
1363 	for (int i = 0; i < TXG_SIZE; i++) {
1364 		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1365 		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1366 		    vdev_indirect_mapping_max_offset(vim));
1367 	}
1368 
1369 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1370 		metaslab_t *msp = vd->vdev_ms[msi];
1371 
1372 		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1373 			break;
1374 
1375 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1376 
1377 		mutex_enter(&msp->ms_lock);
1378 
1379 		/*
1380 		 * Assert nothing in flight -- ms_*tree is empty.
1381 		 */
1382 		for (int i = 0; i < TXG_SIZE; i++)
1383 			ASSERT0(range_tree_space(msp->ms_alloctree[i]));
1384 		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1385 			ASSERT0(range_tree_space(msp->ms_defertree[i]));
1386 		ASSERT0(range_tree_space(msp->ms_freedtree));
1387 
1388 		if (msp->ms_sm != NULL) {
1389 			/*
1390 			 * Assert that the in-core spacemap has the same
1391 			 * length as the on-disk one, so we can use the
1392 			 * existing in-core spacemap to load it from disk.
1393 			 */
1394 			ASSERT3U(msp->ms_sm->sm_alloc, ==,
1395 			    msp->ms_sm->sm_phys->smp_alloc);
1396 			ASSERT3U(msp->ms_sm->sm_length, ==,
1397 			    msp->ms_sm->sm_phys->smp_objsize);
1398 
1399 			mutex_enter(&svr->svr_lock);
1400 			VERIFY0(space_map_load(msp->ms_sm,
1401 			    svr->svr_allocd_segs, SM_ALLOC));
1402 			range_tree_walk(msp->ms_freeingtree,
1403 			    range_tree_remove, svr->svr_allocd_segs);
1404 
1405 			/*
1406 			 * Clear everything past what has been synced,
1407 			 * because we have not allocated mappings for it yet.
1408 			 */
1409 			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1410 			range_tree_clear(svr->svr_allocd_segs, syncd,
1411 			    msp->ms_sm->sm_start + msp->ms_sm->sm_size - syncd);
1412 
1413 			mutex_exit(&svr->svr_lock);
1414 		}
1415 		mutex_exit(&msp->ms_lock);
1416 
1417 		mutex_enter(&svr->svr_lock);
1418 		range_tree_vacate(svr->svr_allocd_segs,
1419 		    free_mapped_segment_cb, vd);
1420 		mutex_exit(&svr->svr_lock);
1421 	}
1422 
1423 	/*
1424 	 * Note: this must happen after we invoke free_mapped_segment_cb,
1425 	 * because it adds to the obsolete_segments.
1426 	 */
1427 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1428 
1429 	ASSERT3U(vic->vic_mapping_object, ==,
1430 	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1431 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1432 	vd->vdev_indirect_mapping = NULL;
1433 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1434 	vic->vic_mapping_object = 0;
1435 
1436 	ASSERT3U(vic->vic_births_object, ==,
1437 	    vdev_indirect_births_object(vd->vdev_indirect_births));
1438 	vdev_indirect_births_close(vd->vdev_indirect_births);
1439 	vd->vdev_indirect_births = NULL;
1440 	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1441 	vic->vic_births_object = 0;
1442 
1443 	/*
1444 	 * We may have processed some frees from the removing vdev in this
1445 	 * txg, thus increasing svr_bytes_done; discard that here to
1446 	 * satisfy the assertions in spa_vdev_removal_destroy().
1447 	 * Note that future txg's can not have any bytes_done, because
1448 	 * future TXG's are only modified from open context, and we have
1449 	 * already shut down the copying thread.
1450 	 */
1451 	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1452 	spa_finish_removal(spa, DSS_CANCELED, tx);
1453 
1454 	vd->vdev_removing = B_FALSE;
1455 	vdev_config_dirty(vd);
1456 
1457 	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1458 	    vd->vdev_id, dmu_tx_get_txg(tx));
1459 	spa_history_log_internal(spa, "vdev remove canceled", tx,
1460 	    "%s vdev %llu %s", spa_name(spa),
1461 	    vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1462 }
1463 
1464 int
1465 spa_vdev_remove_cancel(spa_t *spa)
1466 {
1467 	spa_vdev_remove_suspend(spa);
1468 
1469 	if (spa->spa_vdev_removal == NULL)
1470 		return (ENOTACTIVE);
1471 
1472 	uint64_t vdid = spa->spa_vdev_removal->svr_vdev->vdev_id;
1473 
1474 	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1475 	    spa_vdev_remove_cancel_sync, NULL, 0, ZFS_SPACE_CHECK_NONE);
1476 
1477 	if (error == 0) {
1478 		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1479 		vdev_t *vd = vdev_lookup_top(spa, vdid);
1480 		metaslab_group_activate(vd->vdev_mg);
1481 		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1482 	}
1483 
1484 	return (error);
1485 }
1486 
1487 /*
1488  * Called every sync pass of every txg if there's a svr.
1489  */
1490 void
1491 svr_sync(spa_t *spa, dmu_tx_t *tx)
1492 {
1493 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1494 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1495 
1496 	/*
1497 	 * This check is necessary so that we do not dirty the
1498 	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1499 	 * is nothing to do.  Dirtying it every time would prevent us
1500 	 * from syncing-to-convergence.
1501 	 */
1502 	if (svr->svr_bytes_done[txgoff] == 0)
1503 		return;
1504 
1505 	/*
1506 	 * Update progress accounting.
1507 	 */
1508 	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1509 	svr->svr_bytes_done[txgoff] = 0;
1510 
1511 	spa_sync_removing_state(spa, tx);
1512 }
1513 
1514 static void
1515 vdev_remove_make_hole_and_free(vdev_t *vd)
1516 {
1517 	uint64_t id = vd->vdev_id;
1518 	spa_t *spa = vd->vdev_spa;
1519 	vdev_t *rvd = spa->spa_root_vdev;
1520 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1521 
1522 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1523 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1524 
1525 	vdev_free(vd);
1526 
1527 	if (last_vdev) {
1528 		vdev_compact_children(rvd);
1529 	} else {
1530 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1531 		vdev_add_child(rvd, vd);
1532 	}
1533 	vdev_config_dirty(rvd);
1534 
1535 	/*
1536 	 * Reassess the health of our root vdev.
1537 	 */
1538 	vdev_reopen(rvd);
1539 }
1540 
1541 /*
1542  * Remove a log device.  The config lock is held for the specified TXG.
1543  */
1544 static int
1545 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1546 {
1547 	metaslab_group_t *mg = vd->vdev_mg;
1548 	spa_t *spa = vd->vdev_spa;
1549 	int error = 0;
1550 
1551 	ASSERT(vd->vdev_islog);
1552 	ASSERT(vd == vd->vdev_top);
1553 
1554 	/*
1555 	 * Stop allocating from this vdev.
1556 	 */
1557 	metaslab_group_passivate(mg);
1558 
1559 	/*
1560 	 * Wait for the youngest allocations and frees to sync,
1561 	 * and then wait for the deferral of those frees to finish.
1562 	 */
1563 	spa_vdev_config_exit(spa, NULL,
1564 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1565 
1566 	/*
1567 	 * Evacuate the device.  We don't hold the config lock as writer
1568 	 * since we need to do I/O but we do keep the
1569 	 * spa_namespace_lock held.  Once this completes the device
1570 	 * should no longer have any blocks allocated on it.
1571 	 */
1572 	if (vd->vdev_islog) {
1573 		if (vd->vdev_stat.vs_alloc != 0)
1574 			error = spa_reset_logs(spa);
1575 	}
1576 
1577 	*txg = spa_vdev_config_enter(spa);
1578 
1579 	if (error != 0) {
1580 		metaslab_group_activate(mg);
1581 		return (error);
1582 	}
1583 	ASSERT0(vd->vdev_stat.vs_alloc);
1584 
1585 	/*
1586 	 * The evacuation succeeded.  Remove any remaining MOS metadata
1587 	 * associated with this vdev, and wait for these changes to sync.
1588 	 */
1589 	vd->vdev_removing = B_TRUE;
1590 
1591 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1592 	vdev_config_dirty(vd);
1593 
1594 	spa_history_log_internal(spa, "vdev remove", NULL,
1595 	    "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1596 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1597 
1598 	/* Make sure these changes are sync'ed */
1599 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1600 
1601 	*txg = spa_vdev_config_enter(spa);
1602 
1603 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1604 	    ESC_ZFS_VDEV_REMOVE_DEV);
1605 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1606 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1607 
1608 	/* The top ZAP should have been destroyed by vdev_remove_empty. */
1609 	ASSERT0(vd->vdev_top_zap);
1610 	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1611 	ASSERT0(vd->vdev_leaf_zap);
1612 
1613 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1614 
1615 	if (list_link_active(&vd->vdev_state_dirty_node))
1616 		vdev_state_clean(vd);
1617 	if (list_link_active(&vd->vdev_config_dirty_node))
1618 		vdev_config_clean(vd);
1619 
1620 	/*
1621 	 * Clean up the vdev namespace.
1622 	 */
1623 	vdev_remove_make_hole_and_free(vd);
1624 
1625 	if (ev != NULL)
1626 		spa_event_post(ev);
1627 
1628 	return (0);
1629 }
1630 
1631 static int
1632 spa_vdev_remove_top_check(vdev_t *vd)
1633 {
1634 	spa_t *spa = vd->vdev_spa;
1635 
1636 	if (vd != vd->vdev_top)
1637 		return (SET_ERROR(ENOTSUP));
1638 
1639 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1640 		return (SET_ERROR(ENOTSUP));
1641 
1642 	/*
1643 	 * There has to be enough free space to remove the
1644 	 * device and leave double the "slop" space (i.e. we
1645 	 * must leave at least 3% of the pool free, in addition to
1646 	 * the normal slop space).
1647 	 */
1648 	if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
1649 	    NULL, 0, B_TRUE) <
1650 	    vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1651 		return (SET_ERROR(ENOSPC));
1652 	}
1653 
1654 	/*
1655 	 * There can not be a removal in progress.
1656 	 */
1657 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1658 		return (SET_ERROR(EBUSY));
1659 
1660 	/*
1661 	 * The device must have all its data.
1662 	 */
1663 	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1664 	    !vdev_dtl_empty(vd, DTL_OUTAGE))
1665 		return (SET_ERROR(EBUSY));
1666 
1667 	/*
1668 	 * The device must be healthy.
1669 	 */
1670 	if (!vdev_readable(vd))
1671 		return (SET_ERROR(EIO));
1672 
1673 	/*
1674 	 * All vdevs in normal class must have the same ashift.
1675 	 */
1676 	if (spa->spa_max_ashift != spa->spa_min_ashift) {
1677 		return (SET_ERROR(EINVAL));
1678 	}
1679 
1680 	/*
1681 	 * All vdevs in normal class must have the same ashift
1682 	 * and not be raidz.
1683 	 */
1684 	vdev_t *rvd = spa->spa_root_vdev;
1685 	int num_indirect = 0;
1686 	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1687 		vdev_t *cvd = rvd->vdev_child[id];
1688 		if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1689 			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1690 		if (cvd->vdev_ops == &vdev_indirect_ops)
1691 			num_indirect++;
1692 		if (!vdev_is_concrete(cvd))
1693 			continue;
1694 		if (cvd->vdev_ops == &vdev_raidz_ops)
1695 			return (SET_ERROR(EINVAL));
1696 		/*
1697 		 * Need the mirror to be mirror of leaf vdevs only
1698 		 */
1699 		if (cvd->vdev_ops == &vdev_mirror_ops) {
1700 			for (uint64_t cid = 0;
1701 			    cid < cvd->vdev_children; cid++) {
1702 				vdev_t *tmp = cvd->vdev_child[cid];
1703 				if (!tmp->vdev_ops->vdev_op_leaf)
1704 					return (SET_ERROR(EINVAL));
1705 			}
1706 		}
1707 	}
1708 
1709 	return (0);
1710 }
1711 
1712 /*
1713  * Initiate removal of a top-level vdev, reducing the total space in the pool.
1714  * The config lock is held for the specified TXG.  Once initiated,
1715  * evacuation of all allocated space (copying it to other vdevs) happens
1716  * in the background (see spa_vdev_remove_thread()), and can be canceled
1717  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1718  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1719  */
1720 static int
1721 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1722 {
1723 	spa_t *spa = vd->vdev_spa;
1724 	int error;
1725 
1726 	/*
1727 	 * Check for errors up-front, so that we don't waste time
1728 	 * passivating the metaslab group and clearing the ZIL if there
1729 	 * are errors.
1730 	 */
1731 	error = spa_vdev_remove_top_check(vd);
1732 	if (error != 0)
1733 		return (error);
1734 
1735 	/*
1736 	 * Stop allocating from this vdev.  Note that we must check
1737 	 * that this is not the only device in the pool before
1738 	 * passivating, otherwise we will not be able to make
1739 	 * progress because we can't allocate from any vdevs.
1740 	 * The above check for sufficient free space serves this
1741 	 * purpose.
1742 	 */
1743 	metaslab_group_t *mg = vd->vdev_mg;
1744 	metaslab_group_passivate(mg);
1745 
1746 	/*
1747 	 * Wait for the youngest allocations and frees to sync,
1748 	 * and then wait for the deferral of those frees to finish.
1749 	 */
1750 	spa_vdev_config_exit(spa, NULL,
1751 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1752 
1753 	/*
1754 	 * We must ensure that no "stubby" log blocks are allocated
1755 	 * on the device to be removed.  These blocks could be
1756 	 * written at any time, including while we are in the middle
1757 	 * of copying them.
1758 	 */
1759 	error = spa_reset_logs(spa);
1760 
1761 	*txg = spa_vdev_config_enter(spa);
1762 
1763 	/*
1764 	 * Things might have changed while the config lock was dropped
1765 	 * (e.g. space usage).  Check for errors again.
1766 	 */
1767 	if (error == 0)
1768 		error = spa_vdev_remove_top_check(vd);
1769 
1770 	if (error != 0) {
1771 		metaslab_group_activate(mg);
1772 		return (error);
1773 	}
1774 
1775 	vd->vdev_removing = B_TRUE;
1776 
1777 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1778 	vdev_config_dirty(vd);
1779 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
1780 	dsl_sync_task_nowait(spa->spa_dsl_pool,
1781 	    vdev_remove_initiate_sync,
1782 	    vd, 0, ZFS_SPACE_CHECK_NONE, tx);
1783 	dmu_tx_commit(tx);
1784 
1785 	return (0);
1786 }
1787 
1788 /*
1789  * Remove a device from the pool.
1790  *
1791  * Removing a device from the vdev namespace requires several steps
1792  * and can take a significant amount of time.  As a result we use
1793  * the spa_vdev_config_[enter/exit] functions which allow us to
1794  * grab and release the spa_config_lock while still holding the namespace
1795  * lock.  During each step the configuration is synced out.
1796  */
1797 int
1798 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1799 {
1800 	vdev_t *vd;
1801 	nvlist_t **spares, **l2cache, *nv;
1802 	uint64_t txg = 0;
1803 	uint_t nspares, nl2cache;
1804 	int error = 0;
1805 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
1806 	sysevent_t *ev = NULL;
1807 
1808 	ASSERT(spa_writeable(spa));
1809 
1810 	if (!locked)
1811 		txg = spa_vdev_enter(spa);
1812 
1813 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1814 
1815 	if (spa->spa_spares.sav_vdevs != NULL &&
1816 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1817 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
1818 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
1819 		/*
1820 		 * Only remove the hot spare if it's not currently in use
1821 		 * in this pool.
1822 		 */
1823 		if (vd == NULL || unspare) {
1824 			char *nvstr = fnvlist_lookup_string(nv,
1825 			    ZPOOL_CONFIG_PATH);
1826 			spa_history_log_internal(spa, "vdev remove", NULL,
1827 			    "%s vdev (%s) %s", spa_name(spa),
1828 			    VDEV_TYPE_SPARE, nvstr);
1829 			if (vd == NULL)
1830 				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1831 			ev = spa_event_create(spa, vd, NULL,
1832 			    ESC_ZFS_VDEV_REMOVE_AUX);
1833 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
1834 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
1835 			spa_load_spares(spa);
1836 			spa->spa_spares.sav_sync = B_TRUE;
1837 		} else {
1838 			error = SET_ERROR(EBUSY);
1839 		}
1840 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
1841 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1842 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
1843 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
1844 		char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
1845 		spa_history_log_internal(spa, "vdev remove", NULL,
1846 		    "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
1847 		/*
1848 		 * Cache devices can always be removed.
1849 		 */
1850 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1851 		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
1852 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
1853 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
1854 		spa_load_l2cache(spa);
1855 		spa->spa_l2cache.sav_sync = B_TRUE;
1856 	} else if (vd != NULL && vd->vdev_islog) {
1857 		ASSERT(!locked);
1858 		error = spa_vdev_remove_log(vd, &txg);
1859 	} else if (vd != NULL) {
1860 		ASSERT(!locked);
1861 		error = spa_vdev_remove_top(vd, &txg);
1862 	} else {
1863 		/*
1864 		 * There is no vdev of any kind with the specified guid.
1865 		 */
1866 		error = SET_ERROR(ENOENT);
1867 	}
1868 
1869 	if (!locked)
1870 		error = spa_vdev_exit(spa, NULL, txg, error);
1871 
1872 	if (ev != NULL) {
1873 		if (error != 0) {
1874 			spa_event_discard(ev);
1875 		} else {
1876 			spa_event_post(ev);
1877 		}
1878 	}
1879 
1880 	return (error);
1881 }
1882 
1883 int
1884 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
1885 {
1886 	prs->prs_state = spa->spa_removing_phys.sr_state;
1887 
1888 	if (prs->prs_state == DSS_NONE)
1889 		return (SET_ERROR(ENOENT));
1890 
1891 	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
1892 	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
1893 	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
1894 	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
1895 	prs->prs_copied = spa->spa_removing_phys.sr_copied;
1896 
1897 	if (spa->spa_vdev_removal != NULL) {
1898 		for (int i = 0; i < TXG_SIZE; i++) {
1899 			prs->prs_copied +=
1900 			    spa->spa_vdev_removal->svr_bytes_done[i];
1901 		}
1902 	}
1903 
1904 	prs->prs_mapping_memory = 0;
1905 	uint64_t indirect_vdev_id =
1906 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
1907 	while (indirect_vdev_id != -1) {
1908 		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
1909 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1910 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1911 
1912 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1913 		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
1914 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
1915 	}
1916 
1917 	return (0);
1918 }
1919