xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_removal.c (revision 663207adb1669640c01c5ec6949ce78fd806efae)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/vdev_initialize.h>
48 
49 /*
50  * This file contains the necessary logic to remove vdevs from a
51  * storage pool.  Currently, the only devices that can be removed
52  * are log, cache, and spare devices; and top level vdevs from a pool
53  * w/o raidz.  (Note that members of a mirror can also be removed
54  * by the detach operation.)
55  *
56  * Log vdevs are removed by evacuating them and then turning the vdev
57  * into a hole vdev while holding spa config locks.
58  *
59  * Top level vdevs are removed and converted into an indirect vdev via
60  * a multi-step process:
61  *
62  *  - Disable allocations from this device (spa_vdev_remove_top).
63  *
64  *  - From a new thread (spa_vdev_remove_thread), copy data from
65  *    the removing vdev to a different vdev.  The copy happens in open
66  *    context (spa_vdev_copy_impl) and issues a sync task
67  *    (vdev_mapping_sync) so the sync thread can update the partial
68  *    indirect mappings in core and on disk.
69  *
70  *  - If a free happens during a removal, it is freed from the
71  *    removing vdev, and if it has already been copied, from the new
72  *    location as well (free_from_removing_vdev).
73  *
74  *  - After the removal is completed, the copy thread converts the vdev
75  *    into an indirect vdev (vdev_remove_complete) before instructing
76  *    the sync thread to destroy the space maps and finish the removal
77  *    (spa_finish_removal).
78  */
79 
80 typedef struct vdev_copy_arg {
81 	metaslab_t	*vca_msp;
82 	uint64_t	vca_outstanding_bytes;
83 	kcondvar_t	vca_cv;
84 	kmutex_t	vca_lock;
85 } vdev_copy_arg_t;
86 
87 /*
88  * The maximum amount of memory we can use for outstanding i/o while
89  * doing a device removal.  This determines how much i/o we can have
90  * in flight concurrently.
91  */
92 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
93 
94 /*
95  * The largest contiguous segment that we will attempt to allocate when
96  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
97  * there is a performance problem with attempting to allocate large blocks,
98  * consider decreasing this.
99  *
100  * Note: we will issue I/Os of up to this size.  The mpt driver does not
101  * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
102  * mpt processes an I/O larger than 1MB, it needs to do an allocation of
103  * 2 physically contiguous pages; if this allocation fails, mpt will drop
104  * the I/O and hang the device.)
105  */
106 int zfs_remove_max_segment = 1024 * 1024;
107 
108 /*
109  * Allow a remap segment to span free chunks of at most this size. The main
110  * impact of a larger span is that we will read and write larger, more
111  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
112  * for iops.  The value here was chosen to align with
113  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
114  * reads (but there's no reason it has to be the same).
115  *
116  * Additionally, a higher span will have the following relatively minor
117  * effects:
118  *  - the mapping will be smaller, since one entry can cover more allocated
119  *    segments
120  *  - more of the fragmentation in the removing device will be preserved
121  *  - we'll do larger allocations, which may fail and fall back on smaller
122  *    allocations
123  */
124 int vdev_removal_max_span = 32 * 1024;
125 
126 /*
127  * This is used by the test suite so that it can ensure that certain
128  * actions happen while in the middle of a removal.
129  */
130 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
131 
132 #define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
133 
134 static void spa_vdev_remove_thread(void *arg);
135 
136 static void
137 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
138 {
139 	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
140 	    DMU_POOL_DIRECTORY_OBJECT,
141 	    DMU_POOL_REMOVING, sizeof (uint64_t),
142 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
143 	    &spa->spa_removing_phys, tx));
144 }
145 
146 static nvlist_t *
147 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
148 {
149 	for (int i = 0; i < count; i++) {
150 		uint64_t guid =
151 		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
152 
153 		if (guid == target_guid)
154 			return (nvpp[i]);
155 	}
156 
157 	return (NULL);
158 }
159 
160 static void
161 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
162     nvlist_t *dev_to_remove)
163 {
164 	nvlist_t **newdev = NULL;
165 
166 	if (count > 1)
167 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
168 
169 	for (int i = 0, j = 0; i < count; i++) {
170 		if (dev[i] == dev_to_remove)
171 			continue;
172 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
173 	}
174 
175 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
176 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
177 
178 	for (int i = 0; i < count - 1; i++)
179 		nvlist_free(newdev[i]);
180 
181 	if (count > 1)
182 		kmem_free(newdev, (count - 1) * sizeof (void *));
183 }
184 
185 static spa_vdev_removal_t *
186 spa_vdev_removal_create(vdev_t *vd)
187 {
188 	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
189 	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
190 	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
191 	svr->svr_allocd_segs = range_tree_create(NULL, NULL);
192 	svr->svr_vdev_id = vd->vdev_id;
193 
194 	for (int i = 0; i < TXG_SIZE; i++) {
195 		svr->svr_frees[i] = range_tree_create(NULL, NULL);
196 		list_create(&svr->svr_new_segments[i],
197 		    sizeof (vdev_indirect_mapping_entry_t),
198 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
199 	}
200 
201 	return (svr);
202 }
203 
204 void
205 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
206 {
207 	for (int i = 0; i < TXG_SIZE; i++) {
208 		ASSERT0(svr->svr_bytes_done[i]);
209 		ASSERT0(svr->svr_max_offset_to_sync[i]);
210 		range_tree_destroy(svr->svr_frees[i]);
211 		list_destroy(&svr->svr_new_segments[i]);
212 	}
213 
214 	range_tree_destroy(svr->svr_allocd_segs);
215 	mutex_destroy(&svr->svr_lock);
216 	cv_destroy(&svr->svr_cv);
217 	kmem_free(svr, sizeof (*svr));
218 }
219 
220 /*
221  * This is called as a synctask in the txg in which we will mark this vdev
222  * as removing (in the config stored in the MOS).
223  *
224  * It begins the evacuation of a toplevel vdev by:
225  * - initializing the spa_removing_phys which tracks this removal
226  * - computing the amount of space to remove for accounting purposes
227  * - dirtying all dbufs in the spa_config_object
228  * - creating the spa_vdev_removal
229  * - starting the spa_vdev_remove_thread
230  */
231 static void
232 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
233 {
234 	int vdev_id = (uintptr_t)arg;
235 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
236 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
237 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
238 	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
239 	spa_vdev_removal_t *svr = NULL;
240 	uint64_t txg = dmu_tx_get_txg(tx);
241 
242 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
243 	svr = spa_vdev_removal_create(vd);
244 
245 	ASSERT(vd->vdev_removing);
246 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
247 
248 	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
249 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
250 		/*
251 		 * By activating the OBSOLETE_COUNTS feature, we prevent
252 		 * the pool from being downgraded and ensure that the
253 		 * refcounts are precise.
254 		 */
255 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
256 		uint64_t one = 1;
257 		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
258 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
259 		    &one, tx));
260 		ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
261 	}
262 
263 	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
264 	vd->vdev_indirect_mapping =
265 	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
266 	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
267 	vd->vdev_indirect_births =
268 	    vdev_indirect_births_open(mos, vic->vic_births_object);
269 	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
270 	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
271 	spa->spa_removing_phys.sr_end_time = 0;
272 	spa->spa_removing_phys.sr_state = DSS_SCANNING;
273 	spa->spa_removing_phys.sr_to_copy = 0;
274 	spa->spa_removing_phys.sr_copied = 0;
275 
276 	/*
277 	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
278 	 * there may be space in the defer tree, which is free, but still
279 	 * counted in vs_alloc.
280 	 */
281 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
282 		metaslab_t *ms = vd->vdev_ms[i];
283 		if (ms->ms_sm == NULL)
284 			continue;
285 
286 		/*
287 		 * Sync tasks happen before metaslab_sync(), therefore
288 		 * smp_alloc and sm_alloc must be the same.
289 		 */
290 		ASSERT3U(space_map_allocated(ms->ms_sm), ==,
291 		    ms->ms_sm->sm_phys->smp_alloc);
292 
293 		spa->spa_removing_phys.sr_to_copy +=
294 		    space_map_allocated(ms->ms_sm);
295 
296 		/*
297 		 * Space which we are freeing this txg does not need to
298 		 * be copied.
299 		 */
300 		spa->spa_removing_phys.sr_to_copy -=
301 		    range_tree_space(ms->ms_freeing);
302 
303 		ASSERT0(range_tree_space(ms->ms_freed));
304 		for (int t = 0; t < TXG_SIZE; t++)
305 			ASSERT0(range_tree_space(ms->ms_allocating[t]));
306 	}
307 
308 	/*
309 	 * Sync tasks are called before metaslab_sync(), so there should
310 	 * be no already-synced metaslabs in the TXG_CLEAN list.
311 	 */
312 	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
313 
314 	spa_sync_removing_state(spa, tx);
315 
316 	/*
317 	 * All blocks that we need to read the most recent mapping must be
318 	 * stored on concrete vdevs.  Therefore, we must dirty anything that
319 	 * is read before spa_remove_init().  Specifically, the
320 	 * spa_config_object.  (Note that although we already modified the
321 	 * spa_config_object in spa_sync_removing_state, that may not have
322 	 * modified all blocks of the object.)
323 	 */
324 	dmu_object_info_t doi;
325 	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
326 	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
327 		dmu_buf_t *dbuf;
328 		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
329 		    offset, FTAG, &dbuf, 0));
330 		dmu_buf_will_dirty(dbuf, tx);
331 		offset += dbuf->db_size;
332 		dmu_buf_rele(dbuf, FTAG);
333 	}
334 
335 	/*
336 	 * Now that we've allocated the im_object, dirty the vdev to ensure
337 	 * that the object gets written to the config on disk.
338 	 */
339 	vdev_config_dirty(vd);
340 
341 	zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
342 	    "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
343 	    vic->vic_mapping_object);
344 
345 	spa_history_log_internal(spa, "vdev remove started", tx,
346 	    "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
347 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
348 	/*
349 	 * Setting spa_vdev_removal causes subsequent frees to call
350 	 * free_from_removing_vdev().  Note that we don't need any locking
351 	 * because we are the sync thread, and metaslab_free_impl() is only
352 	 * called from syncing context (potentially from a zio taskq thread,
353 	 * but in any case only when there are outstanding free i/os, which
354 	 * there are not).
355 	 */
356 	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
357 	spa->spa_vdev_removal = svr;
358 	svr->svr_thread = thread_create(NULL, 0,
359 	    spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
360 }
361 
362 /*
363  * When we are opening a pool, we must read the mapping for each
364  * indirect vdev in order from most recently removed to least
365  * recently removed.  We do this because the blocks for the mapping
366  * of older indirect vdevs may be stored on more recently removed vdevs.
367  * In order to read each indirect mapping object, we must have
368  * initialized all more recently removed vdevs.
369  */
370 int
371 spa_remove_init(spa_t *spa)
372 {
373 	int error;
374 
375 	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
376 	    DMU_POOL_DIRECTORY_OBJECT,
377 	    DMU_POOL_REMOVING, sizeof (uint64_t),
378 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
379 	    &spa->spa_removing_phys);
380 
381 	if (error == ENOENT) {
382 		spa->spa_removing_phys.sr_state = DSS_NONE;
383 		spa->spa_removing_phys.sr_removing_vdev = -1;
384 		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
385 		spa->spa_indirect_vdevs_loaded = B_TRUE;
386 		return (0);
387 	} else if (error != 0) {
388 		return (error);
389 	}
390 
391 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
392 		/*
393 		 * We are currently removing a vdev.  Create and
394 		 * initialize a spa_vdev_removal_t from the bonus
395 		 * buffer of the removing vdevs vdev_im_object, and
396 		 * initialize its partial mapping.
397 		 */
398 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
399 		vdev_t *vd = vdev_lookup_top(spa,
400 		    spa->spa_removing_phys.sr_removing_vdev);
401 
402 		if (vd == NULL) {
403 			spa_config_exit(spa, SCL_STATE, FTAG);
404 			return (EINVAL);
405 		}
406 
407 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
408 
409 		ASSERT(vdev_is_concrete(vd));
410 		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
411 		ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
412 		ASSERT(vd->vdev_removing);
413 
414 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
415 		    spa->spa_meta_objset, vic->vic_mapping_object);
416 		vd->vdev_indirect_births = vdev_indirect_births_open(
417 		    spa->spa_meta_objset, vic->vic_births_object);
418 		spa_config_exit(spa, SCL_STATE, FTAG);
419 
420 		spa->spa_vdev_removal = svr;
421 	}
422 
423 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
424 	uint64_t indirect_vdev_id =
425 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
426 	while (indirect_vdev_id != UINT64_MAX) {
427 		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
428 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
429 
430 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
431 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
432 		    spa->spa_meta_objset, vic->vic_mapping_object);
433 		vd->vdev_indirect_births = vdev_indirect_births_open(
434 		    spa->spa_meta_objset, vic->vic_births_object);
435 
436 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
437 	}
438 	spa_config_exit(spa, SCL_STATE, FTAG);
439 
440 	/*
441 	 * Now that we've loaded all the indirect mappings, we can allow
442 	 * reads from other blocks (e.g. via predictive prefetch).
443 	 */
444 	spa->spa_indirect_vdevs_loaded = B_TRUE;
445 	return (0);
446 }
447 
448 void
449 spa_restart_removal(spa_t *spa)
450 {
451 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
452 
453 	if (svr == NULL)
454 		return;
455 
456 	/*
457 	 * In general when this function is called there is no
458 	 * removal thread running. The only scenario where this
459 	 * is not true is during spa_import() where this function
460 	 * is called twice [once from spa_import_impl() and
461 	 * spa_async_resume()]. Thus, in the scenario where we
462 	 * import a pool that has an ongoing removal we don't
463 	 * want to spawn a second thread.
464 	 */
465 	if (svr->svr_thread != NULL)
466 		return;
467 
468 	if (!spa_writeable(spa))
469 		return;
470 
471 	zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
472 	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
473 	    0, &p0, TS_RUN, minclsyspri);
474 }
475 
476 /*
477  * Process freeing from a device which is in the middle of being removed.
478  * We must handle this carefully so that we attempt to copy freed data,
479  * and we correctly free already-copied data.
480  */
481 void
482 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
483 {
484 	spa_t *spa = vd->vdev_spa;
485 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
486 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
487 	uint64_t txg = spa_syncing_txg(spa);
488 	uint64_t max_offset_yet = 0;
489 
490 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
491 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
492 	    vdev_indirect_mapping_object(vim));
493 	ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
494 
495 	mutex_enter(&svr->svr_lock);
496 
497 	/*
498 	 * Remove the segment from the removing vdev's spacemap.  This
499 	 * ensures that we will not attempt to copy this space (if the
500 	 * removal thread has not yet visited it), and also ensures
501 	 * that we know what is actually allocated on the new vdevs
502 	 * (needed if we cancel the removal).
503 	 *
504 	 * Note: we must do the metaslab_free_concrete() with the svr_lock
505 	 * held, so that the remove_thread can not load this metaslab and then
506 	 * visit this offset between the time that we metaslab_free_concrete()
507 	 * and when we check to see if it has been visited.
508 	 *
509 	 * Note: The checkpoint flag is set to false as having/taking
510 	 * a checkpoint and removing a device can't happen at the same
511 	 * time.
512 	 */
513 	ASSERT(!spa_has_checkpoint(spa));
514 	metaslab_free_concrete(vd, offset, size, B_FALSE);
515 
516 	uint64_t synced_size = 0;
517 	uint64_t synced_offset = 0;
518 	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
519 	if (offset < max_offset_synced) {
520 		/*
521 		 * The mapping for this offset is already on disk.
522 		 * Free from the new location.
523 		 *
524 		 * Note that we use svr_max_synced_offset because it is
525 		 * updated atomically with respect to the in-core mapping.
526 		 * By contrast, vim_max_offset is not.
527 		 *
528 		 * This block may be split between a synced entry and an
529 		 * in-flight or unvisited entry.  Only process the synced
530 		 * portion of it here.
531 		 */
532 		synced_size = MIN(size, max_offset_synced - offset);
533 		synced_offset = offset;
534 
535 		ASSERT3U(max_offset_yet, <=, max_offset_synced);
536 		max_offset_yet = max_offset_synced;
537 
538 		DTRACE_PROBE3(remove__free__synced,
539 		    spa_t *, spa,
540 		    uint64_t, offset,
541 		    uint64_t, synced_size);
542 
543 		size -= synced_size;
544 		offset += synced_size;
545 	}
546 
547 	/*
548 	 * Look at all in-flight txgs starting from the currently syncing one
549 	 * and see if a section of this free is being copied. By starting from
550 	 * this txg and iterating forward, we might find that this region
551 	 * was copied in two different txgs and handle it appropriately.
552 	 */
553 	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
554 		int txgoff = (txg + i) & TXG_MASK;
555 		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
556 			/*
557 			 * The mapping for this offset is in flight, and
558 			 * will be synced in txg+i.
559 			 */
560 			uint64_t inflight_size = MIN(size,
561 			    svr->svr_max_offset_to_sync[txgoff] - offset);
562 
563 			DTRACE_PROBE4(remove__free__inflight,
564 			    spa_t *, spa,
565 			    uint64_t, offset,
566 			    uint64_t, inflight_size,
567 			    uint64_t, txg + i);
568 
569 			/*
570 			 * We copy data in order of increasing offset.
571 			 * Therefore the max_offset_to_sync[] must increase
572 			 * (or be zero, indicating that nothing is being
573 			 * copied in that txg).
574 			 */
575 			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
576 				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
577 				    >=, max_offset_yet);
578 				max_offset_yet =
579 				    svr->svr_max_offset_to_sync[txgoff];
580 			}
581 
582 			/*
583 			 * We've already committed to copying this segment:
584 			 * we have allocated space elsewhere in the pool for
585 			 * it and have an IO outstanding to copy the data. We
586 			 * cannot free the space before the copy has
587 			 * completed, or else the copy IO might overwrite any
588 			 * new data. To free that space, we record the
589 			 * segment in the appropriate svr_frees tree and free
590 			 * the mapped space later, in the txg where we have
591 			 * completed the copy and synced the mapping (see
592 			 * vdev_mapping_sync).
593 			 */
594 			range_tree_add(svr->svr_frees[txgoff],
595 			    offset, inflight_size);
596 			size -= inflight_size;
597 			offset += inflight_size;
598 
599 			/*
600 			 * This space is already accounted for as being
601 			 * done, because it is being copied in txg+i.
602 			 * However, if i!=0, then it is being copied in
603 			 * a future txg.  If we crash after this txg
604 			 * syncs but before txg+i syncs, then the space
605 			 * will be free.  Therefore we must account
606 			 * for the space being done in *this* txg
607 			 * (when it is freed) rather than the future txg
608 			 * (when it will be copied).
609 			 */
610 			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
611 			    inflight_size);
612 			svr->svr_bytes_done[txgoff] -= inflight_size;
613 			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
614 		}
615 	}
616 	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
617 
618 	if (size > 0) {
619 		/*
620 		 * The copy thread has not yet visited this offset.  Ensure
621 		 * that it doesn't.
622 		 */
623 
624 		DTRACE_PROBE3(remove__free__unvisited,
625 		    spa_t *, spa,
626 		    uint64_t, offset,
627 		    uint64_t, size);
628 
629 		if (svr->svr_allocd_segs != NULL)
630 			range_tree_clear(svr->svr_allocd_segs, offset, size);
631 
632 		/*
633 		 * Since we now do not need to copy this data, for
634 		 * accounting purposes we have done our job and can count
635 		 * it as completed.
636 		 */
637 		svr->svr_bytes_done[txg & TXG_MASK] += size;
638 	}
639 	mutex_exit(&svr->svr_lock);
640 
641 	/*
642 	 * Now that we have dropped svr_lock, process the synced portion
643 	 * of this free.
644 	 */
645 	if (synced_size > 0) {
646 		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
647 
648 		/*
649 		 * Note: this can only be called from syncing context,
650 		 * and the vdev_indirect_mapping is only changed from the
651 		 * sync thread, so we don't need svr_lock while doing
652 		 * metaslab_free_impl_cb.
653 		 */
654 		boolean_t checkpoint = B_FALSE;
655 		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
656 		    metaslab_free_impl_cb, &checkpoint);
657 	}
658 }
659 
660 /*
661  * Stop an active removal and update the spa_removing phys.
662  */
663 static void
664 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
665 {
666 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
667 	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
668 
669 	/* Ensure the removal thread has completed before we free the svr. */
670 	spa_vdev_remove_suspend(spa);
671 
672 	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
673 
674 	if (state == DSS_FINISHED) {
675 		spa_removing_phys_t *srp = &spa->spa_removing_phys;
676 		vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
677 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
678 
679 		if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
680 			vdev_t *pvd = vdev_lookup_top(spa,
681 			    srp->sr_prev_indirect_vdev);
682 			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
683 		}
684 
685 		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
686 		srp->sr_prev_indirect_vdev = vd->vdev_id;
687 	}
688 	spa->spa_removing_phys.sr_state = state;
689 	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
690 
691 	spa->spa_vdev_removal = NULL;
692 	spa_vdev_removal_destroy(svr);
693 
694 	spa_sync_removing_state(spa, tx);
695 
696 	vdev_config_dirty(spa->spa_root_vdev);
697 }
698 
699 static void
700 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
701 {
702 	vdev_t *vd = arg;
703 	vdev_indirect_mark_obsolete(vd, offset, size);
704 	boolean_t checkpoint = B_FALSE;
705 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
706 	    metaslab_free_impl_cb, &checkpoint);
707 }
708 
709 /*
710  * On behalf of the removal thread, syncs an incremental bit more of
711  * the indirect mapping to disk and updates the in-memory mapping.
712  * Called as a sync task in every txg that the removal thread makes progress.
713  */
714 static void
715 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
716 {
717 	spa_vdev_removal_t *svr = arg;
718 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
719 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
720 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
721 	uint64_t txg = dmu_tx_get_txg(tx);
722 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
723 
724 	ASSERT(vic->vic_mapping_object != 0);
725 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
726 
727 	vdev_indirect_mapping_add_entries(vim,
728 	    &svr->svr_new_segments[txg & TXG_MASK], tx);
729 	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
730 	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
731 
732 	/*
733 	 * Free the copied data for anything that was freed while the
734 	 * mapping entries were in flight.
735 	 */
736 	mutex_enter(&svr->svr_lock);
737 	range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
738 	    free_mapped_segment_cb, vd);
739 	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
740 	    vdev_indirect_mapping_max_offset(vim));
741 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
742 	mutex_exit(&svr->svr_lock);
743 
744 	spa_sync_removing_state(spa, tx);
745 }
746 
747 typedef struct vdev_copy_segment_arg {
748 	spa_t *vcsa_spa;
749 	dva_t *vcsa_dest_dva;
750 	uint64_t vcsa_txg;
751 	range_tree_t *vcsa_obsolete_segs;
752 } vdev_copy_segment_arg_t;
753 
754 static void
755 unalloc_seg(void *arg, uint64_t start, uint64_t size)
756 {
757 	vdev_copy_segment_arg_t *vcsa = arg;
758 	spa_t *spa = vcsa->vcsa_spa;
759 	blkptr_t bp = { 0 };
760 
761 	BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
762 	BP_SET_LSIZE(&bp, size);
763 	BP_SET_PSIZE(&bp, size);
764 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
765 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
766 	BP_SET_TYPE(&bp, DMU_OT_NONE);
767 	BP_SET_LEVEL(&bp, 0);
768 	BP_SET_DEDUP(&bp, 0);
769 	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
770 
771 	DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
772 	DVA_SET_OFFSET(&bp.blk_dva[0],
773 	    DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
774 	DVA_SET_ASIZE(&bp.blk_dva[0], size);
775 
776 	zio_free(spa, vcsa->vcsa_txg, &bp);
777 }
778 
779 /*
780  * All reads and writes associated with a call to spa_vdev_copy_segment()
781  * are done.
782  */
783 static void
784 spa_vdev_copy_segment_done(zio_t *zio)
785 {
786 	vdev_copy_segment_arg_t *vcsa = zio->io_private;
787 
788 	range_tree_vacate(vcsa->vcsa_obsolete_segs,
789 	    unalloc_seg, vcsa);
790 	range_tree_destroy(vcsa->vcsa_obsolete_segs);
791 	kmem_free(vcsa, sizeof (*vcsa));
792 
793 	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
794 }
795 
796 /*
797  * The write of the new location is done.
798  */
799 static void
800 spa_vdev_copy_segment_write_done(zio_t *zio)
801 {
802 	vdev_copy_arg_t *vca = zio->io_private;
803 
804 	abd_free(zio->io_abd);
805 
806 	mutex_enter(&vca->vca_lock);
807 	vca->vca_outstanding_bytes -= zio->io_size;
808 	cv_signal(&vca->vca_cv);
809 	mutex_exit(&vca->vca_lock);
810 }
811 
812 /*
813  * The read of the old location is done.  The parent zio is the write to
814  * the new location.  Allow it to start.
815  */
816 static void
817 spa_vdev_copy_segment_read_done(zio_t *zio)
818 {
819 	zio_nowait(zio_unique_parent(zio));
820 }
821 
822 /*
823  * If the old and new vdevs are mirrors, we will read both sides of the old
824  * mirror, and write each copy to the corresponding side of the new mirror.
825  * If the old and new vdevs have a different number of children, we will do
826  * this as best as possible.  Since we aren't verifying checksums, this
827  * ensures that as long as there's a good copy of the data, we'll have a
828  * good copy after the removal, even if there's silent damage to one side
829  * of the mirror. If we're removing a mirror that has some silent damage,
830  * we'll have exactly the same damage in the new location (assuming that
831  * the new location is also a mirror).
832  *
833  * We accomplish this by creating a tree of zio_t's, with as many writes as
834  * there are "children" of the new vdev (a non-redundant vdev counts as one
835  * child, a 2-way mirror has 2 children, etc). Each write has an associated
836  * read from a child of the old vdev. Typically there will be the same
837  * number of children of the old and new vdevs.  However, if there are more
838  * children of the new vdev, some child(ren) of the old vdev will be issued
839  * multiple reads.  If there are more children of the old vdev, some copies
840  * will be dropped.
841  *
842  * For example, the tree of zio_t's for a 2-way mirror is:
843  *
844  *                            null
845  *                           /    \
846  *    write(new vdev, child 0)      write(new vdev, child 1)
847  *      |                             |
848  *    read(old vdev, child 0)       read(old vdev, child 1)
849  *
850  * Child zio's complete before their parents complete.  However, zio's
851  * created with zio_vdev_child_io() may be issued before their children
852  * complete.  In this case we need to make sure that the children (reads)
853  * complete before the parents (writes) are *issued*.  We do this by not
854  * calling zio_nowait() on each write until its corresponding read has
855  * completed.
856  *
857  * The spa_config_lock must be held while zio's created by
858  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
859  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
860  * zio is needed to release the spa_config_lock after all the reads and
861  * writes complete. (Note that we can't grab the config lock for each read,
862  * because it is not reentrant - we could deadlock with a thread waiting
863  * for a write lock.)
864  */
865 static void
866 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
867     vdev_t *source_vd, uint64_t source_offset,
868     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
869 {
870 	ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
871 
872 	mutex_enter(&vca->vca_lock);
873 	vca->vca_outstanding_bytes += size;
874 	mutex_exit(&vca->vca_lock);
875 
876 	abd_t *abd = abd_alloc_for_io(size, B_FALSE);
877 
878 	vdev_t *source_child_vd;
879 	if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
880 		/*
881 		 * Source and dest are both mirrors.  Copy from the same
882 		 * child id as we are copying to (wrapping around if there
883 		 * are more dest children than source children).
884 		 */
885 		source_child_vd =
886 		    source_vd->vdev_child[dest_id % source_vd->vdev_children];
887 	} else {
888 		source_child_vd = source_vd;
889 	}
890 
891 	zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
892 	    dest_child_vd, dest_offset, abd, size,
893 	    ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
894 	    ZIO_FLAG_CANFAIL,
895 	    spa_vdev_copy_segment_write_done, vca);
896 
897 	zio_nowait(zio_vdev_child_io(write_zio, NULL,
898 	    source_child_vd, source_offset, abd, size,
899 	    ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
900 	    ZIO_FLAG_CANFAIL,
901 	    spa_vdev_copy_segment_read_done, vca));
902 }
903 
904 /*
905  * Allocate a new location for this segment, and create the zio_t's to
906  * read from the old location and write to the new location.
907  */
908 static int
909 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
910     uint64_t maxalloc, uint64_t txg,
911     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
912 {
913 	metaslab_group_t *mg = vd->vdev_mg;
914 	spa_t *spa = vd->vdev_spa;
915 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
916 	vdev_indirect_mapping_entry_t *entry;
917 	dva_t dst = { 0 };
918 	uint64_t start = range_tree_min(segs);
919 
920 	ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
921 
922 	uint64_t size = range_tree_span(segs);
923 	if (range_tree_span(segs) > maxalloc) {
924 		/*
925 		 * We can't allocate all the segments.  Prefer to end
926 		 * the allocation at the end of a segment, thus avoiding
927 		 * additional split blocks.
928 		 */
929 		range_seg_t search;
930 		avl_index_t where;
931 		search.rs_start = start + maxalloc;
932 		search.rs_end = search.rs_start;
933 		range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
934 		if (rs == NULL) {
935 			rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
936 		} else {
937 			rs = AVL_PREV(&segs->rt_root, rs);
938 		}
939 		if (rs != NULL) {
940 			size = rs->rs_end - start;
941 		} else {
942 			/*
943 			 * There are no segments that end before maxalloc.
944 			 * I.e. the first segment is larger than maxalloc,
945 			 * so we must split it.
946 			 */
947 			size = maxalloc;
948 		}
949 	}
950 	ASSERT3U(size, <=, maxalloc);
951 
952 	/*
953 	 * An allocation class might not have any remaining vdevs or space
954 	 */
955 	metaslab_class_t *mc = mg->mg_class;
956 	if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
957 		mc = spa_normal_class(spa);
958 	int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
959 	    zal, 0);
960 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
961 		error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
962 		    &dst, 0, NULL, txg, 0, zal, 0);
963 	}
964 	if (error != 0)
965 		return (error);
966 
967 	/*
968 	 * Determine the ranges that are not actually needed.  Offsets are
969 	 * relative to the start of the range to be copied (i.e. relative to the
970 	 * local variable "start").
971 	 */
972 	range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
973 
974 	range_seg_t *rs = avl_first(&segs->rt_root);
975 	ASSERT3U(rs->rs_start, ==, start);
976 	uint64_t prev_seg_end = rs->rs_end;
977 	while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
978 		if (rs->rs_start >= start + size) {
979 			break;
980 		} else {
981 			range_tree_add(obsolete_segs,
982 			    prev_seg_end - start,
983 			    rs->rs_start - prev_seg_end);
984 		}
985 		prev_seg_end = rs->rs_end;
986 	}
987 	/* We don't end in the middle of an obsolete range */
988 	ASSERT3U(start + size, <=, prev_seg_end);
989 
990 	range_tree_clear(segs, start, size);
991 
992 	/*
993 	 * We can't have any padding of the allocated size, otherwise we will
994 	 * misunderstand what's allocated, and the size of the mapping.
995 	 * The caller ensures this will be true by passing in a size that is
996 	 * aligned to the worst (highest) ashift in the pool.
997 	 */
998 	ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
999 
1000 	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1001 	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1002 	entry->vime_mapping.vimep_dst = dst;
1003 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1004 		entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1005 	}
1006 
1007 	vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1008 	vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1009 	vcsa->vcsa_obsolete_segs = obsolete_segs;
1010 	vcsa->vcsa_spa = spa;
1011 	vcsa->vcsa_txg = txg;
1012 
1013 	/*
1014 	 * See comment before spa_vdev_copy_one_child().
1015 	 */
1016 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1017 	zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1018 	    spa_vdev_copy_segment_done, vcsa, 0);
1019 	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1020 	if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1021 		for (int i = 0; i < dest_vd->vdev_children; i++) {
1022 			vdev_t *child = dest_vd->vdev_child[i];
1023 			spa_vdev_copy_one_child(vca, nzio, vd, start,
1024 			    child, DVA_GET_OFFSET(&dst), i, size);
1025 		}
1026 	} else {
1027 		spa_vdev_copy_one_child(vca, nzio, vd, start,
1028 		    dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1029 	}
1030 	zio_nowait(nzio);
1031 
1032 	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1033 	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1034 	vdev_dirty(vd, 0, NULL, txg);
1035 
1036 	return (0);
1037 }
1038 
1039 /*
1040  * Complete the removal of a toplevel vdev. This is called as a
1041  * synctask in the same txg that we will sync out the new config (to the
1042  * MOS object) which indicates that this vdev is indirect.
1043  */
1044 static void
1045 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1046 {
1047 	spa_vdev_removal_t *svr = arg;
1048 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1049 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1050 
1051 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1052 
1053 	for (int i = 0; i < TXG_SIZE; i++) {
1054 		ASSERT0(svr->svr_bytes_done[i]);
1055 	}
1056 
1057 	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1058 	    spa->spa_removing_phys.sr_to_copy);
1059 
1060 	vdev_destroy_spacemaps(vd, tx);
1061 
1062 	/* destroy leaf zaps, if any */
1063 	ASSERT3P(svr->svr_zaplist, !=, NULL);
1064 	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1065 	    pair != NULL;
1066 	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1067 		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1068 	}
1069 	fnvlist_free(svr->svr_zaplist);
1070 
1071 	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1072 	/* vd->vdev_path is not available here */
1073 	spa_history_log_internal(spa, "vdev remove completed",  tx,
1074 	    "%s vdev %llu", spa_name(spa), vd->vdev_id);
1075 }
1076 
1077 static void
1078 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1079 {
1080 	ASSERT3P(zlist, !=, NULL);
1081 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1082 
1083 	if (vd->vdev_leaf_zap != 0) {
1084 		char zkey[32];
1085 		(void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64,
1086 		    VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap);
1087 		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1088 	}
1089 
1090 	for (uint64_t id = 0; id < vd->vdev_children; id++) {
1091 		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1092 	}
1093 }
1094 
1095 static void
1096 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1097 {
1098 	vdev_t *ivd;
1099 	dmu_tx_t *tx;
1100 	spa_t *spa = vd->vdev_spa;
1101 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1102 
1103 	/*
1104 	 * First, build a list of leaf zaps to be destroyed.
1105 	 * This is passed to the sync context thread,
1106 	 * which does the actual unlinking.
1107 	 */
1108 	svr->svr_zaplist = fnvlist_alloc();
1109 	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1110 
1111 	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1112 	ivd->vdev_removing = 0;
1113 
1114 	vd->vdev_leaf_zap = 0;
1115 
1116 	vdev_remove_child(ivd, vd);
1117 	vdev_compact_children(ivd);
1118 
1119 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1120 
1121 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1122 	dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1123 	    0, ZFS_SPACE_CHECK_NONE, tx);
1124 	dmu_tx_commit(tx);
1125 
1126 	/*
1127 	 * Indicate that this thread has exited.
1128 	 * After this, we can not use svr.
1129 	 */
1130 	mutex_enter(&svr->svr_lock);
1131 	svr->svr_thread = NULL;
1132 	cv_broadcast(&svr->svr_cv);
1133 	mutex_exit(&svr->svr_lock);
1134 }
1135 
1136 /*
1137  * Complete the removal of a toplevel vdev. This is called in open
1138  * context by the removal thread after we have copied all vdev's data.
1139  */
1140 static void
1141 vdev_remove_complete(spa_t *spa)
1142 {
1143 	uint64_t txg;
1144 
1145 	/*
1146 	 * Wait for any deferred frees to be synced before we call
1147 	 * vdev_metaslab_fini()
1148 	 */
1149 	txg_wait_synced(spa->spa_dsl_pool, 0);
1150 	txg = spa_vdev_enter(spa);
1151 	vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1152 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1153 
1154 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1155 	    ESC_ZFS_VDEV_REMOVE_DEV);
1156 
1157 	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1158 	    vd->vdev_id, txg);
1159 
1160 	/*
1161 	 * Discard allocation state.
1162 	 */
1163 	if (vd->vdev_mg != NULL) {
1164 		vdev_metaslab_fini(vd);
1165 		metaslab_group_destroy(vd->vdev_mg);
1166 		vd->vdev_mg = NULL;
1167 	}
1168 	ASSERT0(vd->vdev_stat.vs_space);
1169 	ASSERT0(vd->vdev_stat.vs_dspace);
1170 
1171 	vdev_remove_replace_with_indirect(vd, txg);
1172 
1173 	/*
1174 	 * We now release the locks, allowing spa_sync to run and finish the
1175 	 * removal via vdev_remove_complete_sync in syncing context.
1176 	 *
1177 	 * Note that we hold on to the vdev_t that has been replaced.  Since
1178 	 * it isn't part of the vdev tree any longer, it can't be concurrently
1179 	 * manipulated, even while we don't have the config lock.
1180 	 */
1181 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1182 
1183 	/*
1184 	 * Top ZAP should have been transferred to the indirect vdev in
1185 	 * vdev_remove_replace_with_indirect.
1186 	 */
1187 	ASSERT0(vd->vdev_top_zap);
1188 
1189 	/*
1190 	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1191 	 */
1192 	ASSERT0(vd->vdev_leaf_zap);
1193 
1194 	txg = spa_vdev_enter(spa);
1195 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1196 	/*
1197 	 * Request to update the config and the config cachefile.
1198 	 */
1199 	vdev_config_dirty(spa->spa_root_vdev);
1200 	(void) spa_vdev_exit(spa, vd, txg, 0);
1201 
1202 	spa_event_post(ev);
1203 }
1204 
1205 /*
1206  * Evacuates a segment of size at most max_alloc from the vdev
1207  * via repeated calls to spa_vdev_copy_segment. If an allocation
1208  * fails, the pool is probably too fragmented to handle such a
1209  * large size, so decrease max_alloc so that the caller will not try
1210  * this size again this txg.
1211  */
1212 static void
1213 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1214     uint64_t *max_alloc, dmu_tx_t *tx)
1215 {
1216 	uint64_t txg = dmu_tx_get_txg(tx);
1217 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1218 
1219 	mutex_enter(&svr->svr_lock);
1220 
1221 	/*
1222 	 * Determine how big of a chunk to copy.  We can allocate up
1223 	 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1224 	 * bytes of unallocated space at a time.  "segs" will track the
1225 	 * allocated segments that we are copying.  We may also be copying
1226 	 * free segments (of up to vdev_removal_max_span bytes).
1227 	 */
1228 	range_tree_t *segs = range_tree_create(NULL, NULL);
1229 	for (;;) {
1230 		range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1231 		if (rs == NULL)
1232 			break;
1233 
1234 		uint64_t seg_length;
1235 
1236 		if (range_tree_is_empty(segs)) {
1237 			/* need to truncate the first seg based on max_alloc */
1238 			seg_length =
1239 			    MIN(rs->rs_end - rs->rs_start, *max_alloc);
1240 		} else {
1241 			if (rs->rs_start - range_tree_max(segs) >
1242 			    vdev_removal_max_span) {
1243 				/*
1244 				 * Including this segment would cause us to
1245 				 * copy a larger unneeded chunk than is allowed.
1246 				 */
1247 				break;
1248 			} else if (rs->rs_end - range_tree_min(segs) >
1249 			    *max_alloc) {
1250 				/*
1251 				 * This additional segment would extend past
1252 				 * max_alloc. Rather than splitting this
1253 				 * segment, leave it for the next mapping.
1254 				 */
1255 				break;
1256 			} else {
1257 				seg_length = rs->rs_end - rs->rs_start;
1258 			}
1259 		}
1260 
1261 		range_tree_add(segs, rs->rs_start, seg_length);
1262 		range_tree_remove(svr->svr_allocd_segs,
1263 		    rs->rs_start, seg_length);
1264 	}
1265 
1266 	if (range_tree_is_empty(segs)) {
1267 		mutex_exit(&svr->svr_lock);
1268 		range_tree_destroy(segs);
1269 		return;
1270 	}
1271 
1272 	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1273 		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1274 		    svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1275 	}
1276 
1277 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1278 
1279 	/*
1280 	 * Note: this is the amount of *allocated* space
1281 	 * that we are taking care of each txg.
1282 	 */
1283 	svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1284 
1285 	mutex_exit(&svr->svr_lock);
1286 
1287 	zio_alloc_list_t zal;
1288 	metaslab_trace_init(&zal);
1289 	uint64_t thismax = SPA_MAXBLOCKSIZE;
1290 	while (!range_tree_is_empty(segs)) {
1291 		int error = spa_vdev_copy_segment(vd,
1292 		    segs, thismax, txg, vca, &zal);
1293 
1294 		if (error == ENOSPC) {
1295 			/*
1296 			 * Cut our segment in half, and don't try this
1297 			 * segment size again this txg.  Note that the
1298 			 * allocation size must be aligned to the highest
1299 			 * ashift in the pool, so that the allocation will
1300 			 * not be padded out to a multiple of the ashift,
1301 			 * which could cause us to think that this mapping
1302 			 * is larger than we intended.
1303 			 */
1304 			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1305 			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1306 			uint64_t attempted =
1307 			    MIN(range_tree_span(segs), thismax);
1308 			thismax = P2ROUNDUP(attempted / 2,
1309 			    1 << spa->spa_max_ashift);
1310 			/*
1311 			 * The minimum-size allocation can not fail.
1312 			 */
1313 			ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1314 			*max_alloc = attempted - (1 << spa->spa_max_ashift);
1315 		} else {
1316 			ASSERT0(error);
1317 
1318 			/*
1319 			 * We've performed an allocation, so reset the
1320 			 * alloc trace list.
1321 			 */
1322 			metaslab_trace_fini(&zal);
1323 			metaslab_trace_init(&zal);
1324 		}
1325 	}
1326 	metaslab_trace_fini(&zal);
1327 	range_tree_destroy(segs);
1328 }
1329 
1330 /*
1331  * The removal thread operates in open context.  It iterates over all
1332  * allocated space in the vdev, by loading each metaslab's spacemap.
1333  * For each contiguous segment of allocated space (capping the segment
1334  * size at SPA_MAXBLOCKSIZE), we:
1335  *    - Allocate space for it on another vdev.
1336  *    - Create a new mapping from the old location to the new location
1337  *      (as a record in svr_new_segments).
1338  *    - Initiate a logical read zio to get the data off the removing disk.
1339  *    - In the read zio's done callback, initiate a logical write zio to
1340  *      write it to the new vdev.
1341  * Note that all of this will take effect when a particular TXG syncs.
1342  * The sync thread ensures that all the phys reads and writes for the syncing
1343  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1344  * (see vdev_mapping_sync()).
1345  */
1346 static void
1347 spa_vdev_remove_thread(void *arg)
1348 {
1349 	spa_t *spa = arg;
1350 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1351 	vdev_copy_arg_t vca;
1352 	uint64_t max_alloc = zfs_remove_max_segment;
1353 	uint64_t last_txg = 0;
1354 
1355 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1356 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1357 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1358 	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1359 
1360 	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1361 	ASSERT(vdev_is_concrete(vd));
1362 	ASSERT(vd->vdev_removing);
1363 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1364 	ASSERT(vim != NULL);
1365 
1366 	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1367 	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1368 	vca.vca_outstanding_bytes = 0;
1369 
1370 	mutex_enter(&svr->svr_lock);
1371 
1372 	/*
1373 	 * Start from vim_max_offset so we pick up where we left off
1374 	 * if we are restarting the removal after opening the pool.
1375 	 */
1376 	uint64_t msi;
1377 	for (msi = start_offset >> vd->vdev_ms_shift;
1378 	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1379 		metaslab_t *msp = vd->vdev_ms[msi];
1380 		ASSERT3U(msi, <=, vd->vdev_ms_count);
1381 
1382 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1383 
1384 		mutex_enter(&msp->ms_sync_lock);
1385 		mutex_enter(&msp->ms_lock);
1386 
1387 		/*
1388 		 * Assert nothing in flight -- ms_*tree is empty.
1389 		 */
1390 		for (int i = 0; i < TXG_SIZE; i++) {
1391 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1392 		}
1393 
1394 		/*
1395 		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1396 		 * read the allocated segments from the space map object
1397 		 * into svr_allocd_segs. Since we do this while holding
1398 		 * svr_lock and ms_sync_lock, concurrent frees (which
1399 		 * would have modified the space map) will wait for us
1400 		 * to finish loading the spacemap, and then take the
1401 		 * appropriate action (see free_from_removing_vdev()).
1402 		 */
1403 		if (msp->ms_sm != NULL) {
1404 			space_map_t *sm = NULL;
1405 
1406 			/*
1407 			 * We have to open a new space map here, because
1408 			 * ms_sm's sm_length and sm_alloc may not reflect
1409 			 * what's in the object contents, if we are in between
1410 			 * metaslab_sync() and metaslab_sync_done().
1411 			 */
1412 			VERIFY0(space_map_open(&sm,
1413 			    spa->spa_dsl_pool->dp_meta_objset,
1414 			    msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1415 			    msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1416 			space_map_update(sm);
1417 			VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1418 			    SM_ALLOC));
1419 			space_map_close(sm);
1420 
1421 			range_tree_walk(msp->ms_freeing,
1422 			    range_tree_remove, svr->svr_allocd_segs);
1423 
1424 			/*
1425 			 * When we are resuming from a paused removal (i.e.
1426 			 * when importing a pool with a removal in progress),
1427 			 * discard any state that we have already processed.
1428 			 */
1429 			range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1430 		}
1431 		mutex_exit(&msp->ms_lock);
1432 		mutex_exit(&msp->ms_sync_lock);
1433 
1434 		vca.vca_msp = msp;
1435 		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1436 		    avl_numnodes(&svr->svr_allocd_segs->rt_root),
1437 		    msp->ms_id);
1438 
1439 		while (!svr->svr_thread_exit &&
1440 		    !range_tree_is_empty(svr->svr_allocd_segs)) {
1441 
1442 			mutex_exit(&svr->svr_lock);
1443 
1444 			/*
1445 			 * We need to periodically drop the config lock so that
1446 			 * writers can get in.  Additionally, we can't wait
1447 			 * for a txg to sync while holding a config lock
1448 			 * (since a waiting writer could cause a 3-way deadlock
1449 			 * with the sync thread, which also gets a config
1450 			 * lock for reader).  So we can't hold the config lock
1451 			 * while calling dmu_tx_assign().
1452 			 */
1453 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1454 
1455 			/*
1456 			 * This delay will pause the removal around the point
1457 			 * specified by zfs_remove_max_bytes_pause. We do this
1458 			 * solely from the test suite or during debugging.
1459 			 */
1460 			uint64_t bytes_copied =
1461 			    spa->spa_removing_phys.sr_copied;
1462 			for (int i = 0; i < TXG_SIZE; i++)
1463 				bytes_copied += svr->svr_bytes_done[i];
1464 			while (zfs_remove_max_bytes_pause <= bytes_copied &&
1465 			    !svr->svr_thread_exit)
1466 				delay(hz);
1467 
1468 			mutex_enter(&vca.vca_lock);
1469 			while (vca.vca_outstanding_bytes >
1470 			    zfs_remove_max_copy_bytes) {
1471 				cv_wait(&vca.vca_cv, &vca.vca_lock);
1472 			}
1473 			mutex_exit(&vca.vca_lock);
1474 
1475 			dmu_tx_t *tx =
1476 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1477 
1478 			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1479 			uint64_t txg = dmu_tx_get_txg(tx);
1480 
1481 			/*
1482 			 * Reacquire the vdev_config lock.  The vdev_t
1483 			 * that we're removing may have changed, e.g. due
1484 			 * to a vdev_attach or vdev_detach.
1485 			 */
1486 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1487 			vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1488 
1489 			if (txg != last_txg)
1490 				max_alloc = zfs_remove_max_segment;
1491 			last_txg = txg;
1492 
1493 			spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1494 
1495 			dmu_tx_commit(tx);
1496 			mutex_enter(&svr->svr_lock);
1497 		}
1498 	}
1499 
1500 	mutex_exit(&svr->svr_lock);
1501 
1502 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1503 
1504 	/*
1505 	 * Wait for all copies to finish before cleaning up the vca.
1506 	 */
1507 	txg_wait_synced(spa->spa_dsl_pool, 0);
1508 	ASSERT0(vca.vca_outstanding_bytes);
1509 
1510 	mutex_destroy(&vca.vca_lock);
1511 	cv_destroy(&vca.vca_cv);
1512 
1513 	if (svr->svr_thread_exit) {
1514 		mutex_enter(&svr->svr_lock);
1515 		range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1516 		svr->svr_thread = NULL;
1517 		cv_broadcast(&svr->svr_cv);
1518 		mutex_exit(&svr->svr_lock);
1519 	} else {
1520 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1521 		vdev_remove_complete(spa);
1522 	}
1523 }
1524 
1525 void
1526 spa_vdev_remove_suspend(spa_t *spa)
1527 {
1528 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1529 
1530 	if (svr == NULL)
1531 		return;
1532 
1533 	mutex_enter(&svr->svr_lock);
1534 	svr->svr_thread_exit = B_TRUE;
1535 	while (svr->svr_thread != NULL)
1536 		cv_wait(&svr->svr_cv, &svr->svr_lock);
1537 	svr->svr_thread_exit = B_FALSE;
1538 	mutex_exit(&svr->svr_lock);
1539 }
1540 
1541 /* ARGSUSED */
1542 static int
1543 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1544 {
1545 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1546 
1547 	if (spa->spa_vdev_removal == NULL)
1548 		return (ENOTACTIVE);
1549 	return (0);
1550 }
1551 
1552 /*
1553  * Cancel a removal by freeing all entries from the partial mapping
1554  * and marking the vdev as no longer being removing.
1555  */
1556 /* ARGSUSED */
1557 static void
1558 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1559 {
1560 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1561 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1562 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1563 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1564 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1565 	objset_t *mos = spa->spa_meta_objset;
1566 
1567 	ASSERT3P(svr->svr_thread, ==, NULL);
1568 
1569 	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1570 	if (vdev_obsolete_counts_are_precise(vd)) {
1571 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1572 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1573 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1574 	}
1575 
1576 	if (vdev_obsolete_sm_object(vd) != 0) {
1577 		ASSERT(vd->vdev_obsolete_sm != NULL);
1578 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1579 		    space_map_object(vd->vdev_obsolete_sm));
1580 
1581 		space_map_free(vd->vdev_obsolete_sm, tx);
1582 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1583 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1584 		space_map_close(vd->vdev_obsolete_sm);
1585 		vd->vdev_obsolete_sm = NULL;
1586 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1587 	}
1588 	for (int i = 0; i < TXG_SIZE; i++) {
1589 		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1590 		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1591 		    vdev_indirect_mapping_max_offset(vim));
1592 	}
1593 
1594 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1595 		metaslab_t *msp = vd->vdev_ms[msi];
1596 
1597 		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1598 			break;
1599 
1600 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1601 
1602 		mutex_enter(&msp->ms_lock);
1603 
1604 		/*
1605 		 * Assert nothing in flight -- ms_*tree is empty.
1606 		 */
1607 		for (int i = 0; i < TXG_SIZE; i++)
1608 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1609 		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1610 			ASSERT0(range_tree_space(msp->ms_defer[i]));
1611 		ASSERT0(range_tree_space(msp->ms_freed));
1612 
1613 		if (msp->ms_sm != NULL) {
1614 			/*
1615 			 * Assert that the in-core spacemap has the same
1616 			 * length as the on-disk one, so we can use the
1617 			 * existing in-core spacemap to load it from disk.
1618 			 */
1619 			ASSERT3U(msp->ms_sm->sm_alloc, ==,
1620 			    msp->ms_sm->sm_phys->smp_alloc);
1621 			ASSERT3U(msp->ms_sm->sm_length, ==,
1622 			    msp->ms_sm->sm_phys->smp_objsize);
1623 
1624 			mutex_enter(&svr->svr_lock);
1625 			VERIFY0(space_map_load(msp->ms_sm,
1626 			    svr->svr_allocd_segs, SM_ALLOC));
1627 			range_tree_walk(msp->ms_freeing,
1628 			    range_tree_remove, svr->svr_allocd_segs);
1629 
1630 			/*
1631 			 * Clear everything past what has been synced,
1632 			 * because we have not allocated mappings for it yet.
1633 			 */
1634 			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1635 			uint64_t sm_end = msp->ms_sm->sm_start +
1636 			    msp->ms_sm->sm_size;
1637 			if (sm_end > syncd)
1638 				range_tree_clear(svr->svr_allocd_segs,
1639 				    syncd, sm_end - syncd);
1640 
1641 			mutex_exit(&svr->svr_lock);
1642 		}
1643 		mutex_exit(&msp->ms_lock);
1644 
1645 		mutex_enter(&svr->svr_lock);
1646 		range_tree_vacate(svr->svr_allocd_segs,
1647 		    free_mapped_segment_cb, vd);
1648 		mutex_exit(&svr->svr_lock);
1649 	}
1650 
1651 	/*
1652 	 * Note: this must happen after we invoke free_mapped_segment_cb,
1653 	 * because it adds to the obsolete_segments.
1654 	 */
1655 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1656 
1657 	ASSERT3U(vic->vic_mapping_object, ==,
1658 	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1659 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1660 	vd->vdev_indirect_mapping = NULL;
1661 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1662 	vic->vic_mapping_object = 0;
1663 
1664 	ASSERT3U(vic->vic_births_object, ==,
1665 	    vdev_indirect_births_object(vd->vdev_indirect_births));
1666 	vdev_indirect_births_close(vd->vdev_indirect_births);
1667 	vd->vdev_indirect_births = NULL;
1668 	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1669 	vic->vic_births_object = 0;
1670 
1671 	/*
1672 	 * We may have processed some frees from the removing vdev in this
1673 	 * txg, thus increasing svr_bytes_done; discard that here to
1674 	 * satisfy the assertions in spa_vdev_removal_destroy().
1675 	 * Note that future txg's can not have any bytes_done, because
1676 	 * future TXG's are only modified from open context, and we have
1677 	 * already shut down the copying thread.
1678 	 */
1679 	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1680 	spa_finish_removal(spa, DSS_CANCELED, tx);
1681 
1682 	vd->vdev_removing = B_FALSE;
1683 	vdev_config_dirty(vd);
1684 
1685 	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1686 	    vd->vdev_id, dmu_tx_get_txg(tx));
1687 	spa_history_log_internal(spa, "vdev remove canceled", tx,
1688 	    "%s vdev %llu %s", spa_name(spa),
1689 	    vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1690 }
1691 
1692 int
1693 spa_vdev_remove_cancel(spa_t *spa)
1694 {
1695 	spa_vdev_remove_suspend(spa);
1696 
1697 	if (spa->spa_vdev_removal == NULL)
1698 		return (ENOTACTIVE);
1699 
1700 	uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1701 
1702 	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1703 	    spa_vdev_remove_cancel_sync, NULL, 0,
1704 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
1705 
1706 	if (error == 0) {
1707 		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1708 		vdev_t *vd = vdev_lookup_top(spa, vdid);
1709 		metaslab_group_activate(vd->vdev_mg);
1710 		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1711 	}
1712 
1713 	return (error);
1714 }
1715 
1716 /*
1717  * Called every sync pass of every txg if there's a svr.
1718  */
1719 void
1720 svr_sync(spa_t *spa, dmu_tx_t *tx)
1721 {
1722 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1723 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1724 
1725 	/*
1726 	 * This check is necessary so that we do not dirty the
1727 	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1728 	 * is nothing to do.  Dirtying it every time would prevent us
1729 	 * from syncing-to-convergence.
1730 	 */
1731 	if (svr->svr_bytes_done[txgoff] == 0)
1732 		return;
1733 
1734 	/*
1735 	 * Update progress accounting.
1736 	 */
1737 	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1738 	svr->svr_bytes_done[txgoff] = 0;
1739 
1740 	spa_sync_removing_state(spa, tx);
1741 }
1742 
1743 static void
1744 vdev_remove_make_hole_and_free(vdev_t *vd)
1745 {
1746 	uint64_t id = vd->vdev_id;
1747 	spa_t *spa = vd->vdev_spa;
1748 	vdev_t *rvd = spa->spa_root_vdev;
1749 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1750 
1751 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1752 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1753 
1754 	vdev_free(vd);
1755 
1756 	if (last_vdev) {
1757 		vdev_compact_children(rvd);
1758 	} else {
1759 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1760 		vdev_add_child(rvd, vd);
1761 	}
1762 	vdev_config_dirty(rvd);
1763 
1764 	/*
1765 	 * Reassess the health of our root vdev.
1766 	 */
1767 	vdev_reopen(rvd);
1768 }
1769 
1770 /*
1771  * Remove a log device.  The config lock is held for the specified TXG.
1772  */
1773 static int
1774 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1775 {
1776 	metaslab_group_t *mg = vd->vdev_mg;
1777 	spa_t *spa = vd->vdev_spa;
1778 	int error = 0;
1779 
1780 	ASSERT(vd->vdev_islog);
1781 	ASSERT(vd == vd->vdev_top);
1782 
1783 	/*
1784 	 * Stop allocating from this vdev.
1785 	 */
1786 	metaslab_group_passivate(mg);
1787 
1788 	/*
1789 	 * Wait for the youngest allocations and frees to sync,
1790 	 * and then wait for the deferral of those frees to finish.
1791 	 */
1792 	spa_vdev_config_exit(spa, NULL,
1793 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1794 
1795 	/*
1796 	 * Evacuate the device.  We don't hold the config lock as writer
1797 	 * since we need to do I/O but we do keep the
1798 	 * spa_namespace_lock held.  Once this completes the device
1799 	 * should no longer have any blocks allocated on it.
1800 	 */
1801 	if (vd->vdev_islog) {
1802 		if (vd->vdev_stat.vs_alloc != 0)
1803 			error = spa_reset_logs(spa);
1804 	}
1805 
1806 	*txg = spa_vdev_config_enter(spa);
1807 
1808 	if (error != 0) {
1809 		metaslab_group_activate(mg);
1810 		return (error);
1811 	}
1812 	ASSERT0(vd->vdev_stat.vs_alloc);
1813 
1814 	/*
1815 	 * The evacuation succeeded.  Remove any remaining MOS metadata
1816 	 * associated with this vdev, and wait for these changes to sync.
1817 	 */
1818 	vd->vdev_removing = B_TRUE;
1819 
1820 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1821 	vdev_config_dirty(vd);
1822 
1823 	spa_history_log_internal(spa, "vdev remove", NULL,
1824 	    "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1825 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1826 
1827 	/* Make sure these changes are sync'ed */
1828 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1829 
1830 	/* Stop initializing */
1831 	(void) vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1832 
1833 	*txg = spa_vdev_config_enter(spa);
1834 
1835 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1836 	    ESC_ZFS_VDEV_REMOVE_DEV);
1837 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1838 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1839 
1840 	/* The top ZAP should have been destroyed by vdev_remove_empty. */
1841 	ASSERT0(vd->vdev_top_zap);
1842 	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1843 	ASSERT0(vd->vdev_leaf_zap);
1844 
1845 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1846 
1847 	if (list_link_active(&vd->vdev_state_dirty_node))
1848 		vdev_state_clean(vd);
1849 	if (list_link_active(&vd->vdev_config_dirty_node))
1850 		vdev_config_clean(vd);
1851 
1852 	/*
1853 	 * Clean up the vdev namespace.
1854 	 */
1855 	vdev_remove_make_hole_and_free(vd);
1856 
1857 	if (ev != NULL)
1858 		spa_event_post(ev);
1859 
1860 	return (0);
1861 }
1862 
1863 static int
1864 spa_vdev_remove_top_check(vdev_t *vd)
1865 {
1866 	spa_t *spa = vd->vdev_spa;
1867 
1868 	if (vd != vd->vdev_top)
1869 		return (SET_ERROR(ENOTSUP));
1870 
1871 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1872 		return (SET_ERROR(ENOTSUP));
1873 
1874 	/* available space in the pool's normal class */
1875 	uint64_t available = dsl_dir_space_available(
1876 	    spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1877 
1878 	metaslab_class_t *mc = vd->vdev_mg->mg_class;
1879 
1880 	/*
1881 	 * When removing a vdev from an allocation class that has
1882 	 * remaining vdevs, include available space from the class.
1883 	 */
1884 	if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1885 		uint64_t class_avail = metaslab_class_get_space(mc) -
1886 		    metaslab_class_get_alloc(mc);
1887 
1888 		/* add class space, adjusted for overhead */
1889 		available += (class_avail * 94) / 100;
1890 	}
1891 
1892 	/*
1893 	 * There has to be enough free space to remove the
1894 	 * device and leave double the "slop" space (i.e. we
1895 	 * must leave at least 3% of the pool free, in addition to
1896 	 * the normal slop space).
1897 	 */
1898 	if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1899 		return (SET_ERROR(ENOSPC));
1900 	}
1901 
1902 	/*
1903 	 * There can not be a removal in progress.
1904 	 */
1905 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1906 		return (SET_ERROR(EBUSY));
1907 
1908 	/*
1909 	 * The device must have all its data.
1910 	 */
1911 	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1912 	    !vdev_dtl_empty(vd, DTL_OUTAGE))
1913 		return (SET_ERROR(EBUSY));
1914 
1915 	/*
1916 	 * The device must be healthy.
1917 	 */
1918 	if (!vdev_readable(vd))
1919 		return (SET_ERROR(EIO));
1920 
1921 	/*
1922 	 * All vdevs in normal class must have the same ashift.
1923 	 */
1924 	if (spa->spa_max_ashift != spa->spa_min_ashift) {
1925 		return (SET_ERROR(EINVAL));
1926 	}
1927 
1928 	/*
1929 	 * All vdevs in normal class must have the same ashift
1930 	 * and not be raidz.
1931 	 */
1932 	vdev_t *rvd = spa->spa_root_vdev;
1933 	int num_indirect = 0;
1934 	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1935 		vdev_t *cvd = rvd->vdev_child[id];
1936 		if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1937 			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1938 		if (cvd->vdev_ops == &vdev_indirect_ops)
1939 			num_indirect++;
1940 		if (!vdev_is_concrete(cvd))
1941 			continue;
1942 		if (cvd->vdev_ops == &vdev_raidz_ops)
1943 			return (SET_ERROR(EINVAL));
1944 		/*
1945 		 * Need the mirror to be mirror of leaf vdevs only
1946 		 */
1947 		if (cvd->vdev_ops == &vdev_mirror_ops) {
1948 			for (uint64_t cid = 0;
1949 			    cid < cvd->vdev_children; cid++) {
1950 				vdev_t *tmp = cvd->vdev_child[cid];
1951 				if (!tmp->vdev_ops->vdev_op_leaf)
1952 					return (SET_ERROR(EINVAL));
1953 			}
1954 		}
1955 	}
1956 
1957 	return (0);
1958 }
1959 
1960 /*
1961  * Initiate removal of a top-level vdev, reducing the total space in the pool.
1962  * The config lock is held for the specified TXG.  Once initiated,
1963  * evacuation of all allocated space (copying it to other vdevs) happens
1964  * in the background (see spa_vdev_remove_thread()), and can be canceled
1965  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1966  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1967  */
1968 static int
1969 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1970 {
1971 	spa_t *spa = vd->vdev_spa;
1972 	int error;
1973 
1974 	/*
1975 	 * Check for errors up-front, so that we don't waste time
1976 	 * passivating the metaslab group and clearing the ZIL if there
1977 	 * are errors.
1978 	 */
1979 	error = spa_vdev_remove_top_check(vd);
1980 	if (error != 0)
1981 		return (error);
1982 
1983 	/*
1984 	 * Stop allocating from this vdev.  Note that we must check
1985 	 * that this is not the only device in the pool before
1986 	 * passivating, otherwise we will not be able to make
1987 	 * progress because we can't allocate from any vdevs.
1988 	 * The above check for sufficient free space serves this
1989 	 * purpose.
1990 	 */
1991 	metaslab_group_t *mg = vd->vdev_mg;
1992 	metaslab_group_passivate(mg);
1993 
1994 	/*
1995 	 * Wait for the youngest allocations and frees to sync,
1996 	 * and then wait for the deferral of those frees to finish.
1997 	 */
1998 	spa_vdev_config_exit(spa, NULL,
1999 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2000 
2001 	/*
2002 	 * We must ensure that no "stubby" log blocks are allocated
2003 	 * on the device to be removed.  These blocks could be
2004 	 * written at any time, including while we are in the middle
2005 	 * of copying them.
2006 	 */
2007 	error = spa_reset_logs(spa);
2008 
2009 	/*
2010 	 * We stop any initializing that is currently in progress but leave
2011 	 * the state as "active". This will allow the initializing to resume
2012 	 * if the removal is canceled sometime later.
2013 	 */
2014 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2015 
2016 	*txg = spa_vdev_config_enter(spa);
2017 
2018 	/*
2019 	 * Things might have changed while the config lock was dropped
2020 	 * (e.g. space usage).  Check for errors again.
2021 	 */
2022 	if (error == 0)
2023 		error = spa_vdev_remove_top_check(vd);
2024 
2025 	if (error != 0) {
2026 		metaslab_group_activate(mg);
2027 		spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2028 		return (error);
2029 	}
2030 
2031 	vd->vdev_removing = B_TRUE;
2032 
2033 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2034 	vdev_config_dirty(vd);
2035 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2036 	dsl_sync_task_nowait(spa->spa_dsl_pool,
2037 	    vdev_remove_initiate_sync,
2038 	    (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2039 	dmu_tx_commit(tx);
2040 
2041 	return (0);
2042 }
2043 
2044 /*
2045  * Remove a device from the pool.
2046  *
2047  * Removing a device from the vdev namespace requires several steps
2048  * and can take a significant amount of time.  As a result we use
2049  * the spa_vdev_config_[enter/exit] functions which allow us to
2050  * grab and release the spa_config_lock while still holding the namespace
2051  * lock.  During each step the configuration is synced out.
2052  */
2053 int
2054 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2055 {
2056 	vdev_t *vd;
2057 	nvlist_t **spares, **l2cache, *nv;
2058 	uint64_t txg = 0;
2059 	uint_t nspares, nl2cache;
2060 	int error = 0;
2061 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2062 	sysevent_t *ev = NULL;
2063 
2064 	ASSERT(spa_writeable(spa));
2065 
2066 	if (!locked)
2067 		txg = spa_vdev_enter(spa);
2068 
2069 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2070 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2071 		error = (spa_has_checkpoint(spa)) ?
2072 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2073 
2074 		if (!locked)
2075 			return (spa_vdev_exit(spa, NULL, txg, error));
2076 
2077 		return (error);
2078 	}
2079 
2080 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2081 
2082 	if (spa->spa_spares.sav_vdevs != NULL &&
2083 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2084 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2085 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2086 		/*
2087 		 * Only remove the hot spare if it's not currently in use
2088 		 * in this pool.
2089 		 */
2090 		if (vd == NULL || unspare) {
2091 			char *nvstr = fnvlist_lookup_string(nv,
2092 			    ZPOOL_CONFIG_PATH);
2093 			spa_history_log_internal(spa, "vdev remove", NULL,
2094 			    "%s vdev (%s) %s", spa_name(spa),
2095 			    VDEV_TYPE_SPARE, nvstr);
2096 			if (vd == NULL)
2097 				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2098 			ev = spa_event_create(spa, vd, NULL,
2099 			    ESC_ZFS_VDEV_REMOVE_AUX);
2100 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
2101 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2102 			spa_load_spares(spa);
2103 			spa->spa_spares.sav_sync = B_TRUE;
2104 		} else {
2105 			error = SET_ERROR(EBUSY);
2106 		}
2107 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
2108 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2109 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2110 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2111 		char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2112 		spa_history_log_internal(spa, "vdev remove", NULL,
2113 		    "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2114 		/*
2115 		 * Cache devices can always be removed.
2116 		 */
2117 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2118 		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2119 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2120 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2121 		spa_load_l2cache(spa);
2122 		spa->spa_l2cache.sav_sync = B_TRUE;
2123 	} else if (vd != NULL && vd->vdev_islog) {
2124 		ASSERT(!locked);
2125 		error = spa_vdev_remove_log(vd, &txg);
2126 	} else if (vd != NULL) {
2127 		ASSERT(!locked);
2128 		error = spa_vdev_remove_top(vd, &txg);
2129 	} else {
2130 		/*
2131 		 * There is no vdev of any kind with the specified guid.
2132 		 */
2133 		error = SET_ERROR(ENOENT);
2134 	}
2135 
2136 	if (!locked)
2137 		error = spa_vdev_exit(spa, NULL, txg, error);
2138 
2139 	if (ev != NULL) {
2140 		if (error != 0) {
2141 			spa_event_discard(ev);
2142 		} else {
2143 			spa_event_post(ev);
2144 		}
2145 	}
2146 
2147 	return (error);
2148 }
2149 
2150 int
2151 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2152 {
2153 	prs->prs_state = spa->spa_removing_phys.sr_state;
2154 
2155 	if (prs->prs_state == DSS_NONE)
2156 		return (SET_ERROR(ENOENT));
2157 
2158 	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2159 	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2160 	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2161 	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2162 	prs->prs_copied = spa->spa_removing_phys.sr_copied;
2163 
2164 	if (spa->spa_vdev_removal != NULL) {
2165 		for (int i = 0; i < TXG_SIZE; i++) {
2166 			prs->prs_copied +=
2167 			    spa->spa_vdev_removal->svr_bytes_done[i];
2168 		}
2169 	}
2170 
2171 	prs->prs_mapping_memory = 0;
2172 	uint64_t indirect_vdev_id =
2173 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
2174 	while (indirect_vdev_id != -1) {
2175 		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2176 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2177 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2178 
2179 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2180 		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2181 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
2182 	}
2183 
2184 	return (0);
2185 }
2186