xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_removal.c (revision 5328fc53d11d7151861fa272e4fb0248b8f0e145)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/vdev_initialize.h>
48 #include <sys/vdev_trim.h>
49 
50 /*
51  * This file contains the necessary logic to remove vdevs from a
52  * storage pool.  Currently, the only devices that can be removed
53  * are log, cache, and spare devices; and top level vdevs from a pool
54  * w/o raidz.  (Note that members of a mirror can also be removed
55  * by the detach operation.)
56  *
57  * Log vdevs are removed by evacuating them and then turning the vdev
58  * into a hole vdev while holding spa config locks.
59  *
60  * Top level vdevs are removed and converted into an indirect vdev via
61  * a multi-step process:
62  *
63  *  - Disable allocations from this device (spa_vdev_remove_top).
64  *
65  *  - From a new thread (spa_vdev_remove_thread), copy data from
66  *    the removing vdev to a different vdev.  The copy happens in open
67  *    context (spa_vdev_copy_impl) and issues a sync task
68  *    (vdev_mapping_sync) so the sync thread can update the partial
69  *    indirect mappings in core and on disk.
70  *
71  *  - If a free happens during a removal, it is freed from the
72  *    removing vdev, and if it has already been copied, from the new
73  *    location as well (free_from_removing_vdev).
74  *
75  *  - After the removal is completed, the copy thread converts the vdev
76  *    into an indirect vdev (vdev_remove_complete) before instructing
77  *    the sync thread to destroy the space maps and finish the removal
78  *    (spa_finish_removal).
79  */
80 
81 typedef struct vdev_copy_arg {
82 	metaslab_t	*vca_msp;
83 	uint64_t	vca_outstanding_bytes;
84 	kcondvar_t	vca_cv;
85 	kmutex_t	vca_lock;
86 } vdev_copy_arg_t;
87 
88 /*
89  * The maximum amount of memory we can use for outstanding i/o while
90  * doing a device removal.  This determines how much i/o we can have
91  * in flight concurrently.
92  */
93 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
94 
95 /*
96  * The largest contiguous segment that we will attempt to allocate when
97  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
98  * there is a performance problem with attempting to allocate large blocks,
99  * consider decreasing this.
100  *
101  * Note: we will issue I/Os of up to this size.  The mpt driver does not
102  * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
103  * mpt processes an I/O larger than 1MB, it needs to do an allocation of
104  * 2 physically contiguous pages; if this allocation fails, mpt will drop
105  * the I/O and hang the device.)
106  */
107 int zfs_remove_max_segment = 1024 * 1024;
108 
109 /*
110  * Allow a remap segment to span free chunks of at most this size. The main
111  * impact of a larger span is that we will read and write larger, more
112  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
113  * for iops.  The value here was chosen to align with
114  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
115  * reads (but there's no reason it has to be the same).
116  *
117  * Additionally, a higher span will have the following relatively minor
118  * effects:
119  *  - the mapping will be smaller, since one entry can cover more allocated
120  *    segments
121  *  - more of the fragmentation in the removing device will be preserved
122  *  - we'll do larger allocations, which may fail and fall back on smaller
123  *    allocations
124  */
125 int vdev_removal_max_span = 32 * 1024;
126 
127 /*
128  * This is used by the test suite so that it can ensure that certain
129  * actions happen while in the middle of a removal.
130  */
131 int zfs_removal_suspend_progress = 0;
132 
133 #define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
134 
135 static void spa_vdev_remove_thread(void *arg);
136 
137 static void
138 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
139 {
140 	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
141 	    DMU_POOL_DIRECTORY_OBJECT,
142 	    DMU_POOL_REMOVING, sizeof (uint64_t),
143 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
144 	    &spa->spa_removing_phys, tx));
145 }
146 
147 static nvlist_t *
148 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
149 {
150 	for (int i = 0; i < count; i++) {
151 		uint64_t guid =
152 		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
153 
154 		if (guid == target_guid)
155 			return (nvpp[i]);
156 	}
157 
158 	return (NULL);
159 }
160 
161 static void
162 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
163     nvlist_t *dev_to_remove)
164 {
165 	nvlist_t **newdev = NULL;
166 
167 	if (count > 1)
168 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
169 
170 	for (int i = 0, j = 0; i < count; i++) {
171 		if (dev[i] == dev_to_remove)
172 			continue;
173 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
174 	}
175 
176 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
177 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
178 
179 	for (int i = 0; i < count - 1; i++)
180 		nvlist_free(newdev[i]);
181 
182 	if (count > 1)
183 		kmem_free(newdev, (count - 1) * sizeof (void *));
184 }
185 
186 static spa_vdev_removal_t *
187 spa_vdev_removal_create(vdev_t *vd)
188 {
189 	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
190 	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
191 	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
192 	svr->svr_allocd_segs = range_tree_create(NULL, NULL);
193 	svr->svr_vdev_id = vd->vdev_id;
194 
195 	for (int i = 0; i < TXG_SIZE; i++) {
196 		svr->svr_frees[i] = range_tree_create(NULL, NULL);
197 		list_create(&svr->svr_new_segments[i],
198 		    sizeof (vdev_indirect_mapping_entry_t),
199 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
200 	}
201 
202 	return (svr);
203 }
204 
205 void
206 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
207 {
208 	for (int i = 0; i < TXG_SIZE; i++) {
209 		ASSERT0(svr->svr_bytes_done[i]);
210 		ASSERT0(svr->svr_max_offset_to_sync[i]);
211 		range_tree_destroy(svr->svr_frees[i]);
212 		list_destroy(&svr->svr_new_segments[i]);
213 	}
214 
215 	range_tree_destroy(svr->svr_allocd_segs);
216 	mutex_destroy(&svr->svr_lock);
217 	cv_destroy(&svr->svr_cv);
218 	kmem_free(svr, sizeof (*svr));
219 }
220 
221 /*
222  * This is called as a synctask in the txg in which we will mark this vdev
223  * as removing (in the config stored in the MOS).
224  *
225  * It begins the evacuation of a toplevel vdev by:
226  * - initializing the spa_removing_phys which tracks this removal
227  * - computing the amount of space to remove for accounting purposes
228  * - dirtying all dbufs in the spa_config_object
229  * - creating the spa_vdev_removal
230  * - starting the spa_vdev_remove_thread
231  */
232 static void
233 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
234 {
235 	int vdev_id = (uintptr_t)arg;
236 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
237 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
238 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
239 	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
240 	spa_vdev_removal_t *svr = NULL;
241 	uint64_t txg = dmu_tx_get_txg(tx);
242 
243 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
244 	svr = spa_vdev_removal_create(vd);
245 
246 	ASSERT(vd->vdev_removing);
247 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
248 
249 	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
250 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
251 		/*
252 		 * By activating the OBSOLETE_COUNTS feature, we prevent
253 		 * the pool from being downgraded and ensure that the
254 		 * refcounts are precise.
255 		 */
256 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
257 		uint64_t one = 1;
258 		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
259 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
260 		    &one, tx));
261 		ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
262 	}
263 
264 	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
265 	vd->vdev_indirect_mapping =
266 	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
267 	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
268 	vd->vdev_indirect_births =
269 	    vdev_indirect_births_open(mos, vic->vic_births_object);
270 	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
271 	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
272 	spa->spa_removing_phys.sr_end_time = 0;
273 	spa->spa_removing_phys.sr_state = DSS_SCANNING;
274 	spa->spa_removing_phys.sr_to_copy = 0;
275 	spa->spa_removing_phys.sr_copied = 0;
276 
277 	/*
278 	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
279 	 * there may be space in the defer tree, which is free, but still
280 	 * counted in vs_alloc.
281 	 */
282 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
283 		metaslab_t *ms = vd->vdev_ms[i];
284 		if (ms->ms_sm == NULL)
285 			continue;
286 
287 		spa->spa_removing_phys.sr_to_copy +=
288 		    metaslab_allocated_space(ms);
289 
290 		/*
291 		 * Space which we are freeing this txg does not need to
292 		 * be copied.
293 		 */
294 		spa->spa_removing_phys.sr_to_copy -=
295 		    range_tree_space(ms->ms_freeing);
296 
297 		ASSERT0(range_tree_space(ms->ms_freed));
298 		for (int t = 0; t < TXG_SIZE; t++)
299 			ASSERT0(range_tree_space(ms->ms_allocating[t]));
300 	}
301 
302 	/*
303 	 * Sync tasks are called before metaslab_sync(), so there should
304 	 * be no already-synced metaslabs in the TXG_CLEAN list.
305 	 */
306 	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
307 
308 	spa_sync_removing_state(spa, tx);
309 
310 	/*
311 	 * All blocks that we need to read the most recent mapping must be
312 	 * stored on concrete vdevs.  Therefore, we must dirty anything that
313 	 * is read before spa_remove_init().  Specifically, the
314 	 * spa_config_object.  (Note that although we already modified the
315 	 * spa_config_object in spa_sync_removing_state, that may not have
316 	 * modified all blocks of the object.)
317 	 */
318 	dmu_object_info_t doi;
319 	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
320 	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
321 		dmu_buf_t *dbuf;
322 		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
323 		    offset, FTAG, &dbuf, 0));
324 		dmu_buf_will_dirty(dbuf, tx);
325 		offset += dbuf->db_size;
326 		dmu_buf_rele(dbuf, FTAG);
327 	}
328 
329 	/*
330 	 * Now that we've allocated the im_object, dirty the vdev to ensure
331 	 * that the object gets written to the config on disk.
332 	 */
333 	vdev_config_dirty(vd);
334 
335 	zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
336 	    "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
337 	    vic->vic_mapping_object);
338 
339 	spa_history_log_internal(spa, "vdev remove started", tx,
340 	    "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
341 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
342 	/*
343 	 * Setting spa_vdev_removal causes subsequent frees to call
344 	 * free_from_removing_vdev().  Note that we don't need any locking
345 	 * because we are the sync thread, and metaslab_free_impl() is only
346 	 * called from syncing context (potentially from a zio taskq thread,
347 	 * but in any case only when there are outstanding free i/os, which
348 	 * there are not).
349 	 */
350 	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
351 	spa->spa_vdev_removal = svr;
352 	svr->svr_thread = thread_create(NULL, 0,
353 	    spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
354 }
355 
356 /*
357  * When we are opening a pool, we must read the mapping for each
358  * indirect vdev in order from most recently removed to least
359  * recently removed.  We do this because the blocks for the mapping
360  * of older indirect vdevs may be stored on more recently removed vdevs.
361  * In order to read each indirect mapping object, we must have
362  * initialized all more recently removed vdevs.
363  */
364 int
365 spa_remove_init(spa_t *spa)
366 {
367 	int error;
368 
369 	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
370 	    DMU_POOL_DIRECTORY_OBJECT,
371 	    DMU_POOL_REMOVING, sizeof (uint64_t),
372 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
373 	    &spa->spa_removing_phys);
374 
375 	if (error == ENOENT) {
376 		spa->spa_removing_phys.sr_state = DSS_NONE;
377 		spa->spa_removing_phys.sr_removing_vdev = -1;
378 		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
379 		spa->spa_indirect_vdevs_loaded = B_TRUE;
380 		return (0);
381 	} else if (error != 0) {
382 		return (error);
383 	}
384 
385 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
386 		/*
387 		 * We are currently removing a vdev.  Create and
388 		 * initialize a spa_vdev_removal_t from the bonus
389 		 * buffer of the removing vdevs vdev_im_object, and
390 		 * initialize its partial mapping.
391 		 */
392 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
393 		vdev_t *vd = vdev_lookup_top(spa,
394 		    spa->spa_removing_phys.sr_removing_vdev);
395 
396 		if (vd == NULL) {
397 			spa_config_exit(spa, SCL_STATE, FTAG);
398 			return (EINVAL);
399 		}
400 
401 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
402 
403 		ASSERT(vdev_is_concrete(vd));
404 		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
405 		ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
406 		ASSERT(vd->vdev_removing);
407 
408 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
409 		    spa->spa_meta_objset, vic->vic_mapping_object);
410 		vd->vdev_indirect_births = vdev_indirect_births_open(
411 		    spa->spa_meta_objset, vic->vic_births_object);
412 		spa_config_exit(spa, SCL_STATE, FTAG);
413 
414 		spa->spa_vdev_removal = svr;
415 	}
416 
417 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
418 	uint64_t indirect_vdev_id =
419 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
420 	while (indirect_vdev_id != UINT64_MAX) {
421 		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
422 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
423 
424 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
425 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
426 		    spa->spa_meta_objset, vic->vic_mapping_object);
427 		vd->vdev_indirect_births = vdev_indirect_births_open(
428 		    spa->spa_meta_objset, vic->vic_births_object);
429 
430 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
431 	}
432 	spa_config_exit(spa, SCL_STATE, FTAG);
433 
434 	/*
435 	 * Now that we've loaded all the indirect mappings, we can allow
436 	 * reads from other blocks (e.g. via predictive prefetch).
437 	 */
438 	spa->spa_indirect_vdevs_loaded = B_TRUE;
439 	return (0);
440 }
441 
442 void
443 spa_restart_removal(spa_t *spa)
444 {
445 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
446 
447 	if (svr == NULL)
448 		return;
449 
450 	/*
451 	 * In general when this function is called there is no
452 	 * removal thread running. The only scenario where this
453 	 * is not true is during spa_import() where this function
454 	 * is called twice [once from spa_import_impl() and
455 	 * spa_async_resume()]. Thus, in the scenario where we
456 	 * import a pool that has an ongoing removal we don't
457 	 * want to spawn a second thread.
458 	 */
459 	if (svr->svr_thread != NULL)
460 		return;
461 
462 	if (!spa_writeable(spa))
463 		return;
464 
465 	zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
466 	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
467 	    0, &p0, TS_RUN, minclsyspri);
468 }
469 
470 /*
471  * Process freeing from a device which is in the middle of being removed.
472  * We must handle this carefully so that we attempt to copy freed data,
473  * and we correctly free already-copied data.
474  */
475 void
476 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
477 {
478 	spa_t *spa = vd->vdev_spa;
479 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
480 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
481 	uint64_t txg = spa_syncing_txg(spa);
482 	uint64_t max_offset_yet = 0;
483 
484 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
485 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
486 	    vdev_indirect_mapping_object(vim));
487 	ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
488 
489 	mutex_enter(&svr->svr_lock);
490 
491 	/*
492 	 * Remove the segment from the removing vdev's spacemap.  This
493 	 * ensures that we will not attempt to copy this space (if the
494 	 * removal thread has not yet visited it), and also ensures
495 	 * that we know what is actually allocated on the new vdevs
496 	 * (needed if we cancel the removal).
497 	 *
498 	 * Note: we must do the metaslab_free_concrete() with the svr_lock
499 	 * held, so that the remove_thread can not load this metaslab and then
500 	 * visit this offset between the time that we metaslab_free_concrete()
501 	 * and when we check to see if it has been visited.
502 	 *
503 	 * Note: The checkpoint flag is set to false as having/taking
504 	 * a checkpoint and removing a device can't happen at the same
505 	 * time.
506 	 */
507 	ASSERT(!spa_has_checkpoint(spa));
508 	metaslab_free_concrete(vd, offset, size, B_FALSE);
509 
510 	uint64_t synced_size = 0;
511 	uint64_t synced_offset = 0;
512 	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
513 	if (offset < max_offset_synced) {
514 		/*
515 		 * The mapping for this offset is already on disk.
516 		 * Free from the new location.
517 		 *
518 		 * Note that we use svr_max_synced_offset because it is
519 		 * updated atomically with respect to the in-core mapping.
520 		 * By contrast, vim_max_offset is not.
521 		 *
522 		 * This block may be split between a synced entry and an
523 		 * in-flight or unvisited entry.  Only process the synced
524 		 * portion of it here.
525 		 */
526 		synced_size = MIN(size, max_offset_synced - offset);
527 		synced_offset = offset;
528 
529 		ASSERT3U(max_offset_yet, <=, max_offset_synced);
530 		max_offset_yet = max_offset_synced;
531 
532 		DTRACE_PROBE3(remove__free__synced,
533 		    spa_t *, spa,
534 		    uint64_t, offset,
535 		    uint64_t, synced_size);
536 
537 		size -= synced_size;
538 		offset += synced_size;
539 	}
540 
541 	/*
542 	 * Look at all in-flight txgs starting from the currently syncing one
543 	 * and see if a section of this free is being copied. By starting from
544 	 * this txg and iterating forward, we might find that this region
545 	 * was copied in two different txgs and handle it appropriately.
546 	 */
547 	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
548 		int txgoff = (txg + i) & TXG_MASK;
549 		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
550 			/*
551 			 * The mapping for this offset is in flight, and
552 			 * will be synced in txg+i.
553 			 */
554 			uint64_t inflight_size = MIN(size,
555 			    svr->svr_max_offset_to_sync[txgoff] - offset);
556 
557 			DTRACE_PROBE4(remove__free__inflight,
558 			    spa_t *, spa,
559 			    uint64_t, offset,
560 			    uint64_t, inflight_size,
561 			    uint64_t, txg + i);
562 
563 			/*
564 			 * We copy data in order of increasing offset.
565 			 * Therefore the max_offset_to_sync[] must increase
566 			 * (or be zero, indicating that nothing is being
567 			 * copied in that txg).
568 			 */
569 			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
570 				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
571 				    >=, max_offset_yet);
572 				max_offset_yet =
573 				    svr->svr_max_offset_to_sync[txgoff];
574 			}
575 
576 			/*
577 			 * We've already committed to copying this segment:
578 			 * we have allocated space elsewhere in the pool for
579 			 * it and have an IO outstanding to copy the data. We
580 			 * cannot free the space before the copy has
581 			 * completed, or else the copy IO might overwrite any
582 			 * new data. To free that space, we record the
583 			 * segment in the appropriate svr_frees tree and free
584 			 * the mapped space later, in the txg where we have
585 			 * completed the copy and synced the mapping (see
586 			 * vdev_mapping_sync).
587 			 */
588 			range_tree_add(svr->svr_frees[txgoff],
589 			    offset, inflight_size);
590 			size -= inflight_size;
591 			offset += inflight_size;
592 
593 			/*
594 			 * This space is already accounted for as being
595 			 * done, because it is being copied in txg+i.
596 			 * However, if i!=0, then it is being copied in
597 			 * a future txg.  If we crash after this txg
598 			 * syncs but before txg+i syncs, then the space
599 			 * will be free.  Therefore we must account
600 			 * for the space being done in *this* txg
601 			 * (when it is freed) rather than the future txg
602 			 * (when it will be copied).
603 			 */
604 			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
605 			    inflight_size);
606 			svr->svr_bytes_done[txgoff] -= inflight_size;
607 			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
608 		}
609 	}
610 	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
611 
612 	if (size > 0) {
613 		/*
614 		 * The copy thread has not yet visited this offset.  Ensure
615 		 * that it doesn't.
616 		 */
617 
618 		DTRACE_PROBE3(remove__free__unvisited,
619 		    spa_t *, spa,
620 		    uint64_t, offset,
621 		    uint64_t, size);
622 
623 		if (svr->svr_allocd_segs != NULL)
624 			range_tree_clear(svr->svr_allocd_segs, offset, size);
625 
626 		/*
627 		 * Since we now do not need to copy this data, for
628 		 * accounting purposes we have done our job and can count
629 		 * it as completed.
630 		 */
631 		svr->svr_bytes_done[txg & TXG_MASK] += size;
632 	}
633 	mutex_exit(&svr->svr_lock);
634 
635 	/*
636 	 * Now that we have dropped svr_lock, process the synced portion
637 	 * of this free.
638 	 */
639 	if (synced_size > 0) {
640 		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
641 
642 		/*
643 		 * Note: this can only be called from syncing context,
644 		 * and the vdev_indirect_mapping is only changed from the
645 		 * sync thread, so we don't need svr_lock while doing
646 		 * metaslab_free_impl_cb.
647 		 */
648 		boolean_t checkpoint = B_FALSE;
649 		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
650 		    metaslab_free_impl_cb, &checkpoint);
651 	}
652 }
653 
654 /*
655  * Stop an active removal and update the spa_removing phys.
656  */
657 static void
658 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
659 {
660 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
661 	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
662 
663 	/* Ensure the removal thread has completed before we free the svr. */
664 	spa_vdev_remove_suspend(spa);
665 
666 	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
667 
668 	if (state == DSS_FINISHED) {
669 		spa_removing_phys_t *srp = &spa->spa_removing_phys;
670 		vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
671 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
672 
673 		if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
674 			vdev_t *pvd = vdev_lookup_top(spa,
675 			    srp->sr_prev_indirect_vdev);
676 			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
677 		}
678 
679 		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
680 		srp->sr_prev_indirect_vdev = vd->vdev_id;
681 	}
682 	spa->spa_removing_phys.sr_state = state;
683 	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
684 
685 	spa->spa_vdev_removal = NULL;
686 	spa_vdev_removal_destroy(svr);
687 
688 	spa_sync_removing_state(spa, tx);
689 
690 	vdev_config_dirty(spa->spa_root_vdev);
691 }
692 
693 static void
694 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
695 {
696 	vdev_t *vd = arg;
697 	vdev_indirect_mark_obsolete(vd, offset, size);
698 	boolean_t checkpoint = B_FALSE;
699 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
700 	    metaslab_free_impl_cb, &checkpoint);
701 }
702 
703 /*
704  * On behalf of the removal thread, syncs an incremental bit more of
705  * the indirect mapping to disk and updates the in-memory mapping.
706  * Called as a sync task in every txg that the removal thread makes progress.
707  */
708 static void
709 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
710 {
711 	spa_vdev_removal_t *svr = arg;
712 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
713 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
714 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
715 	uint64_t txg = dmu_tx_get_txg(tx);
716 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
717 
718 	ASSERT(vic->vic_mapping_object != 0);
719 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
720 
721 	vdev_indirect_mapping_add_entries(vim,
722 	    &svr->svr_new_segments[txg & TXG_MASK], tx);
723 	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
724 	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
725 
726 	/*
727 	 * Free the copied data for anything that was freed while the
728 	 * mapping entries were in flight.
729 	 */
730 	mutex_enter(&svr->svr_lock);
731 	range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
732 	    free_mapped_segment_cb, vd);
733 	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
734 	    vdev_indirect_mapping_max_offset(vim));
735 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
736 	mutex_exit(&svr->svr_lock);
737 
738 	spa_sync_removing_state(spa, tx);
739 }
740 
741 typedef struct vdev_copy_segment_arg {
742 	spa_t *vcsa_spa;
743 	dva_t *vcsa_dest_dva;
744 	uint64_t vcsa_txg;
745 	range_tree_t *vcsa_obsolete_segs;
746 } vdev_copy_segment_arg_t;
747 
748 static void
749 unalloc_seg(void *arg, uint64_t start, uint64_t size)
750 {
751 	vdev_copy_segment_arg_t *vcsa = arg;
752 	spa_t *spa = vcsa->vcsa_spa;
753 	blkptr_t bp = { 0 };
754 
755 	BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
756 	BP_SET_LSIZE(&bp, size);
757 	BP_SET_PSIZE(&bp, size);
758 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
759 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
760 	BP_SET_TYPE(&bp, DMU_OT_NONE);
761 	BP_SET_LEVEL(&bp, 0);
762 	BP_SET_DEDUP(&bp, 0);
763 	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
764 
765 	DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
766 	DVA_SET_OFFSET(&bp.blk_dva[0],
767 	    DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
768 	DVA_SET_ASIZE(&bp.blk_dva[0], size);
769 
770 	zio_free(spa, vcsa->vcsa_txg, &bp);
771 }
772 
773 /*
774  * All reads and writes associated with a call to spa_vdev_copy_segment()
775  * are done.
776  */
777 static void
778 spa_vdev_copy_segment_done(zio_t *zio)
779 {
780 	vdev_copy_segment_arg_t *vcsa = zio->io_private;
781 
782 	range_tree_vacate(vcsa->vcsa_obsolete_segs,
783 	    unalloc_seg, vcsa);
784 	range_tree_destroy(vcsa->vcsa_obsolete_segs);
785 	kmem_free(vcsa, sizeof (*vcsa));
786 
787 	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
788 }
789 
790 /*
791  * The write of the new location is done.
792  */
793 static void
794 spa_vdev_copy_segment_write_done(zio_t *zio)
795 {
796 	vdev_copy_arg_t *vca = zio->io_private;
797 
798 	abd_free(zio->io_abd);
799 
800 	mutex_enter(&vca->vca_lock);
801 	vca->vca_outstanding_bytes -= zio->io_size;
802 	cv_signal(&vca->vca_cv);
803 	mutex_exit(&vca->vca_lock);
804 }
805 
806 /*
807  * The read of the old location is done.  The parent zio is the write to
808  * the new location.  Allow it to start.
809  */
810 static void
811 spa_vdev_copy_segment_read_done(zio_t *zio)
812 {
813 	zio_nowait(zio_unique_parent(zio));
814 }
815 
816 /*
817  * If the old and new vdevs are mirrors, we will read both sides of the old
818  * mirror, and write each copy to the corresponding side of the new mirror.
819  * If the old and new vdevs have a different number of children, we will do
820  * this as best as possible.  Since we aren't verifying checksums, this
821  * ensures that as long as there's a good copy of the data, we'll have a
822  * good copy after the removal, even if there's silent damage to one side
823  * of the mirror. If we're removing a mirror that has some silent damage,
824  * we'll have exactly the same damage in the new location (assuming that
825  * the new location is also a mirror).
826  *
827  * We accomplish this by creating a tree of zio_t's, with as many writes as
828  * there are "children" of the new vdev (a non-redundant vdev counts as one
829  * child, a 2-way mirror has 2 children, etc). Each write has an associated
830  * read from a child of the old vdev. Typically there will be the same
831  * number of children of the old and new vdevs.  However, if there are more
832  * children of the new vdev, some child(ren) of the old vdev will be issued
833  * multiple reads.  If there are more children of the old vdev, some copies
834  * will be dropped.
835  *
836  * For example, the tree of zio_t's for a 2-way mirror is:
837  *
838  *                            null
839  *                           /    \
840  *    write(new vdev, child 0)      write(new vdev, child 1)
841  *      |                             |
842  *    read(old vdev, child 0)       read(old vdev, child 1)
843  *
844  * Child zio's complete before their parents complete.  However, zio's
845  * created with zio_vdev_child_io() may be issued before their children
846  * complete.  In this case we need to make sure that the children (reads)
847  * complete before the parents (writes) are *issued*.  We do this by not
848  * calling zio_nowait() on each write until its corresponding read has
849  * completed.
850  *
851  * The spa_config_lock must be held while zio's created by
852  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
853  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
854  * zio is needed to release the spa_config_lock after all the reads and
855  * writes complete. (Note that we can't grab the config lock for each read,
856  * because it is not reentrant - we could deadlock with a thread waiting
857  * for a write lock.)
858  */
859 static void
860 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
861     vdev_t *source_vd, uint64_t source_offset,
862     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
863 {
864 	ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
865 
866 	mutex_enter(&vca->vca_lock);
867 	vca->vca_outstanding_bytes += size;
868 	mutex_exit(&vca->vca_lock);
869 
870 	abd_t *abd = abd_alloc_for_io(size, B_FALSE);
871 
872 	vdev_t *source_child_vd;
873 	if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
874 		/*
875 		 * Source and dest are both mirrors.  Copy from the same
876 		 * child id as we are copying to (wrapping around if there
877 		 * are more dest children than source children).
878 		 */
879 		source_child_vd =
880 		    source_vd->vdev_child[dest_id % source_vd->vdev_children];
881 	} else {
882 		source_child_vd = source_vd;
883 	}
884 
885 	zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
886 	    dest_child_vd, dest_offset, abd, size,
887 	    ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
888 	    ZIO_FLAG_CANFAIL,
889 	    spa_vdev_copy_segment_write_done, vca);
890 
891 	zio_nowait(zio_vdev_child_io(write_zio, NULL,
892 	    source_child_vd, source_offset, abd, size,
893 	    ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
894 	    ZIO_FLAG_CANFAIL,
895 	    spa_vdev_copy_segment_read_done, vca));
896 }
897 
898 /*
899  * Allocate a new location for this segment, and create the zio_t's to
900  * read from the old location and write to the new location.
901  */
902 static int
903 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
904     uint64_t maxalloc, uint64_t txg,
905     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
906 {
907 	metaslab_group_t *mg = vd->vdev_mg;
908 	spa_t *spa = vd->vdev_spa;
909 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
910 	vdev_indirect_mapping_entry_t *entry;
911 	dva_t dst = { 0 };
912 	uint64_t start = range_tree_min(segs);
913 
914 	ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
915 
916 	uint64_t size = range_tree_span(segs);
917 	if (range_tree_span(segs) > maxalloc) {
918 		/*
919 		 * We can't allocate all the segments.  Prefer to end
920 		 * the allocation at the end of a segment, thus avoiding
921 		 * additional split blocks.
922 		 */
923 		range_seg_t search;
924 		avl_index_t where;
925 		search.rs_start = start + maxalloc;
926 		search.rs_end = search.rs_start;
927 		range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
928 		if (rs == NULL) {
929 			rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
930 		} else {
931 			rs = AVL_PREV(&segs->rt_root, rs);
932 		}
933 		if (rs != NULL) {
934 			size = rs->rs_end - start;
935 		} else {
936 			/*
937 			 * There are no segments that end before maxalloc.
938 			 * I.e. the first segment is larger than maxalloc,
939 			 * so we must split it.
940 			 */
941 			size = maxalloc;
942 		}
943 	}
944 	ASSERT3U(size, <=, maxalloc);
945 
946 	/*
947 	 * An allocation class might not have any remaining vdevs or space
948 	 */
949 	metaslab_class_t *mc = mg->mg_class;
950 	if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
951 		mc = spa_normal_class(spa);
952 	int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
953 	    zal, 0);
954 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
955 		error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
956 		    &dst, 0, NULL, txg, 0, zal, 0);
957 	}
958 	if (error != 0)
959 		return (error);
960 
961 	/*
962 	 * Determine the ranges that are not actually needed.  Offsets are
963 	 * relative to the start of the range to be copied (i.e. relative to the
964 	 * local variable "start").
965 	 */
966 	range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
967 
968 	range_seg_t *rs = avl_first(&segs->rt_root);
969 	ASSERT3U(rs->rs_start, ==, start);
970 	uint64_t prev_seg_end = rs->rs_end;
971 	while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
972 		if (rs->rs_start >= start + size) {
973 			break;
974 		} else {
975 			range_tree_add(obsolete_segs,
976 			    prev_seg_end - start,
977 			    rs->rs_start - prev_seg_end);
978 		}
979 		prev_seg_end = rs->rs_end;
980 	}
981 	/* We don't end in the middle of an obsolete range */
982 	ASSERT3U(start + size, <=, prev_seg_end);
983 
984 	range_tree_clear(segs, start, size);
985 
986 	/*
987 	 * We can't have any padding of the allocated size, otherwise we will
988 	 * misunderstand what's allocated, and the size of the mapping.
989 	 * The caller ensures this will be true by passing in a size that is
990 	 * aligned to the worst (highest) ashift in the pool.
991 	 */
992 	ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
993 
994 	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
995 	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
996 	entry->vime_mapping.vimep_dst = dst;
997 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
998 		entry->vime_obsolete_count = range_tree_space(obsolete_segs);
999 	}
1000 
1001 	vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1002 	vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1003 	vcsa->vcsa_obsolete_segs = obsolete_segs;
1004 	vcsa->vcsa_spa = spa;
1005 	vcsa->vcsa_txg = txg;
1006 
1007 	/*
1008 	 * See comment before spa_vdev_copy_one_child().
1009 	 */
1010 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1011 	zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1012 	    spa_vdev_copy_segment_done, vcsa, 0);
1013 	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1014 	if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1015 		for (int i = 0; i < dest_vd->vdev_children; i++) {
1016 			vdev_t *child = dest_vd->vdev_child[i];
1017 			spa_vdev_copy_one_child(vca, nzio, vd, start,
1018 			    child, DVA_GET_OFFSET(&dst), i, size);
1019 		}
1020 	} else {
1021 		spa_vdev_copy_one_child(vca, nzio, vd, start,
1022 		    dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1023 	}
1024 	zio_nowait(nzio);
1025 
1026 	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1027 	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1028 	vdev_dirty(vd, 0, NULL, txg);
1029 
1030 	return (0);
1031 }
1032 
1033 /*
1034  * Complete the removal of a toplevel vdev. This is called as a
1035  * synctask in the same txg that we will sync out the new config (to the
1036  * MOS object) which indicates that this vdev is indirect.
1037  */
1038 static void
1039 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1040 {
1041 	spa_vdev_removal_t *svr = arg;
1042 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1043 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1044 
1045 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1046 
1047 	for (int i = 0; i < TXG_SIZE; i++) {
1048 		ASSERT0(svr->svr_bytes_done[i]);
1049 	}
1050 
1051 	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1052 	    spa->spa_removing_phys.sr_to_copy);
1053 
1054 	vdev_destroy_spacemaps(vd, tx);
1055 
1056 	/* destroy leaf zaps, if any */
1057 	ASSERT3P(svr->svr_zaplist, !=, NULL);
1058 	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1059 	    pair != NULL;
1060 	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1061 		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1062 	}
1063 	fnvlist_free(svr->svr_zaplist);
1064 
1065 	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1066 	/* vd->vdev_path is not available here */
1067 	spa_history_log_internal(spa, "vdev remove completed",  tx,
1068 	    "%s vdev %llu", spa_name(spa), vd->vdev_id);
1069 }
1070 
1071 static void
1072 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1073 {
1074 	ASSERT3P(zlist, !=, NULL);
1075 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1076 
1077 	if (vd->vdev_leaf_zap != 0) {
1078 		char zkey[32];
1079 		(void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64,
1080 		    VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap);
1081 		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1082 	}
1083 
1084 	for (uint64_t id = 0; id < vd->vdev_children; id++) {
1085 		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1086 	}
1087 }
1088 
1089 static void
1090 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1091 {
1092 	vdev_t *ivd;
1093 	dmu_tx_t *tx;
1094 	spa_t *spa = vd->vdev_spa;
1095 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1096 
1097 	/*
1098 	 * First, build a list of leaf zaps to be destroyed.
1099 	 * This is passed to the sync context thread,
1100 	 * which does the actual unlinking.
1101 	 */
1102 	svr->svr_zaplist = fnvlist_alloc();
1103 	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1104 
1105 	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1106 	ivd->vdev_removing = 0;
1107 
1108 	vd->vdev_leaf_zap = 0;
1109 
1110 	vdev_remove_child(ivd, vd);
1111 	vdev_compact_children(ivd);
1112 
1113 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1114 
1115 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1116 	dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1117 	    0, ZFS_SPACE_CHECK_NONE, tx);
1118 	dmu_tx_commit(tx);
1119 
1120 	/*
1121 	 * Indicate that this thread has exited.
1122 	 * After this, we can not use svr.
1123 	 */
1124 	mutex_enter(&svr->svr_lock);
1125 	svr->svr_thread = NULL;
1126 	cv_broadcast(&svr->svr_cv);
1127 	mutex_exit(&svr->svr_lock);
1128 }
1129 
1130 /*
1131  * Complete the removal of a toplevel vdev. This is called in open
1132  * context by the removal thread after we have copied all vdev's data.
1133  */
1134 static void
1135 vdev_remove_complete(spa_t *spa)
1136 {
1137 	uint64_t txg;
1138 
1139 	/*
1140 	 * Wait for any deferred frees to be synced before we call
1141 	 * vdev_metaslab_fini()
1142 	 */
1143 	txg_wait_synced(spa->spa_dsl_pool, 0);
1144 	txg = spa_vdev_enter(spa);
1145 	vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1146 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1147 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1148 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1149 
1150 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1151 	    ESC_ZFS_VDEV_REMOVE_DEV);
1152 
1153 	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1154 	    vd->vdev_id, txg);
1155 
1156 	/*
1157 	 * Discard allocation state.
1158 	 */
1159 	if (vd->vdev_mg != NULL) {
1160 		vdev_metaslab_fini(vd);
1161 		metaslab_group_destroy(vd->vdev_mg);
1162 		vd->vdev_mg = NULL;
1163 		spa_log_sm_set_blocklimit(spa);
1164 	}
1165 	ASSERT0(vd->vdev_stat.vs_space);
1166 	ASSERT0(vd->vdev_stat.vs_dspace);
1167 
1168 	vdev_remove_replace_with_indirect(vd, txg);
1169 
1170 	/*
1171 	 * We now release the locks, allowing spa_sync to run and finish the
1172 	 * removal via vdev_remove_complete_sync in syncing context.
1173 	 *
1174 	 * Note that we hold on to the vdev_t that has been replaced.  Since
1175 	 * it isn't part of the vdev tree any longer, it can't be concurrently
1176 	 * manipulated, even while we don't have the config lock.
1177 	 */
1178 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1179 
1180 	/*
1181 	 * Top ZAP should have been transferred to the indirect vdev in
1182 	 * vdev_remove_replace_with_indirect.
1183 	 */
1184 	ASSERT0(vd->vdev_top_zap);
1185 
1186 	/*
1187 	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1188 	 */
1189 	ASSERT0(vd->vdev_leaf_zap);
1190 
1191 	txg = spa_vdev_enter(spa);
1192 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1193 	/*
1194 	 * Request to update the config and the config cachefile.
1195 	 */
1196 	vdev_config_dirty(spa->spa_root_vdev);
1197 	(void) spa_vdev_exit(spa, vd, txg, 0);
1198 
1199 	spa_event_post(ev);
1200 }
1201 
1202 /*
1203  * Evacuates a segment of size at most max_alloc from the vdev
1204  * via repeated calls to spa_vdev_copy_segment. If an allocation
1205  * fails, the pool is probably too fragmented to handle such a
1206  * large size, so decrease max_alloc so that the caller will not try
1207  * this size again this txg.
1208  */
1209 static void
1210 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1211     uint64_t *max_alloc, dmu_tx_t *tx)
1212 {
1213 	uint64_t txg = dmu_tx_get_txg(tx);
1214 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1215 
1216 	mutex_enter(&svr->svr_lock);
1217 
1218 	/*
1219 	 * Determine how big of a chunk to copy.  We can allocate up
1220 	 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1221 	 * bytes of unallocated space at a time.  "segs" will track the
1222 	 * allocated segments that we are copying.  We may also be copying
1223 	 * free segments (of up to vdev_removal_max_span bytes).
1224 	 */
1225 	range_tree_t *segs = range_tree_create(NULL, NULL);
1226 	for (;;) {
1227 		range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1228 		if (rs == NULL)
1229 			break;
1230 
1231 		uint64_t seg_length;
1232 
1233 		if (range_tree_is_empty(segs)) {
1234 			/* need to truncate the first seg based on max_alloc */
1235 			seg_length =
1236 			    MIN(rs->rs_end - rs->rs_start, *max_alloc);
1237 		} else {
1238 			if (rs->rs_start - range_tree_max(segs) >
1239 			    vdev_removal_max_span) {
1240 				/*
1241 				 * Including this segment would cause us to
1242 				 * copy a larger unneeded chunk than is allowed.
1243 				 */
1244 				break;
1245 			} else if (rs->rs_end - range_tree_min(segs) >
1246 			    *max_alloc) {
1247 				/*
1248 				 * This additional segment would extend past
1249 				 * max_alloc. Rather than splitting this
1250 				 * segment, leave it for the next mapping.
1251 				 */
1252 				break;
1253 			} else {
1254 				seg_length = rs->rs_end - rs->rs_start;
1255 			}
1256 		}
1257 
1258 		range_tree_add(segs, rs->rs_start, seg_length);
1259 		range_tree_remove(svr->svr_allocd_segs,
1260 		    rs->rs_start, seg_length);
1261 	}
1262 
1263 	if (range_tree_is_empty(segs)) {
1264 		mutex_exit(&svr->svr_lock);
1265 		range_tree_destroy(segs);
1266 		return;
1267 	}
1268 
1269 	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1270 		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1271 		    svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1272 	}
1273 
1274 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1275 
1276 	/*
1277 	 * Note: this is the amount of *allocated* space
1278 	 * that we are taking care of each txg.
1279 	 */
1280 	svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1281 
1282 	mutex_exit(&svr->svr_lock);
1283 
1284 	zio_alloc_list_t zal;
1285 	metaslab_trace_init(&zal);
1286 	uint64_t thismax = SPA_MAXBLOCKSIZE;
1287 	while (!range_tree_is_empty(segs)) {
1288 		int error = spa_vdev_copy_segment(vd,
1289 		    segs, thismax, txg, vca, &zal);
1290 
1291 		if (error == ENOSPC) {
1292 			/*
1293 			 * Cut our segment in half, and don't try this
1294 			 * segment size again this txg.  Note that the
1295 			 * allocation size must be aligned to the highest
1296 			 * ashift in the pool, so that the allocation will
1297 			 * not be padded out to a multiple of the ashift,
1298 			 * which could cause us to think that this mapping
1299 			 * is larger than we intended.
1300 			 */
1301 			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1302 			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1303 			uint64_t attempted =
1304 			    MIN(range_tree_span(segs), thismax);
1305 			thismax = P2ROUNDUP(attempted / 2,
1306 			    1 << spa->spa_max_ashift);
1307 			/*
1308 			 * The minimum-size allocation can not fail.
1309 			 */
1310 			ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1311 			*max_alloc = attempted - (1 << spa->spa_max_ashift);
1312 		} else {
1313 			ASSERT0(error);
1314 
1315 			/*
1316 			 * We've performed an allocation, so reset the
1317 			 * alloc trace list.
1318 			 */
1319 			metaslab_trace_fini(&zal);
1320 			metaslab_trace_init(&zal);
1321 		}
1322 	}
1323 	metaslab_trace_fini(&zal);
1324 	range_tree_destroy(segs);
1325 }
1326 
1327 /*
1328  * The removal thread operates in open context.  It iterates over all
1329  * allocated space in the vdev, by loading each metaslab's spacemap.
1330  * For each contiguous segment of allocated space (capping the segment
1331  * size at SPA_MAXBLOCKSIZE), we:
1332  *    - Allocate space for it on another vdev.
1333  *    - Create a new mapping from the old location to the new location
1334  *      (as a record in svr_new_segments).
1335  *    - Initiate a logical read zio to get the data off the removing disk.
1336  *    - In the read zio's done callback, initiate a logical write zio to
1337  *      write it to the new vdev.
1338  * Note that all of this will take effect when a particular TXG syncs.
1339  * The sync thread ensures that all the phys reads and writes for the syncing
1340  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1341  * (see vdev_mapping_sync()).
1342  */
1343 static void
1344 spa_vdev_remove_thread(void *arg)
1345 {
1346 	spa_t *spa = arg;
1347 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1348 	vdev_copy_arg_t vca;
1349 	uint64_t max_alloc = zfs_remove_max_segment;
1350 	uint64_t last_txg = 0;
1351 
1352 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1353 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1354 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1355 	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1356 
1357 	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1358 	ASSERT(vdev_is_concrete(vd));
1359 	ASSERT(vd->vdev_removing);
1360 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1361 	ASSERT(vim != NULL);
1362 
1363 	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1364 	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1365 	vca.vca_outstanding_bytes = 0;
1366 
1367 	mutex_enter(&svr->svr_lock);
1368 
1369 	/*
1370 	 * Start from vim_max_offset so we pick up where we left off
1371 	 * if we are restarting the removal after opening the pool.
1372 	 */
1373 	uint64_t msi;
1374 	for (msi = start_offset >> vd->vdev_ms_shift;
1375 	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1376 		metaslab_t *msp = vd->vdev_ms[msi];
1377 		ASSERT3U(msi, <=, vd->vdev_ms_count);
1378 
1379 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1380 
1381 		mutex_enter(&msp->ms_sync_lock);
1382 		mutex_enter(&msp->ms_lock);
1383 
1384 		/*
1385 		 * Assert nothing in flight -- ms_*tree is empty.
1386 		 */
1387 		for (int i = 0; i < TXG_SIZE; i++) {
1388 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1389 		}
1390 
1391 		/*
1392 		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1393 		 * read the allocated segments from the space map object
1394 		 * into svr_allocd_segs. Since we do this while holding
1395 		 * svr_lock and ms_sync_lock, concurrent frees (which
1396 		 * would have modified the space map) will wait for us
1397 		 * to finish loading the spacemap, and then take the
1398 		 * appropriate action (see free_from_removing_vdev()).
1399 		 */
1400 		if (msp->ms_sm != NULL) {
1401 			VERIFY0(space_map_load(msp->ms_sm,
1402 			    svr->svr_allocd_segs, SM_ALLOC));
1403 
1404 			range_tree_walk(msp->ms_unflushed_allocs,
1405 			    range_tree_add, svr->svr_allocd_segs);
1406 			range_tree_walk(msp->ms_unflushed_frees,
1407 			    range_tree_remove, svr->svr_allocd_segs);
1408 			range_tree_walk(msp->ms_freeing,
1409 			    range_tree_remove, svr->svr_allocd_segs);
1410 
1411 			/*
1412 			 * When we are resuming from a paused removal (i.e.
1413 			 * when importing a pool with a removal in progress),
1414 			 * discard any state that we have already processed.
1415 			 */
1416 			range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1417 		}
1418 		mutex_exit(&msp->ms_lock);
1419 		mutex_exit(&msp->ms_sync_lock);
1420 
1421 		vca.vca_msp = msp;
1422 		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1423 		    avl_numnodes(&svr->svr_allocd_segs->rt_root),
1424 		    msp->ms_id);
1425 
1426 		while (!svr->svr_thread_exit &&
1427 		    !range_tree_is_empty(svr->svr_allocd_segs)) {
1428 
1429 			mutex_exit(&svr->svr_lock);
1430 
1431 			/*
1432 			 * We need to periodically drop the config lock so that
1433 			 * writers can get in.  Additionally, we can't wait
1434 			 * for a txg to sync while holding a config lock
1435 			 * (since a waiting writer could cause a 3-way deadlock
1436 			 * with the sync thread, which also gets a config
1437 			 * lock for reader).  So we can't hold the config lock
1438 			 * while calling dmu_tx_assign().
1439 			 */
1440 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1441 
1442 			/*
1443 			 * This delay will pause the removal around the point
1444 			 * specified by zfs_removal_suspend_progress. We do this
1445 			 * solely from the test suite or during debugging.
1446 			 */
1447 			uint64_t bytes_copied =
1448 			    spa->spa_removing_phys.sr_copied;
1449 			for (int i = 0; i < TXG_SIZE; i++)
1450 				bytes_copied += svr->svr_bytes_done[i];
1451 			while (zfs_removal_suspend_progress &&
1452 			    !svr->svr_thread_exit)
1453 				delay(hz);
1454 
1455 			mutex_enter(&vca.vca_lock);
1456 			while (vca.vca_outstanding_bytes >
1457 			    zfs_remove_max_copy_bytes) {
1458 				cv_wait(&vca.vca_cv, &vca.vca_lock);
1459 			}
1460 			mutex_exit(&vca.vca_lock);
1461 
1462 			dmu_tx_t *tx =
1463 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1464 
1465 			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1466 			uint64_t txg = dmu_tx_get_txg(tx);
1467 
1468 			/*
1469 			 * Reacquire the vdev_config lock.  The vdev_t
1470 			 * that we're removing may have changed, e.g. due
1471 			 * to a vdev_attach or vdev_detach.
1472 			 */
1473 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1474 			vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1475 
1476 			if (txg != last_txg)
1477 				max_alloc = zfs_remove_max_segment;
1478 			last_txg = txg;
1479 
1480 			spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1481 
1482 			dmu_tx_commit(tx);
1483 			mutex_enter(&svr->svr_lock);
1484 		}
1485 	}
1486 
1487 	mutex_exit(&svr->svr_lock);
1488 
1489 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1490 
1491 	/*
1492 	 * Wait for all copies to finish before cleaning up the vca.
1493 	 */
1494 	txg_wait_synced(spa->spa_dsl_pool, 0);
1495 	ASSERT0(vca.vca_outstanding_bytes);
1496 
1497 	mutex_destroy(&vca.vca_lock);
1498 	cv_destroy(&vca.vca_cv);
1499 
1500 	if (svr->svr_thread_exit) {
1501 		mutex_enter(&svr->svr_lock);
1502 		range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1503 		svr->svr_thread = NULL;
1504 		cv_broadcast(&svr->svr_cv);
1505 		mutex_exit(&svr->svr_lock);
1506 	} else {
1507 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1508 		vdev_remove_complete(spa);
1509 	}
1510 }
1511 
1512 void
1513 spa_vdev_remove_suspend(spa_t *spa)
1514 {
1515 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1516 
1517 	if (svr == NULL)
1518 		return;
1519 
1520 	mutex_enter(&svr->svr_lock);
1521 	svr->svr_thread_exit = B_TRUE;
1522 	while (svr->svr_thread != NULL)
1523 		cv_wait(&svr->svr_cv, &svr->svr_lock);
1524 	svr->svr_thread_exit = B_FALSE;
1525 	mutex_exit(&svr->svr_lock);
1526 }
1527 
1528 /* ARGSUSED */
1529 static int
1530 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1531 {
1532 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1533 
1534 	if (spa->spa_vdev_removal == NULL)
1535 		return (ENOTACTIVE);
1536 	return (0);
1537 }
1538 
1539 /*
1540  * Cancel a removal by freeing all entries from the partial mapping
1541  * and marking the vdev as no longer being removing.
1542  */
1543 /* ARGSUSED */
1544 static void
1545 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1546 {
1547 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1548 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1549 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1550 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1551 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1552 	objset_t *mos = spa->spa_meta_objset;
1553 
1554 	ASSERT3P(svr->svr_thread, ==, NULL);
1555 
1556 	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1557 	if (vdev_obsolete_counts_are_precise(vd)) {
1558 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1559 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1560 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1561 	}
1562 
1563 	if (vdev_obsolete_sm_object(vd) != 0) {
1564 		ASSERT(vd->vdev_obsolete_sm != NULL);
1565 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1566 		    space_map_object(vd->vdev_obsolete_sm));
1567 
1568 		space_map_free(vd->vdev_obsolete_sm, tx);
1569 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1570 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1571 		space_map_close(vd->vdev_obsolete_sm);
1572 		vd->vdev_obsolete_sm = NULL;
1573 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1574 	}
1575 	for (int i = 0; i < TXG_SIZE; i++) {
1576 		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1577 		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1578 		    vdev_indirect_mapping_max_offset(vim));
1579 	}
1580 
1581 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1582 		metaslab_t *msp = vd->vdev_ms[msi];
1583 
1584 		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1585 			break;
1586 
1587 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1588 
1589 		mutex_enter(&msp->ms_lock);
1590 
1591 		/*
1592 		 * Assert nothing in flight -- ms_*tree is empty.
1593 		 */
1594 		for (int i = 0; i < TXG_SIZE; i++)
1595 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1596 		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1597 			ASSERT0(range_tree_space(msp->ms_defer[i]));
1598 		ASSERT0(range_tree_space(msp->ms_freed));
1599 
1600 		if (msp->ms_sm != NULL) {
1601 			mutex_enter(&svr->svr_lock);
1602 			VERIFY0(space_map_load(msp->ms_sm,
1603 			    svr->svr_allocd_segs, SM_ALLOC));
1604 
1605 			range_tree_walk(msp->ms_unflushed_allocs,
1606 			    range_tree_add, svr->svr_allocd_segs);
1607 			range_tree_walk(msp->ms_unflushed_frees,
1608 			    range_tree_remove, svr->svr_allocd_segs);
1609 			range_tree_walk(msp->ms_freeing,
1610 			    range_tree_remove, svr->svr_allocd_segs);
1611 
1612 			/*
1613 			 * Clear everything past what has been synced,
1614 			 * because we have not allocated mappings for it yet.
1615 			 */
1616 			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1617 			uint64_t sm_end = msp->ms_sm->sm_start +
1618 			    msp->ms_sm->sm_size;
1619 			if (sm_end > syncd)
1620 				range_tree_clear(svr->svr_allocd_segs,
1621 				    syncd, sm_end - syncd);
1622 
1623 			mutex_exit(&svr->svr_lock);
1624 		}
1625 		mutex_exit(&msp->ms_lock);
1626 
1627 		mutex_enter(&svr->svr_lock);
1628 		range_tree_vacate(svr->svr_allocd_segs,
1629 		    free_mapped_segment_cb, vd);
1630 		mutex_exit(&svr->svr_lock);
1631 	}
1632 
1633 	/*
1634 	 * Note: this must happen after we invoke free_mapped_segment_cb,
1635 	 * because it adds to the obsolete_segments.
1636 	 */
1637 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1638 
1639 	ASSERT3U(vic->vic_mapping_object, ==,
1640 	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1641 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1642 	vd->vdev_indirect_mapping = NULL;
1643 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1644 	vic->vic_mapping_object = 0;
1645 
1646 	ASSERT3U(vic->vic_births_object, ==,
1647 	    vdev_indirect_births_object(vd->vdev_indirect_births));
1648 	vdev_indirect_births_close(vd->vdev_indirect_births);
1649 	vd->vdev_indirect_births = NULL;
1650 	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1651 	vic->vic_births_object = 0;
1652 
1653 	/*
1654 	 * We may have processed some frees from the removing vdev in this
1655 	 * txg, thus increasing svr_bytes_done; discard that here to
1656 	 * satisfy the assertions in spa_vdev_removal_destroy().
1657 	 * Note that future txg's can not have any bytes_done, because
1658 	 * future TXG's are only modified from open context, and we have
1659 	 * already shut down the copying thread.
1660 	 */
1661 	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1662 	spa_finish_removal(spa, DSS_CANCELED, tx);
1663 
1664 	vd->vdev_removing = B_FALSE;
1665 	vdev_config_dirty(vd);
1666 
1667 	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1668 	    vd->vdev_id, dmu_tx_get_txg(tx));
1669 	spa_history_log_internal(spa, "vdev remove canceled", tx,
1670 	    "%s vdev %llu %s", spa_name(spa),
1671 	    vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1672 }
1673 
1674 int
1675 spa_vdev_remove_cancel(spa_t *spa)
1676 {
1677 	spa_vdev_remove_suspend(spa);
1678 
1679 	if (spa->spa_vdev_removal == NULL)
1680 		return (ENOTACTIVE);
1681 
1682 	uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1683 
1684 	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1685 	    spa_vdev_remove_cancel_sync, NULL, 0,
1686 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
1687 
1688 	if (error == 0) {
1689 		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1690 		vdev_t *vd = vdev_lookup_top(spa, vdid);
1691 		metaslab_group_activate(vd->vdev_mg);
1692 		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1693 	}
1694 
1695 	return (error);
1696 }
1697 
1698 void
1699 svr_sync(spa_t *spa, dmu_tx_t *tx)
1700 {
1701 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1702 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1703 
1704 	if (svr == NULL)
1705 		return;
1706 
1707 	/*
1708 	 * This check is necessary so that we do not dirty the
1709 	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1710 	 * is nothing to do.  Dirtying it every time would prevent us
1711 	 * from syncing-to-convergence.
1712 	 */
1713 	if (svr->svr_bytes_done[txgoff] == 0)
1714 		return;
1715 
1716 	/*
1717 	 * Update progress accounting.
1718 	 */
1719 	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1720 	svr->svr_bytes_done[txgoff] = 0;
1721 
1722 	spa_sync_removing_state(spa, tx);
1723 }
1724 
1725 static void
1726 vdev_remove_make_hole_and_free(vdev_t *vd)
1727 {
1728 	uint64_t id = vd->vdev_id;
1729 	spa_t *spa = vd->vdev_spa;
1730 	vdev_t *rvd = spa->spa_root_vdev;
1731 
1732 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1733 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1734 
1735 	vdev_free(vd);
1736 
1737 	vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1738 	vdev_add_child(rvd, vd);
1739 	vdev_config_dirty(rvd);
1740 
1741 	/*
1742 	 * Reassess the health of our root vdev.
1743 	 */
1744 	vdev_reopen(rvd);
1745 }
1746 
1747 /*
1748  * Remove a log device.  The config lock is held for the specified TXG.
1749  */
1750 static int
1751 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1752 {
1753 	metaslab_group_t *mg = vd->vdev_mg;
1754 	spa_t *spa = vd->vdev_spa;
1755 	int error = 0;
1756 
1757 	ASSERT(vd->vdev_islog);
1758 	ASSERT(vd == vd->vdev_top);
1759 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1760 
1761 	/*
1762 	 * Stop allocating from this vdev.
1763 	 */
1764 	metaslab_group_passivate(mg);
1765 
1766 	/*
1767 	 * Wait for the youngest allocations and frees to sync,
1768 	 * and then wait for the deferral of those frees to finish.
1769 	 */
1770 	spa_vdev_config_exit(spa, NULL,
1771 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1772 
1773 	/*
1774 	 * Evacuate the device.  We don't hold the config lock as
1775 	 * writer since we need to do I/O but we do keep the
1776 	 * spa_namespace_lock held.  Once this completes the device
1777 	 * should no longer have any blocks allocated on it.
1778 	 */
1779 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1780 	if (vd->vdev_stat.vs_alloc != 0)
1781 		error = spa_reset_logs(spa);
1782 
1783 	*txg = spa_vdev_config_enter(spa);
1784 
1785 	if (error != 0) {
1786 		metaslab_group_activate(mg);
1787 		return (error);
1788 	}
1789 	ASSERT0(vd->vdev_stat.vs_alloc);
1790 
1791 	/*
1792 	 * The evacuation succeeded.  Remove any remaining MOS metadata
1793 	 * associated with this vdev, and wait for these changes to sync.
1794 	 */
1795 	vd->vdev_removing = B_TRUE;
1796 
1797 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1798 	vdev_config_dirty(vd);
1799 
1800 	/*
1801 	 * When the log space map feature is enabled we look at
1802 	 * the vdev's top_zap to find the on-disk flush data of
1803 	 * the metaslab we just flushed. Thus, while removing a
1804 	 * log vdev we make sure to call vdev_metaslab_fini()
1805 	 * first, which removes all metaslabs of this vdev from
1806 	 * spa_metaslabs_by_flushed before vdev_remove_empty()
1807 	 * destroys the top_zap of this log vdev.
1808 	 *
1809 	 * This avoids the scenario where we flush a metaslab
1810 	 * from the log vdev being removed that doesn't have a
1811 	 * top_zap and end up failing to lookup its on-disk flush
1812 	 * data.
1813 	 *
1814 	 * We don't call metaslab_group_destroy() right away
1815 	 * though (it will be called in vdev_free() later) as
1816 	 * during metaslab_sync() of metaslabs from other vdevs
1817 	 * we may touch the metaslab group of this vdev through
1818 	 * metaslab_class_histogram_verify()
1819 	 */
1820 	vdev_metaslab_fini(vd);
1821 	spa_log_sm_set_blocklimit(spa);
1822 
1823 	spa_history_log_internal(spa, "vdev remove", NULL,
1824 	    "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1825 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1826 
1827 	/* Make sure these changes are sync'ed */
1828 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1829 
1830 	/* Stop initializing and TRIM */
1831 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1832 	vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
1833 	vdev_autotrim_stop_wait(vd);
1834 
1835 	*txg = spa_vdev_config_enter(spa);
1836 
1837 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1838 	    ESC_ZFS_VDEV_REMOVE_DEV);
1839 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1840 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1841 
1842 	/* The top ZAP should have been destroyed by vdev_remove_empty. */
1843 	ASSERT0(vd->vdev_top_zap);
1844 	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1845 	ASSERT0(vd->vdev_leaf_zap);
1846 
1847 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1848 
1849 	if (list_link_active(&vd->vdev_state_dirty_node))
1850 		vdev_state_clean(vd);
1851 	if (list_link_active(&vd->vdev_config_dirty_node))
1852 		vdev_config_clean(vd);
1853 
1854 	ASSERT0(vd->vdev_stat.vs_alloc);
1855 
1856 	/*
1857 	 * Clean up the vdev namespace.
1858 	 */
1859 	vdev_remove_make_hole_and_free(vd);
1860 
1861 	if (ev != NULL)
1862 		spa_event_post(ev);
1863 
1864 	return (0);
1865 }
1866 
1867 static int
1868 spa_vdev_remove_top_check(vdev_t *vd)
1869 {
1870 	spa_t *spa = vd->vdev_spa;
1871 
1872 	if (vd != vd->vdev_top)
1873 		return (SET_ERROR(ENOTSUP));
1874 
1875 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1876 		return (SET_ERROR(ENOTSUP));
1877 
1878 	/* available space in the pool's normal class */
1879 	uint64_t available = dsl_dir_space_available(
1880 	    spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1881 
1882 	metaslab_class_t *mc = vd->vdev_mg->mg_class;
1883 
1884 	/*
1885 	 * When removing a vdev from an allocation class that has
1886 	 * remaining vdevs, include available space from the class.
1887 	 */
1888 	if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1889 		uint64_t class_avail = metaslab_class_get_space(mc) -
1890 		    metaslab_class_get_alloc(mc);
1891 
1892 		/* add class space, adjusted for overhead */
1893 		available += (class_avail * 94) / 100;
1894 	}
1895 
1896 	/*
1897 	 * There has to be enough free space to remove the
1898 	 * device and leave double the "slop" space (i.e. we
1899 	 * must leave at least 3% of the pool free, in addition to
1900 	 * the normal slop space).
1901 	 */
1902 	if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1903 		return (SET_ERROR(ENOSPC));
1904 	}
1905 
1906 	/*
1907 	 * There can not be a removal in progress.
1908 	 */
1909 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1910 		return (SET_ERROR(EBUSY));
1911 
1912 	/*
1913 	 * The device must have all its data.
1914 	 */
1915 	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1916 	    !vdev_dtl_empty(vd, DTL_OUTAGE))
1917 		return (SET_ERROR(EBUSY));
1918 
1919 	/*
1920 	 * The device must be healthy.
1921 	 */
1922 	if (!vdev_readable(vd))
1923 		return (SET_ERROR(EIO));
1924 
1925 	/*
1926 	 * All vdevs in normal class must have the same ashift.
1927 	 */
1928 	if (spa->spa_max_ashift != spa->spa_min_ashift) {
1929 		return (SET_ERROR(EINVAL));
1930 	}
1931 
1932 	/*
1933 	 * All vdevs in normal class must have the same ashift
1934 	 * and not be raidz.
1935 	 */
1936 	vdev_t *rvd = spa->spa_root_vdev;
1937 	int num_indirect = 0;
1938 	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1939 		vdev_t *cvd = rvd->vdev_child[id];
1940 		if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1941 			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1942 		if (cvd->vdev_ops == &vdev_indirect_ops)
1943 			num_indirect++;
1944 		if (!vdev_is_concrete(cvd))
1945 			continue;
1946 		if (cvd->vdev_ops == &vdev_raidz_ops)
1947 			return (SET_ERROR(EINVAL));
1948 		/*
1949 		 * Need the mirror to be mirror of leaf vdevs only
1950 		 */
1951 		if (cvd->vdev_ops == &vdev_mirror_ops) {
1952 			for (uint64_t cid = 0;
1953 			    cid < cvd->vdev_children; cid++) {
1954 				vdev_t *tmp = cvd->vdev_child[cid];
1955 				if (!tmp->vdev_ops->vdev_op_leaf)
1956 					return (SET_ERROR(EINVAL));
1957 			}
1958 		}
1959 	}
1960 
1961 	return (0);
1962 }
1963 
1964 /*
1965  * Initiate removal of a top-level vdev, reducing the total space in the pool.
1966  * The config lock is held for the specified TXG.  Once initiated,
1967  * evacuation of all allocated space (copying it to other vdevs) happens
1968  * in the background (see spa_vdev_remove_thread()), and can be canceled
1969  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1970  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1971  */
1972 static int
1973 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1974 {
1975 	spa_t *spa = vd->vdev_spa;
1976 	int error;
1977 
1978 	/*
1979 	 * Check for errors up-front, so that we don't waste time
1980 	 * passivating the metaslab group and clearing the ZIL if there
1981 	 * are errors.
1982 	 */
1983 	error = spa_vdev_remove_top_check(vd);
1984 	if (error != 0)
1985 		return (error);
1986 
1987 	/*
1988 	 * Stop allocating from this vdev.  Note that we must check
1989 	 * that this is not the only device in the pool before
1990 	 * passivating, otherwise we will not be able to make
1991 	 * progress because we can't allocate from any vdevs.
1992 	 * The above check for sufficient free space serves this
1993 	 * purpose.
1994 	 */
1995 	metaslab_group_t *mg = vd->vdev_mg;
1996 	metaslab_group_passivate(mg);
1997 
1998 	/*
1999 	 * Wait for the youngest allocations and frees to sync,
2000 	 * and then wait for the deferral of those frees to finish.
2001 	 */
2002 	spa_vdev_config_exit(spa, NULL,
2003 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2004 
2005 	/*
2006 	 * We must ensure that no "stubby" log blocks are allocated
2007 	 * on the device to be removed.  These blocks could be
2008 	 * written at any time, including while we are in the middle
2009 	 * of copying them.
2010 	 */
2011 	error = spa_reset_logs(spa);
2012 
2013 	/*
2014 	 * We stop any initializing and TRIM that is currently in progress
2015 	 * but leave the state as "active". This will allow the process to
2016 	 * resume if the removal is canceled sometime later.
2017 	 */
2018 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2019 	vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2020 	vdev_autotrim_stop_wait(vd);
2021 
2022 	*txg = spa_vdev_config_enter(spa);
2023 
2024 	/*
2025 	 * Things might have changed while the config lock was dropped
2026 	 * (e.g. space usage).  Check for errors again.
2027 	 */
2028 	if (error == 0)
2029 		error = spa_vdev_remove_top_check(vd);
2030 
2031 	if (error != 0) {
2032 		metaslab_group_activate(mg);
2033 		spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2034 		spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2035 		spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2036 		return (error);
2037 	}
2038 
2039 	vd->vdev_removing = B_TRUE;
2040 
2041 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2042 	vdev_config_dirty(vd);
2043 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2044 	dsl_sync_task_nowait(spa->spa_dsl_pool,
2045 	    vdev_remove_initiate_sync,
2046 	    (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2047 	dmu_tx_commit(tx);
2048 
2049 	return (0);
2050 }
2051 
2052 /*
2053  * Remove a device from the pool.
2054  *
2055  * Removing a device from the vdev namespace requires several steps
2056  * and can take a significant amount of time.  As a result we use
2057  * the spa_vdev_config_[enter/exit] functions which allow us to
2058  * grab and release the spa_config_lock while still holding the namespace
2059  * lock.  During each step the configuration is synced out.
2060  */
2061 int
2062 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2063 {
2064 	vdev_t *vd;
2065 	nvlist_t **spares, **l2cache, *nv;
2066 	uint64_t txg = 0;
2067 	uint_t nspares, nl2cache;
2068 	int error = 0;
2069 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2070 	sysevent_t *ev = NULL;
2071 
2072 	ASSERT(spa_writeable(spa));
2073 
2074 	if (!locked)
2075 		txg = spa_vdev_enter(spa);
2076 
2077 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2078 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2079 		error = (spa_has_checkpoint(spa)) ?
2080 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2081 
2082 		if (!locked)
2083 			return (spa_vdev_exit(spa, NULL, txg, error));
2084 
2085 		return (error);
2086 	}
2087 
2088 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2089 
2090 	if (spa->spa_spares.sav_vdevs != NULL &&
2091 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2092 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2093 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2094 		/*
2095 		 * Only remove the hot spare if it's not currently in use
2096 		 * in this pool.
2097 		 */
2098 		if (vd == NULL || unspare) {
2099 			char *nvstr = fnvlist_lookup_string(nv,
2100 			    ZPOOL_CONFIG_PATH);
2101 			spa_history_log_internal(spa, "vdev remove", NULL,
2102 			    "%s vdev (%s) %s", spa_name(spa),
2103 			    VDEV_TYPE_SPARE, nvstr);
2104 			if (vd == NULL)
2105 				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2106 			ev = spa_event_create(spa, vd, NULL,
2107 			    ESC_ZFS_VDEV_REMOVE_AUX);
2108 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
2109 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2110 			spa_load_spares(spa);
2111 			spa->spa_spares.sav_sync = B_TRUE;
2112 		} else {
2113 			error = SET_ERROR(EBUSY);
2114 		}
2115 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
2116 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2117 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2118 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2119 		char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2120 		spa_history_log_internal(spa, "vdev remove", NULL,
2121 		    "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2122 		/*
2123 		 * Cache devices can always be removed.
2124 		 */
2125 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2126 		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2127 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2128 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2129 		spa_load_l2cache(spa);
2130 		spa->spa_l2cache.sav_sync = B_TRUE;
2131 	} else if (vd != NULL && vd->vdev_islog) {
2132 		ASSERT(!locked);
2133 		error = spa_vdev_remove_log(vd, &txg);
2134 	} else if (vd != NULL) {
2135 		ASSERT(!locked);
2136 		error = spa_vdev_remove_top(vd, &txg);
2137 	} else {
2138 		/*
2139 		 * There is no vdev of any kind with the specified guid.
2140 		 */
2141 		error = SET_ERROR(ENOENT);
2142 	}
2143 
2144 	if (!locked)
2145 		error = spa_vdev_exit(spa, NULL, txg, error);
2146 
2147 	if (ev != NULL) {
2148 		if (error != 0) {
2149 			spa_event_discard(ev);
2150 		} else {
2151 			spa_event_post(ev);
2152 		}
2153 	}
2154 
2155 	return (error);
2156 }
2157 
2158 int
2159 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2160 {
2161 	prs->prs_state = spa->spa_removing_phys.sr_state;
2162 
2163 	if (prs->prs_state == DSS_NONE)
2164 		return (SET_ERROR(ENOENT));
2165 
2166 	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2167 	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2168 	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2169 	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2170 	prs->prs_copied = spa->spa_removing_phys.sr_copied;
2171 
2172 	if (spa->spa_vdev_removal != NULL) {
2173 		for (int i = 0; i < TXG_SIZE; i++) {
2174 			prs->prs_copied +=
2175 			    spa->spa_vdev_removal->svr_bytes_done[i];
2176 		}
2177 	}
2178 
2179 	prs->prs_mapping_memory = 0;
2180 	uint64_t indirect_vdev_id =
2181 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
2182 	while (indirect_vdev_id != -1) {
2183 		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2184 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2185 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2186 
2187 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2188 		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2189 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
2190 	}
2191 
2192 	return (0);
2193 }
2194