1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/zap.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/metaslab.h> 34 #include <sys/metaslab_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/txg.h> 37 #include <sys/avl.h> 38 #include <sys/bpobj.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/arc.h> 43 #include <sys/zfeature.h> 44 #include <sys/vdev_indirect_births.h> 45 #include <sys/vdev_indirect_mapping.h> 46 #include <sys/abd.h> 47 48 /* 49 * This file contains the necessary logic to remove vdevs from a 50 * storage pool. Currently, the only devices that can be removed 51 * are log, cache, and spare devices; and top level vdevs from a pool 52 * w/o raidz. (Note that members of a mirror can also be removed 53 * by the detach operation.) 54 * 55 * Log vdevs are removed by evacuating them and then turning the vdev 56 * into a hole vdev while holding spa config locks. 57 * 58 * Top level vdevs are removed and converted into an indirect vdev via 59 * a multi-step process: 60 * 61 * - Disable allocations from this device (spa_vdev_remove_top). 62 * 63 * - From a new thread (spa_vdev_remove_thread), copy data from 64 * the removing vdev to a different vdev. The copy happens in open 65 * context (spa_vdev_copy_impl) and issues a sync task 66 * (vdev_mapping_sync) so the sync thread can update the partial 67 * indirect mappings in core and on disk. 68 * 69 * - If a free happens during a removal, it is freed from the 70 * removing vdev, and if it has already been copied, from the new 71 * location as well (free_from_removing_vdev). 72 * 73 * - After the removal is completed, the copy thread converts the vdev 74 * into an indirect vdev (vdev_remove_complete) before instructing 75 * the sync thread to destroy the space maps and finish the removal 76 * (spa_finish_removal). 77 */ 78 79 typedef struct vdev_copy_arg { 80 metaslab_t *vca_msp; 81 uint64_t vca_outstanding_bytes; 82 kcondvar_t vca_cv; 83 kmutex_t vca_lock; 84 } vdev_copy_arg_t; 85 86 /* 87 * The maximum amount of memory we can use for outstanding i/o while 88 * doing a device removal. This determines how much i/o we can have 89 * in flight concurrently. 90 */ 91 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024; 92 93 /* 94 * The largest contiguous segment that we will attempt to allocate when 95 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If 96 * there is a performance problem with attempting to allocate large blocks, 97 * consider decreasing this. 98 * 99 * Note: we will issue I/Os of up to this size. The mpt driver does not 100 * respond well to I/Os larger than 1MB, so we set this to 1MB. (When 101 * mpt processes an I/O larger than 1MB, it needs to do an allocation of 102 * 2 physically contiguous pages; if this allocation fails, mpt will drop 103 * the I/O and hang the device.) 104 */ 105 int zfs_remove_max_segment = 1024 * 1024; 106 107 /* 108 * This is used by the test suite so that it can ensure that certain 109 * actions happen while in the middle of a removal. 110 */ 111 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX; 112 113 #define VDEV_REMOVAL_ZAP_OBJS "lzap" 114 115 static void spa_vdev_remove_thread(void *arg); 116 117 static void 118 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx) 119 { 120 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset, 121 DMU_POOL_DIRECTORY_OBJECT, 122 DMU_POOL_REMOVING, sizeof (uint64_t), 123 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 124 &spa->spa_removing_phys, tx)); 125 } 126 127 static nvlist_t * 128 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 129 { 130 for (int i = 0; i < count; i++) { 131 uint64_t guid = 132 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID); 133 134 if (guid == target_guid) 135 return (nvpp[i]); 136 } 137 138 return (NULL); 139 } 140 141 static void 142 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 143 nvlist_t *dev_to_remove) 144 { 145 nvlist_t **newdev = NULL; 146 147 if (count > 1) 148 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 149 150 for (int i = 0, j = 0; i < count; i++) { 151 if (dev[i] == dev_to_remove) 152 continue; 153 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 154 } 155 156 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 157 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 158 159 for (int i = 0; i < count - 1; i++) 160 nvlist_free(newdev[i]); 161 162 if (count > 1) 163 kmem_free(newdev, (count - 1) * sizeof (void *)); 164 } 165 166 static spa_vdev_removal_t * 167 spa_vdev_removal_create(vdev_t *vd) 168 { 169 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP); 170 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL); 171 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL); 172 svr->svr_allocd_segs = range_tree_create(NULL, NULL); 173 svr->svr_vdev_id = vd->vdev_id; 174 175 for (int i = 0; i < TXG_SIZE; i++) { 176 svr->svr_frees[i] = range_tree_create(NULL, NULL); 177 list_create(&svr->svr_new_segments[i], 178 sizeof (vdev_indirect_mapping_entry_t), 179 offsetof(vdev_indirect_mapping_entry_t, vime_node)); 180 } 181 182 return (svr); 183 } 184 185 void 186 spa_vdev_removal_destroy(spa_vdev_removal_t *svr) 187 { 188 for (int i = 0; i < TXG_SIZE; i++) { 189 ASSERT0(svr->svr_bytes_done[i]); 190 ASSERT0(svr->svr_max_offset_to_sync[i]); 191 range_tree_destroy(svr->svr_frees[i]); 192 list_destroy(&svr->svr_new_segments[i]); 193 } 194 195 range_tree_destroy(svr->svr_allocd_segs); 196 mutex_destroy(&svr->svr_lock); 197 cv_destroy(&svr->svr_cv); 198 kmem_free(svr, sizeof (*svr)); 199 } 200 201 /* 202 * This is called as a synctask in the txg in which we will mark this vdev 203 * as removing (in the config stored in the MOS). 204 * 205 * It begins the evacuation of a toplevel vdev by: 206 * - initializing the spa_removing_phys which tracks this removal 207 * - computing the amount of space to remove for accounting purposes 208 * - dirtying all dbufs in the spa_config_object 209 * - creating the spa_vdev_removal 210 * - starting the spa_vdev_remove_thread 211 */ 212 static void 213 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx) 214 { 215 int vdev_id = (uintptr_t)arg; 216 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 217 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 218 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 219 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset; 220 spa_vdev_removal_t *svr = NULL; 221 uint64_t txg = dmu_tx_get_txg(tx); 222 223 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops); 224 svr = spa_vdev_removal_create(vd); 225 226 ASSERT(vd->vdev_removing); 227 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 228 229 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 230 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 231 /* 232 * By activating the OBSOLETE_COUNTS feature, we prevent 233 * the pool from being downgraded and ensure that the 234 * refcounts are precise. 235 */ 236 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 237 uint64_t one = 1; 238 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap, 239 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1, 240 &one, tx)); 241 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0); 242 } 243 244 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx); 245 vd->vdev_indirect_mapping = 246 vdev_indirect_mapping_open(mos, vic->vic_mapping_object); 247 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx); 248 vd->vdev_indirect_births = 249 vdev_indirect_births_open(mos, vic->vic_births_object); 250 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id; 251 spa->spa_removing_phys.sr_start_time = gethrestime_sec(); 252 spa->spa_removing_phys.sr_end_time = 0; 253 spa->spa_removing_phys.sr_state = DSS_SCANNING; 254 spa->spa_removing_phys.sr_to_copy = 0; 255 spa->spa_removing_phys.sr_copied = 0; 256 257 /* 258 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because 259 * there may be space in the defer tree, which is free, but still 260 * counted in vs_alloc. 261 */ 262 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 263 metaslab_t *ms = vd->vdev_ms[i]; 264 if (ms->ms_sm == NULL) 265 continue; 266 267 /* 268 * Sync tasks happen before metaslab_sync(), therefore 269 * smp_alloc and sm_alloc must be the same. 270 */ 271 ASSERT3U(space_map_allocated(ms->ms_sm), ==, 272 ms->ms_sm->sm_phys->smp_alloc); 273 274 spa->spa_removing_phys.sr_to_copy += 275 space_map_allocated(ms->ms_sm); 276 277 /* 278 * Space which we are freeing this txg does not need to 279 * be copied. 280 */ 281 spa->spa_removing_phys.sr_to_copy -= 282 range_tree_space(ms->ms_freeing); 283 284 ASSERT0(range_tree_space(ms->ms_freed)); 285 for (int t = 0; t < TXG_SIZE; t++) 286 ASSERT0(range_tree_space(ms->ms_allocating[t])); 287 } 288 289 /* 290 * Sync tasks are called before metaslab_sync(), so there should 291 * be no already-synced metaslabs in the TXG_CLEAN list. 292 */ 293 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL); 294 295 spa_sync_removing_state(spa, tx); 296 297 /* 298 * All blocks that we need to read the most recent mapping must be 299 * stored on concrete vdevs. Therefore, we must dirty anything that 300 * is read before spa_remove_init(). Specifically, the 301 * spa_config_object. (Note that although we already modified the 302 * spa_config_object in spa_sync_removing_state, that may not have 303 * modified all blocks of the object.) 304 */ 305 dmu_object_info_t doi; 306 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi)); 307 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) { 308 dmu_buf_t *dbuf; 309 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT, 310 offset, FTAG, &dbuf, 0)); 311 dmu_buf_will_dirty(dbuf, tx); 312 offset += dbuf->db_size; 313 dmu_buf_rele(dbuf, FTAG); 314 } 315 316 /* 317 * Now that we've allocated the im_object, dirty the vdev to ensure 318 * that the object gets written to the config on disk. 319 */ 320 vdev_config_dirty(vd); 321 322 zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu " 323 "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx), 324 vic->vic_mapping_object); 325 326 spa_history_log_internal(spa, "vdev remove started", tx, 327 "%s vdev %llu %s", spa_name(spa), vd->vdev_id, 328 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 329 /* 330 * Setting spa_vdev_removal causes subsequent frees to call 331 * free_from_removing_vdev(). Note that we don't need any locking 332 * because we are the sync thread, and metaslab_free_impl() is only 333 * called from syncing context (potentially from a zio taskq thread, 334 * but in any case only when there are outstanding free i/os, which 335 * there are not). 336 */ 337 ASSERT3P(spa->spa_vdev_removal, ==, NULL); 338 spa->spa_vdev_removal = svr; 339 svr->svr_thread = thread_create(NULL, 0, 340 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri); 341 } 342 343 /* 344 * When we are opening a pool, we must read the mapping for each 345 * indirect vdev in order from most recently removed to least 346 * recently removed. We do this because the blocks for the mapping 347 * of older indirect vdevs may be stored on more recently removed vdevs. 348 * In order to read each indirect mapping object, we must have 349 * initialized all more recently removed vdevs. 350 */ 351 int 352 spa_remove_init(spa_t *spa) 353 { 354 int error; 355 356 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset, 357 DMU_POOL_DIRECTORY_OBJECT, 358 DMU_POOL_REMOVING, sizeof (uint64_t), 359 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 360 &spa->spa_removing_phys); 361 362 if (error == ENOENT) { 363 spa->spa_removing_phys.sr_state = DSS_NONE; 364 spa->spa_removing_phys.sr_removing_vdev = -1; 365 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 366 return (0); 367 } else if (error != 0) { 368 return (error); 369 } 370 371 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) { 372 /* 373 * We are currently removing a vdev. Create and 374 * initialize a spa_vdev_removal_t from the bonus 375 * buffer of the removing vdevs vdev_im_object, and 376 * initialize its partial mapping. 377 */ 378 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 379 vdev_t *vd = vdev_lookup_top(spa, 380 spa->spa_removing_phys.sr_removing_vdev); 381 382 if (vd == NULL) { 383 spa_config_exit(spa, SCL_STATE, FTAG); 384 return (EINVAL); 385 } 386 387 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 388 389 ASSERT(vdev_is_concrete(vd)); 390 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd); 391 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id); 392 ASSERT(vd->vdev_removing); 393 394 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 395 spa->spa_meta_objset, vic->vic_mapping_object); 396 vd->vdev_indirect_births = vdev_indirect_births_open( 397 spa->spa_meta_objset, vic->vic_births_object); 398 spa_config_exit(spa, SCL_STATE, FTAG); 399 400 spa->spa_vdev_removal = svr; 401 } 402 403 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 404 uint64_t indirect_vdev_id = 405 spa->spa_removing_phys.sr_prev_indirect_vdev; 406 while (indirect_vdev_id != UINT64_MAX) { 407 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id); 408 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 409 410 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 411 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 412 spa->spa_meta_objset, vic->vic_mapping_object); 413 vd->vdev_indirect_births = vdev_indirect_births_open( 414 spa->spa_meta_objset, vic->vic_births_object); 415 416 indirect_vdev_id = vic->vic_prev_indirect_vdev; 417 } 418 spa_config_exit(spa, SCL_STATE, FTAG); 419 420 /* 421 * Now that we've loaded all the indirect mappings, we can allow 422 * reads from other blocks (e.g. via predictive prefetch). 423 */ 424 spa->spa_indirect_vdevs_loaded = B_TRUE; 425 return (0); 426 } 427 428 void 429 spa_restart_removal(spa_t *spa) 430 { 431 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 432 433 if (svr == NULL) 434 return; 435 436 /* 437 * In general when this function is called there is no 438 * removal thread running. The only scenario where this 439 * is not true is during spa_import() where this function 440 * is called twice [once from spa_import_impl() and 441 * spa_async_resume()]. Thus, in the scenario where we 442 * import a pool that has an ongoing removal we don't 443 * want to spawn a second thread. 444 */ 445 if (svr->svr_thread != NULL) 446 return; 447 448 if (!spa_writeable(spa)) 449 return; 450 451 zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id); 452 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa, 453 0, &p0, TS_RUN, minclsyspri); 454 } 455 456 /* 457 * Process freeing from a device which is in the middle of being removed. 458 * We must handle this carefully so that we attempt to copy freed data, 459 * and we correctly free already-copied data. 460 */ 461 void 462 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size) 463 { 464 spa_t *spa = vd->vdev_spa; 465 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 466 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 467 uint64_t txg = spa_syncing_txg(spa); 468 uint64_t max_offset_yet = 0; 469 470 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 471 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==, 472 vdev_indirect_mapping_object(vim)); 473 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id); 474 475 mutex_enter(&svr->svr_lock); 476 477 /* 478 * Remove the segment from the removing vdev's spacemap. This 479 * ensures that we will not attempt to copy this space (if the 480 * removal thread has not yet visited it), and also ensures 481 * that we know what is actually allocated on the new vdevs 482 * (needed if we cancel the removal). 483 * 484 * Note: we must do the metaslab_free_concrete() with the svr_lock 485 * held, so that the remove_thread can not load this metaslab and then 486 * visit this offset between the time that we metaslab_free_concrete() 487 * and when we check to see if it has been visited. 488 * 489 * Note: The checkpoint flag is set to false as having/taking 490 * a checkpoint and removing a device can't happen at the same 491 * time. 492 */ 493 ASSERT(!spa_has_checkpoint(spa)); 494 metaslab_free_concrete(vd, offset, size, B_FALSE); 495 496 uint64_t synced_size = 0; 497 uint64_t synced_offset = 0; 498 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim); 499 if (offset < max_offset_synced) { 500 /* 501 * The mapping for this offset is already on disk. 502 * Free from the new location. 503 * 504 * Note that we use svr_max_synced_offset because it is 505 * updated atomically with respect to the in-core mapping. 506 * By contrast, vim_max_offset is not. 507 * 508 * This block may be split between a synced entry and an 509 * in-flight or unvisited entry. Only process the synced 510 * portion of it here. 511 */ 512 synced_size = MIN(size, max_offset_synced - offset); 513 synced_offset = offset; 514 515 ASSERT3U(max_offset_yet, <=, max_offset_synced); 516 max_offset_yet = max_offset_synced; 517 518 DTRACE_PROBE3(remove__free__synced, 519 spa_t *, spa, 520 uint64_t, offset, 521 uint64_t, synced_size); 522 523 size -= synced_size; 524 offset += synced_size; 525 } 526 527 /* 528 * Look at all in-flight txgs starting from the currently syncing one 529 * and see if a section of this free is being copied. By starting from 530 * this txg and iterating forward, we might find that this region 531 * was copied in two different txgs and handle it appropriately. 532 */ 533 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) { 534 int txgoff = (txg + i) & TXG_MASK; 535 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) { 536 /* 537 * The mapping for this offset is in flight, and 538 * will be synced in txg+i. 539 */ 540 uint64_t inflight_size = MIN(size, 541 svr->svr_max_offset_to_sync[txgoff] - offset); 542 543 DTRACE_PROBE4(remove__free__inflight, 544 spa_t *, spa, 545 uint64_t, offset, 546 uint64_t, inflight_size, 547 uint64_t, txg + i); 548 549 /* 550 * We copy data in order of increasing offset. 551 * Therefore the max_offset_to_sync[] must increase 552 * (or be zero, indicating that nothing is being 553 * copied in that txg). 554 */ 555 if (svr->svr_max_offset_to_sync[txgoff] != 0) { 556 ASSERT3U(svr->svr_max_offset_to_sync[txgoff], 557 >=, max_offset_yet); 558 max_offset_yet = 559 svr->svr_max_offset_to_sync[txgoff]; 560 } 561 562 /* 563 * We've already committed to copying this segment: 564 * we have allocated space elsewhere in the pool for 565 * it and have an IO outstanding to copy the data. We 566 * cannot free the space before the copy has 567 * completed, or else the copy IO might overwrite any 568 * new data. To free that space, we record the 569 * segment in the appropriate svr_frees tree and free 570 * the mapped space later, in the txg where we have 571 * completed the copy and synced the mapping (see 572 * vdev_mapping_sync). 573 */ 574 range_tree_add(svr->svr_frees[txgoff], 575 offset, inflight_size); 576 size -= inflight_size; 577 offset += inflight_size; 578 579 /* 580 * This space is already accounted for as being 581 * done, because it is being copied in txg+i. 582 * However, if i!=0, then it is being copied in 583 * a future txg. If we crash after this txg 584 * syncs but before txg+i syncs, then the space 585 * will be free. Therefore we must account 586 * for the space being done in *this* txg 587 * (when it is freed) rather than the future txg 588 * (when it will be copied). 589 */ 590 ASSERT3U(svr->svr_bytes_done[txgoff], >=, 591 inflight_size); 592 svr->svr_bytes_done[txgoff] -= inflight_size; 593 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size; 594 } 595 } 596 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]); 597 598 if (size > 0) { 599 /* 600 * The copy thread has not yet visited this offset. Ensure 601 * that it doesn't. 602 */ 603 604 DTRACE_PROBE3(remove__free__unvisited, 605 spa_t *, spa, 606 uint64_t, offset, 607 uint64_t, size); 608 609 if (svr->svr_allocd_segs != NULL) 610 range_tree_clear(svr->svr_allocd_segs, offset, size); 611 612 /* 613 * Since we now do not need to copy this data, for 614 * accounting purposes we have done our job and can count 615 * it as completed. 616 */ 617 svr->svr_bytes_done[txg & TXG_MASK] += size; 618 } 619 mutex_exit(&svr->svr_lock); 620 621 /* 622 * Now that we have dropped svr_lock, process the synced portion 623 * of this free. 624 */ 625 if (synced_size > 0) { 626 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size); 627 628 /* 629 * Note: this can only be called from syncing context, 630 * and the vdev_indirect_mapping is only changed from the 631 * sync thread, so we don't need svr_lock while doing 632 * metaslab_free_impl_cb. 633 */ 634 boolean_t checkpoint = B_FALSE; 635 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size, 636 metaslab_free_impl_cb, &checkpoint); 637 } 638 } 639 640 /* 641 * Stop an active removal and update the spa_removing phys. 642 */ 643 static void 644 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx) 645 { 646 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 647 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa)); 648 649 /* Ensure the removal thread has completed before we free the svr. */ 650 spa_vdev_remove_suspend(spa); 651 652 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED); 653 654 if (state == DSS_FINISHED) { 655 spa_removing_phys_t *srp = &spa->spa_removing_phys; 656 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 657 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 658 659 if (srp->sr_prev_indirect_vdev != UINT64_MAX) { 660 vdev_t *pvd = vdev_lookup_top(spa, 661 srp->sr_prev_indirect_vdev); 662 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops); 663 } 664 665 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev; 666 srp->sr_prev_indirect_vdev = vd->vdev_id; 667 } 668 spa->spa_removing_phys.sr_state = state; 669 spa->spa_removing_phys.sr_end_time = gethrestime_sec(); 670 671 spa->spa_vdev_removal = NULL; 672 spa_vdev_removal_destroy(svr); 673 674 spa_sync_removing_state(spa, tx); 675 676 vdev_config_dirty(spa->spa_root_vdev); 677 } 678 679 static void 680 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size) 681 { 682 vdev_t *vd = arg; 683 vdev_indirect_mark_obsolete(vd, offset, size); 684 boolean_t checkpoint = B_FALSE; 685 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 686 metaslab_free_impl_cb, &checkpoint); 687 } 688 689 /* 690 * On behalf of the removal thread, syncs an incremental bit more of 691 * the indirect mapping to disk and updates the in-memory mapping. 692 * Called as a sync task in every txg that the removal thread makes progress. 693 */ 694 static void 695 vdev_mapping_sync(void *arg, dmu_tx_t *tx) 696 { 697 spa_vdev_removal_t *svr = arg; 698 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 699 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 700 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 701 uint64_t txg = dmu_tx_get_txg(tx); 702 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 703 704 ASSERT(vic->vic_mapping_object != 0); 705 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 706 707 vdev_indirect_mapping_add_entries(vim, 708 &svr->svr_new_segments[txg & TXG_MASK], tx); 709 vdev_indirect_births_add_entry(vd->vdev_indirect_births, 710 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx); 711 712 /* 713 * Free the copied data for anything that was freed while the 714 * mapping entries were in flight. 715 */ 716 mutex_enter(&svr->svr_lock); 717 range_tree_vacate(svr->svr_frees[txg & TXG_MASK], 718 free_mapped_segment_cb, vd); 719 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=, 720 vdev_indirect_mapping_max_offset(vim)); 721 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0; 722 mutex_exit(&svr->svr_lock); 723 724 spa_sync_removing_state(spa, tx); 725 } 726 727 /* 728 * All reads and writes associated with a call to spa_vdev_copy_segment() 729 * are done. 730 */ 731 static void 732 spa_vdev_copy_nullzio_done(zio_t *zio) 733 { 734 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa); 735 } 736 737 /* 738 * The write of the new location is done. 739 */ 740 static void 741 spa_vdev_copy_segment_write_done(zio_t *zio) 742 { 743 vdev_copy_arg_t *vca = zio->io_private; 744 745 abd_free(zio->io_abd); 746 747 mutex_enter(&vca->vca_lock); 748 vca->vca_outstanding_bytes -= zio->io_size; 749 cv_signal(&vca->vca_cv); 750 mutex_exit(&vca->vca_lock); 751 } 752 753 /* 754 * The read of the old location is done. The parent zio is the write to 755 * the new location. Allow it to start. 756 */ 757 static void 758 spa_vdev_copy_segment_read_done(zio_t *zio) 759 { 760 zio_nowait(zio_unique_parent(zio)); 761 } 762 763 /* 764 * If the old and new vdevs are mirrors, we will read both sides of the old 765 * mirror, and write each copy to the corresponding side of the new mirror. 766 * If the old and new vdevs have a different number of children, we will do 767 * this as best as possible. Since we aren't verifying checksums, this 768 * ensures that as long as there's a good copy of the data, we'll have a 769 * good copy after the removal, even if there's silent damage to one side 770 * of the mirror. If we're removing a mirror that has some silent damage, 771 * we'll have exactly the same damage in the new location (assuming that 772 * the new location is also a mirror). 773 * 774 * We accomplish this by creating a tree of zio_t's, with as many writes as 775 * there are "children" of the new vdev (a non-redundant vdev counts as one 776 * child, a 2-way mirror has 2 children, etc). Each write has an associated 777 * read from a child of the old vdev. Typically there will be the same 778 * number of children of the old and new vdevs. However, if there are more 779 * children of the new vdev, some child(ren) of the old vdev will be issued 780 * multiple reads. If there are more children of the old vdev, some copies 781 * will be dropped. 782 * 783 * For example, the tree of zio_t's for a 2-way mirror is: 784 * 785 * null 786 * / \ 787 * write(new vdev, child 0) write(new vdev, child 1) 788 * | | 789 * read(old vdev, child 0) read(old vdev, child 1) 790 * 791 * Child zio's complete before their parents complete. However, zio's 792 * created with zio_vdev_child_io() may be issued before their children 793 * complete. In this case we need to make sure that the children (reads) 794 * complete before the parents (writes) are *issued*. We do this by not 795 * calling zio_nowait() on each write until its corresponding read has 796 * completed. 797 * 798 * The spa_config_lock must be held while zio's created by 799 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does 800 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null" 801 * zio is needed to release the spa_config_lock after all the reads and 802 * writes complete. (Note that we can't grab the config lock for each read, 803 * because it is not reentrant - we could deadlock with a thread waiting 804 * for a write lock.) 805 */ 806 static void 807 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio, 808 vdev_t *source_vd, uint64_t source_offset, 809 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size) 810 { 811 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0); 812 813 mutex_enter(&vca->vca_lock); 814 vca->vca_outstanding_bytes += size; 815 mutex_exit(&vca->vca_lock); 816 817 abd_t *abd = abd_alloc_for_io(size, B_FALSE); 818 819 vdev_t *source_child_vd; 820 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) { 821 /* 822 * Source and dest are both mirrors. Copy from the same 823 * child id as we are copying to (wrapping around if there 824 * are more dest children than source children). 825 */ 826 source_child_vd = 827 source_vd->vdev_child[dest_id % source_vd->vdev_children]; 828 } else { 829 source_child_vd = source_vd; 830 } 831 832 zio_t *write_zio = zio_vdev_child_io(nzio, NULL, 833 dest_child_vd, dest_offset, abd, size, 834 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL, 835 ZIO_FLAG_CANFAIL, 836 spa_vdev_copy_segment_write_done, vca); 837 838 zio_nowait(zio_vdev_child_io(write_zio, NULL, 839 source_child_vd, source_offset, abd, size, 840 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL, 841 ZIO_FLAG_CANFAIL, 842 spa_vdev_copy_segment_read_done, vca)); 843 } 844 845 /* 846 * Allocate a new location for this segment, and create the zio_t's to 847 * read from the old location and write to the new location. 848 */ 849 static int 850 spa_vdev_copy_segment(vdev_t *vd, uint64_t start, uint64_t size, uint64_t txg, 851 vdev_copy_arg_t *vca, zio_alloc_list_t *zal) 852 { 853 metaslab_group_t *mg = vd->vdev_mg; 854 spa_t *spa = vd->vdev_spa; 855 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 856 vdev_indirect_mapping_entry_t *entry; 857 dva_t dst = { 0 }; 858 859 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 860 861 /* 862 * We use allocator 0 for this I/O because we don't expect device remap 863 * to be the steady state of the system, so parallelizing is not as 864 * critical as it is for other allocation types. We also want to ensure 865 * that the IOs are allocated together as much as possible, to reduce 866 * mapping sizes. 867 */ 868 int error = metaslab_alloc_dva(spa, mg->mg_class, size, 869 &dst, 0, NULL, txg, 0, zal, 0); 870 if (error != 0) 871 return (error); 872 873 /* 874 * We can't have any padding of the allocated size, otherwise we will 875 * misunderstand what's allocated, and the size of the mapping. 876 * The caller ensures this will be true by passing in a size that is 877 * aligned to the worst (highest) ashift in the pool. 878 */ 879 ASSERT3U(DVA_GET_ASIZE(&dst), ==, size); 880 881 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP); 882 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start); 883 entry->vime_mapping.vimep_dst = dst; 884 885 /* 886 * See comment before spa_vdev_copy_one_child(). 887 */ 888 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 889 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL, 890 spa_vdev_copy_nullzio_done, NULL, 0); 891 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst)); 892 if (dest_vd->vdev_ops == &vdev_mirror_ops) { 893 for (int i = 0; i < dest_vd->vdev_children; i++) { 894 vdev_t *child = dest_vd->vdev_child[i]; 895 spa_vdev_copy_one_child(vca, nzio, vd, start, 896 child, DVA_GET_OFFSET(&dst), i, size); 897 } 898 } else { 899 spa_vdev_copy_one_child(vca, nzio, vd, start, 900 dest_vd, DVA_GET_OFFSET(&dst), -1, size); 901 } 902 zio_nowait(nzio); 903 904 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry); 905 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift); 906 vdev_dirty(vd, 0, NULL, txg); 907 908 return (0); 909 } 910 911 /* 912 * Complete the removal of a toplevel vdev. This is called as a 913 * synctask in the same txg that we will sync out the new config (to the 914 * MOS object) which indicates that this vdev is indirect. 915 */ 916 static void 917 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx) 918 { 919 spa_vdev_removal_t *svr = arg; 920 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 921 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 922 923 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 924 925 for (int i = 0; i < TXG_SIZE; i++) { 926 ASSERT0(svr->svr_bytes_done[i]); 927 } 928 929 ASSERT3U(spa->spa_removing_phys.sr_copied, ==, 930 spa->spa_removing_phys.sr_to_copy); 931 932 vdev_destroy_spacemaps(vd, tx); 933 934 /* destroy leaf zaps, if any */ 935 ASSERT3P(svr->svr_zaplist, !=, NULL); 936 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL); 937 pair != NULL; 938 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) { 939 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx); 940 } 941 fnvlist_free(svr->svr_zaplist); 942 943 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx); 944 /* vd->vdev_path is not available here */ 945 spa_history_log_internal(spa, "vdev remove completed", tx, 946 "%s vdev %llu", spa_name(spa), vd->vdev_id); 947 } 948 949 static void 950 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist) 951 { 952 ASSERT3P(zlist, !=, NULL); 953 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops); 954 955 if (vd->vdev_leaf_zap != 0) { 956 char zkey[32]; 957 (void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64, 958 VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap); 959 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap); 960 } 961 962 for (uint64_t id = 0; id < vd->vdev_children; id++) { 963 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist); 964 } 965 } 966 967 static void 968 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg) 969 { 970 vdev_t *ivd; 971 dmu_tx_t *tx; 972 spa_t *spa = vd->vdev_spa; 973 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 974 975 /* 976 * First, build a list of leaf zaps to be destroyed. 977 * This is passed to the sync context thread, 978 * which does the actual unlinking. 979 */ 980 svr->svr_zaplist = fnvlist_alloc(); 981 vdev_remove_enlist_zaps(vd, svr->svr_zaplist); 982 983 ivd = vdev_add_parent(vd, &vdev_indirect_ops); 984 ivd->vdev_removing = 0; 985 986 vd->vdev_leaf_zap = 0; 987 988 vdev_remove_child(ivd, vd); 989 vdev_compact_children(ivd); 990 991 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 992 993 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 994 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr, 995 0, ZFS_SPACE_CHECK_NONE, tx); 996 dmu_tx_commit(tx); 997 998 /* 999 * Indicate that this thread has exited. 1000 * After this, we can not use svr. 1001 */ 1002 mutex_enter(&svr->svr_lock); 1003 svr->svr_thread = NULL; 1004 cv_broadcast(&svr->svr_cv); 1005 mutex_exit(&svr->svr_lock); 1006 } 1007 1008 /* 1009 * Complete the removal of a toplevel vdev. This is called in open 1010 * context by the removal thread after we have copied all vdev's data. 1011 */ 1012 static void 1013 vdev_remove_complete(spa_t *spa) 1014 { 1015 uint64_t txg; 1016 1017 /* 1018 * Wait for any deferred frees to be synced before we call 1019 * vdev_metaslab_fini() 1020 */ 1021 txg_wait_synced(spa->spa_dsl_pool, 0); 1022 txg = spa_vdev_enter(spa); 1023 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1024 1025 sysevent_t *ev = spa_event_create(spa, vd, NULL, 1026 ESC_ZFS_VDEV_REMOVE_DEV); 1027 1028 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu", 1029 vd->vdev_id, txg); 1030 1031 /* 1032 * Discard allocation state. 1033 */ 1034 if (vd->vdev_mg != NULL) { 1035 vdev_metaslab_fini(vd); 1036 metaslab_group_destroy(vd->vdev_mg); 1037 vd->vdev_mg = NULL; 1038 } 1039 ASSERT0(vd->vdev_stat.vs_space); 1040 ASSERT0(vd->vdev_stat.vs_dspace); 1041 1042 vdev_remove_replace_with_indirect(vd, txg); 1043 1044 /* 1045 * We now release the locks, allowing spa_sync to run and finish the 1046 * removal via vdev_remove_complete_sync in syncing context. 1047 * 1048 * Note that we hold on to the vdev_t that has been replaced. Since 1049 * it isn't part of the vdev tree any longer, it can't be concurrently 1050 * manipulated, even while we don't have the config lock. 1051 */ 1052 (void) spa_vdev_exit(spa, NULL, txg, 0); 1053 1054 /* 1055 * Top ZAP should have been transferred to the indirect vdev in 1056 * vdev_remove_replace_with_indirect. 1057 */ 1058 ASSERT0(vd->vdev_top_zap); 1059 1060 /* 1061 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect. 1062 */ 1063 ASSERT0(vd->vdev_leaf_zap); 1064 1065 txg = spa_vdev_enter(spa); 1066 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1067 /* 1068 * Request to update the config and the config cachefile. 1069 */ 1070 vdev_config_dirty(spa->spa_root_vdev); 1071 (void) spa_vdev_exit(spa, vd, txg, 0); 1072 1073 spa_event_post(ev); 1074 } 1075 1076 /* 1077 * Evacuates a segment of size at most max_alloc from the vdev 1078 * via repeated calls to spa_vdev_copy_segment. If an allocation 1079 * fails, the pool is probably too fragmented to handle such a 1080 * large size, so decrease max_alloc so that the caller will not try 1081 * this size again this txg. 1082 */ 1083 static void 1084 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca, 1085 uint64_t *max_alloc, dmu_tx_t *tx) 1086 { 1087 uint64_t txg = dmu_tx_get_txg(tx); 1088 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1089 1090 mutex_enter(&svr->svr_lock); 1091 1092 range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root); 1093 if (rs == NULL) { 1094 mutex_exit(&svr->svr_lock); 1095 return; 1096 } 1097 uint64_t offset = rs->rs_start; 1098 uint64_t length = MIN(rs->rs_end - rs->rs_start, *max_alloc); 1099 1100 range_tree_remove(svr->svr_allocd_segs, offset, length); 1101 1102 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) { 1103 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync, 1104 svr, 0, ZFS_SPACE_CHECK_NONE, tx); 1105 } 1106 1107 svr->svr_max_offset_to_sync[txg & TXG_MASK] = offset + length; 1108 1109 /* 1110 * Note: this is the amount of *allocated* space 1111 * that we are taking care of each txg. 1112 */ 1113 svr->svr_bytes_done[txg & TXG_MASK] += length; 1114 1115 mutex_exit(&svr->svr_lock); 1116 1117 zio_alloc_list_t zal; 1118 metaslab_trace_init(&zal); 1119 uint64_t thismax = *max_alloc; 1120 while (length > 0) { 1121 uint64_t mylen = MIN(length, thismax); 1122 1123 int error = spa_vdev_copy_segment(vd, 1124 offset, mylen, txg, vca, &zal); 1125 1126 if (error == ENOSPC) { 1127 /* 1128 * Cut our segment in half, and don't try this 1129 * segment size again this txg. Note that the 1130 * allocation size must be aligned to the highest 1131 * ashift in the pool, so that the allocation will 1132 * not be padded out to a multiple of the ashift, 1133 * which could cause us to think that this mapping 1134 * is larger than we intended. 1135 */ 1136 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT); 1137 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift); 1138 thismax = P2ROUNDUP(mylen / 2, 1139 1 << spa->spa_max_ashift); 1140 ASSERT3U(thismax, <, mylen); 1141 /* 1142 * The minimum-size allocation can not fail. 1143 */ 1144 ASSERT3U(mylen, >, 1 << spa->spa_max_ashift); 1145 *max_alloc = mylen - (1 << spa->spa_max_ashift); 1146 } else { 1147 ASSERT0(error); 1148 length -= mylen; 1149 offset += mylen; 1150 1151 /* 1152 * We've performed an allocation, so reset the 1153 * alloc trace list. 1154 */ 1155 metaslab_trace_fini(&zal); 1156 metaslab_trace_init(&zal); 1157 } 1158 } 1159 metaslab_trace_fini(&zal); 1160 } 1161 1162 /* 1163 * The removal thread operates in open context. It iterates over all 1164 * allocated space in the vdev, by loading each metaslab's spacemap. 1165 * For each contiguous segment of allocated space (capping the segment 1166 * size at SPA_MAXBLOCKSIZE), we: 1167 * - Allocate space for it on another vdev. 1168 * - Create a new mapping from the old location to the new location 1169 * (as a record in svr_new_segments). 1170 * - Initiate a logical read zio to get the data off the removing disk. 1171 * - In the read zio's done callback, initiate a logical write zio to 1172 * write it to the new vdev. 1173 * Note that all of this will take effect when a particular TXG syncs. 1174 * The sync thread ensures that all the phys reads and writes for the syncing 1175 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk 1176 * (see vdev_mapping_sync()). 1177 */ 1178 static void 1179 spa_vdev_remove_thread(void *arg) 1180 { 1181 spa_t *spa = arg; 1182 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1183 vdev_copy_arg_t vca; 1184 uint64_t max_alloc = zfs_remove_max_segment; 1185 uint64_t last_txg = 0; 1186 1187 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1188 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1189 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1190 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim); 1191 1192 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops); 1193 ASSERT(vdev_is_concrete(vd)); 1194 ASSERT(vd->vdev_removing); 1195 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 1196 ASSERT(vim != NULL); 1197 1198 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL); 1199 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL); 1200 vca.vca_outstanding_bytes = 0; 1201 1202 mutex_enter(&svr->svr_lock); 1203 1204 /* 1205 * Start from vim_max_offset so we pick up where we left off 1206 * if we are restarting the removal after opening the pool. 1207 */ 1208 uint64_t msi; 1209 for (msi = start_offset >> vd->vdev_ms_shift; 1210 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) { 1211 metaslab_t *msp = vd->vdev_ms[msi]; 1212 ASSERT3U(msi, <=, vd->vdev_ms_count); 1213 1214 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 1215 1216 mutex_enter(&msp->ms_sync_lock); 1217 mutex_enter(&msp->ms_lock); 1218 1219 /* 1220 * Assert nothing in flight -- ms_*tree is empty. 1221 */ 1222 for (int i = 0; i < TXG_SIZE; i++) { 1223 ASSERT0(range_tree_space(msp->ms_allocating[i])); 1224 } 1225 1226 /* 1227 * If the metaslab has ever been allocated from (ms_sm!=NULL), 1228 * read the allocated segments from the space map object 1229 * into svr_allocd_segs. Since we do this while holding 1230 * svr_lock and ms_sync_lock, concurrent frees (which 1231 * would have modified the space map) will wait for us 1232 * to finish loading the spacemap, and then take the 1233 * appropriate action (see free_from_removing_vdev()). 1234 */ 1235 if (msp->ms_sm != NULL) { 1236 space_map_t *sm = NULL; 1237 1238 /* 1239 * We have to open a new space map here, because 1240 * ms_sm's sm_length and sm_alloc may not reflect 1241 * what's in the object contents, if we are in between 1242 * metaslab_sync() and metaslab_sync_done(). 1243 */ 1244 VERIFY0(space_map_open(&sm, 1245 spa->spa_dsl_pool->dp_meta_objset, 1246 msp->ms_sm->sm_object, msp->ms_sm->sm_start, 1247 msp->ms_sm->sm_size, msp->ms_sm->sm_shift)); 1248 space_map_update(sm); 1249 VERIFY0(space_map_load(sm, svr->svr_allocd_segs, 1250 SM_ALLOC)); 1251 space_map_close(sm); 1252 1253 range_tree_walk(msp->ms_freeing, 1254 range_tree_remove, svr->svr_allocd_segs); 1255 1256 /* 1257 * When we are resuming from a paused removal (i.e. 1258 * when importing a pool with a removal in progress), 1259 * discard any state that we have already processed. 1260 */ 1261 range_tree_clear(svr->svr_allocd_segs, 0, start_offset); 1262 } 1263 mutex_exit(&msp->ms_lock); 1264 mutex_exit(&msp->ms_sync_lock); 1265 1266 vca.vca_msp = msp; 1267 zfs_dbgmsg("copying %llu segments for metaslab %llu", 1268 avl_numnodes(&svr->svr_allocd_segs->rt_root), 1269 msp->ms_id); 1270 1271 while (!svr->svr_thread_exit && 1272 !range_tree_is_empty(svr->svr_allocd_segs)) { 1273 1274 mutex_exit(&svr->svr_lock); 1275 1276 /* 1277 * We need to periodically drop the config lock so that 1278 * writers can get in. Additionally, we can't wait 1279 * for a txg to sync while holding a config lock 1280 * (since a waiting writer could cause a 3-way deadlock 1281 * with the sync thread, which also gets a config 1282 * lock for reader). So we can't hold the config lock 1283 * while calling dmu_tx_assign(). 1284 */ 1285 spa_config_exit(spa, SCL_CONFIG, FTAG); 1286 1287 /* 1288 * This delay will pause the removal around the point 1289 * specified by zfs_remove_max_bytes_pause. We do this 1290 * solely from the test suite or during debugging. 1291 */ 1292 uint64_t bytes_copied = 1293 spa->spa_removing_phys.sr_copied; 1294 for (int i = 0; i < TXG_SIZE; i++) 1295 bytes_copied += svr->svr_bytes_done[i]; 1296 while (zfs_remove_max_bytes_pause <= bytes_copied && 1297 !svr->svr_thread_exit) 1298 delay(hz); 1299 1300 mutex_enter(&vca.vca_lock); 1301 while (vca.vca_outstanding_bytes > 1302 zfs_remove_max_copy_bytes) { 1303 cv_wait(&vca.vca_cv, &vca.vca_lock); 1304 } 1305 mutex_exit(&vca.vca_lock); 1306 1307 dmu_tx_t *tx = 1308 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1309 1310 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1311 uint64_t txg = dmu_tx_get_txg(tx); 1312 1313 /* 1314 * Reacquire the vdev_config lock. The vdev_t 1315 * that we're removing may have changed, e.g. due 1316 * to a vdev_attach or vdev_detach. 1317 */ 1318 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1319 vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1320 1321 if (txg != last_txg) 1322 max_alloc = zfs_remove_max_segment; 1323 last_txg = txg; 1324 1325 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx); 1326 1327 dmu_tx_commit(tx); 1328 mutex_enter(&svr->svr_lock); 1329 } 1330 } 1331 1332 mutex_exit(&svr->svr_lock); 1333 1334 spa_config_exit(spa, SCL_CONFIG, FTAG); 1335 1336 /* 1337 * Wait for all copies to finish before cleaning up the vca. 1338 */ 1339 txg_wait_synced(spa->spa_dsl_pool, 0); 1340 ASSERT0(vca.vca_outstanding_bytes); 1341 1342 mutex_destroy(&vca.vca_lock); 1343 cv_destroy(&vca.vca_cv); 1344 1345 if (svr->svr_thread_exit) { 1346 mutex_enter(&svr->svr_lock); 1347 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL); 1348 svr->svr_thread = NULL; 1349 cv_broadcast(&svr->svr_cv); 1350 mutex_exit(&svr->svr_lock); 1351 } else { 1352 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 1353 vdev_remove_complete(spa); 1354 } 1355 } 1356 1357 void 1358 spa_vdev_remove_suspend(spa_t *spa) 1359 { 1360 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1361 1362 if (svr == NULL) 1363 return; 1364 1365 mutex_enter(&svr->svr_lock); 1366 svr->svr_thread_exit = B_TRUE; 1367 while (svr->svr_thread != NULL) 1368 cv_wait(&svr->svr_cv, &svr->svr_lock); 1369 svr->svr_thread_exit = B_FALSE; 1370 mutex_exit(&svr->svr_lock); 1371 } 1372 1373 /* ARGSUSED */ 1374 static int 1375 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx) 1376 { 1377 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1378 1379 if (spa->spa_vdev_removal == NULL) 1380 return (ENOTACTIVE); 1381 return (0); 1382 } 1383 1384 /* 1385 * Cancel a removal by freeing all entries from the partial mapping 1386 * and marking the vdev as no longer being removing. 1387 */ 1388 /* ARGSUSED */ 1389 static void 1390 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx) 1391 { 1392 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1393 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1394 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1395 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1396 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1397 objset_t *mos = spa->spa_meta_objset; 1398 1399 ASSERT3P(svr->svr_thread, ==, NULL); 1400 1401 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 1402 if (vdev_obsolete_counts_are_precise(vd)) { 1403 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1404 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1405 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx)); 1406 } 1407 1408 if (vdev_obsolete_sm_object(vd) != 0) { 1409 ASSERT(vd->vdev_obsolete_sm != NULL); 1410 ASSERT3U(vdev_obsolete_sm_object(vd), ==, 1411 space_map_object(vd->vdev_obsolete_sm)); 1412 1413 space_map_free(vd->vdev_obsolete_sm, tx); 1414 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1415 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx)); 1416 space_map_close(vd->vdev_obsolete_sm); 1417 vd->vdev_obsolete_sm = NULL; 1418 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1419 } 1420 for (int i = 0; i < TXG_SIZE; i++) { 1421 ASSERT(list_is_empty(&svr->svr_new_segments[i])); 1422 ASSERT3U(svr->svr_max_offset_to_sync[i], <=, 1423 vdev_indirect_mapping_max_offset(vim)); 1424 } 1425 1426 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 1427 metaslab_t *msp = vd->vdev_ms[msi]; 1428 1429 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim)) 1430 break; 1431 1432 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 1433 1434 mutex_enter(&msp->ms_lock); 1435 1436 /* 1437 * Assert nothing in flight -- ms_*tree is empty. 1438 */ 1439 for (int i = 0; i < TXG_SIZE; i++) 1440 ASSERT0(range_tree_space(msp->ms_allocating[i])); 1441 for (int i = 0; i < TXG_DEFER_SIZE; i++) 1442 ASSERT0(range_tree_space(msp->ms_defer[i])); 1443 ASSERT0(range_tree_space(msp->ms_freed)); 1444 1445 if (msp->ms_sm != NULL) { 1446 /* 1447 * Assert that the in-core spacemap has the same 1448 * length as the on-disk one, so we can use the 1449 * existing in-core spacemap to load it from disk. 1450 */ 1451 ASSERT3U(msp->ms_sm->sm_alloc, ==, 1452 msp->ms_sm->sm_phys->smp_alloc); 1453 ASSERT3U(msp->ms_sm->sm_length, ==, 1454 msp->ms_sm->sm_phys->smp_objsize); 1455 1456 mutex_enter(&svr->svr_lock); 1457 VERIFY0(space_map_load(msp->ms_sm, 1458 svr->svr_allocd_segs, SM_ALLOC)); 1459 range_tree_walk(msp->ms_freeing, 1460 range_tree_remove, svr->svr_allocd_segs); 1461 1462 /* 1463 * Clear everything past what has been synced, 1464 * because we have not allocated mappings for it yet. 1465 */ 1466 uint64_t syncd = vdev_indirect_mapping_max_offset(vim); 1467 uint64_t sm_end = msp->ms_sm->sm_start + 1468 msp->ms_sm->sm_size; 1469 if (sm_end > syncd) 1470 range_tree_clear(svr->svr_allocd_segs, 1471 syncd, sm_end - syncd); 1472 1473 mutex_exit(&svr->svr_lock); 1474 } 1475 mutex_exit(&msp->ms_lock); 1476 1477 mutex_enter(&svr->svr_lock); 1478 range_tree_vacate(svr->svr_allocd_segs, 1479 free_mapped_segment_cb, vd); 1480 mutex_exit(&svr->svr_lock); 1481 } 1482 1483 /* 1484 * Note: this must happen after we invoke free_mapped_segment_cb, 1485 * because it adds to the obsolete_segments. 1486 */ 1487 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL); 1488 1489 ASSERT3U(vic->vic_mapping_object, ==, 1490 vdev_indirect_mapping_object(vd->vdev_indirect_mapping)); 1491 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1492 vd->vdev_indirect_mapping = NULL; 1493 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx); 1494 vic->vic_mapping_object = 0; 1495 1496 ASSERT3U(vic->vic_births_object, ==, 1497 vdev_indirect_births_object(vd->vdev_indirect_births)); 1498 vdev_indirect_births_close(vd->vdev_indirect_births); 1499 vd->vdev_indirect_births = NULL; 1500 vdev_indirect_births_free(mos, vic->vic_births_object, tx); 1501 vic->vic_births_object = 0; 1502 1503 /* 1504 * We may have processed some frees from the removing vdev in this 1505 * txg, thus increasing svr_bytes_done; discard that here to 1506 * satisfy the assertions in spa_vdev_removal_destroy(). 1507 * Note that future txg's can not have any bytes_done, because 1508 * future TXG's are only modified from open context, and we have 1509 * already shut down the copying thread. 1510 */ 1511 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0; 1512 spa_finish_removal(spa, DSS_CANCELED, tx); 1513 1514 vd->vdev_removing = B_FALSE; 1515 vdev_config_dirty(vd); 1516 1517 zfs_dbgmsg("canceled device removal for vdev %llu in %llu", 1518 vd->vdev_id, dmu_tx_get_txg(tx)); 1519 spa_history_log_internal(spa, "vdev remove canceled", tx, 1520 "%s vdev %llu %s", spa_name(spa), 1521 vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 1522 } 1523 1524 int 1525 spa_vdev_remove_cancel(spa_t *spa) 1526 { 1527 spa_vdev_remove_suspend(spa); 1528 1529 if (spa->spa_vdev_removal == NULL) 1530 return (ENOTACTIVE); 1531 1532 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id; 1533 1534 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check, 1535 spa_vdev_remove_cancel_sync, NULL, 0, 1536 ZFS_SPACE_CHECK_EXTRA_RESERVED); 1537 1538 if (error == 0) { 1539 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER); 1540 vdev_t *vd = vdev_lookup_top(spa, vdid); 1541 metaslab_group_activate(vd->vdev_mg); 1542 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG); 1543 } 1544 1545 return (error); 1546 } 1547 1548 /* 1549 * Called every sync pass of every txg if there's a svr. 1550 */ 1551 void 1552 svr_sync(spa_t *spa, dmu_tx_t *tx) 1553 { 1554 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1555 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1556 1557 /* 1558 * This check is necessary so that we do not dirty the 1559 * DIRECTORY_OBJECT via spa_sync_removing_state() when there 1560 * is nothing to do. Dirtying it every time would prevent us 1561 * from syncing-to-convergence. 1562 */ 1563 if (svr->svr_bytes_done[txgoff] == 0) 1564 return; 1565 1566 /* 1567 * Update progress accounting. 1568 */ 1569 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff]; 1570 svr->svr_bytes_done[txgoff] = 0; 1571 1572 spa_sync_removing_state(spa, tx); 1573 } 1574 1575 static void 1576 vdev_remove_make_hole_and_free(vdev_t *vd) 1577 { 1578 uint64_t id = vd->vdev_id; 1579 spa_t *spa = vd->vdev_spa; 1580 vdev_t *rvd = spa->spa_root_vdev; 1581 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 1582 1583 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1584 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1585 1586 vdev_free(vd); 1587 1588 if (last_vdev) { 1589 vdev_compact_children(rvd); 1590 } else { 1591 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 1592 vdev_add_child(rvd, vd); 1593 } 1594 vdev_config_dirty(rvd); 1595 1596 /* 1597 * Reassess the health of our root vdev. 1598 */ 1599 vdev_reopen(rvd); 1600 } 1601 1602 /* 1603 * Remove a log device. The config lock is held for the specified TXG. 1604 */ 1605 static int 1606 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg) 1607 { 1608 metaslab_group_t *mg = vd->vdev_mg; 1609 spa_t *spa = vd->vdev_spa; 1610 int error = 0; 1611 1612 ASSERT(vd->vdev_islog); 1613 ASSERT(vd == vd->vdev_top); 1614 1615 /* 1616 * Stop allocating from this vdev. 1617 */ 1618 metaslab_group_passivate(mg); 1619 1620 /* 1621 * Wait for the youngest allocations and frees to sync, 1622 * and then wait for the deferral of those frees to finish. 1623 */ 1624 spa_vdev_config_exit(spa, NULL, 1625 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 1626 1627 /* 1628 * Evacuate the device. We don't hold the config lock as writer 1629 * since we need to do I/O but we do keep the 1630 * spa_namespace_lock held. Once this completes the device 1631 * should no longer have any blocks allocated on it. 1632 */ 1633 if (vd->vdev_islog) { 1634 if (vd->vdev_stat.vs_alloc != 0) 1635 error = spa_reset_logs(spa); 1636 } 1637 1638 *txg = spa_vdev_config_enter(spa); 1639 1640 if (error != 0) { 1641 metaslab_group_activate(mg); 1642 return (error); 1643 } 1644 ASSERT0(vd->vdev_stat.vs_alloc); 1645 1646 /* 1647 * The evacuation succeeded. Remove any remaining MOS metadata 1648 * associated with this vdev, and wait for these changes to sync. 1649 */ 1650 vd->vdev_removing = B_TRUE; 1651 1652 vdev_dirty_leaves(vd, VDD_DTL, *txg); 1653 vdev_config_dirty(vd); 1654 1655 spa_history_log_internal(spa, "vdev remove", NULL, 1656 "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id, 1657 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 1658 1659 /* Make sure these changes are sync'ed */ 1660 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 1661 1662 *txg = spa_vdev_config_enter(spa); 1663 1664 sysevent_t *ev = spa_event_create(spa, vd, NULL, 1665 ESC_ZFS_VDEV_REMOVE_DEV); 1666 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1667 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1668 1669 /* The top ZAP should have been destroyed by vdev_remove_empty. */ 1670 ASSERT0(vd->vdev_top_zap); 1671 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */ 1672 ASSERT0(vd->vdev_leaf_zap); 1673 1674 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1675 1676 if (list_link_active(&vd->vdev_state_dirty_node)) 1677 vdev_state_clean(vd); 1678 if (list_link_active(&vd->vdev_config_dirty_node)) 1679 vdev_config_clean(vd); 1680 1681 /* 1682 * Clean up the vdev namespace. 1683 */ 1684 vdev_remove_make_hole_and_free(vd); 1685 1686 if (ev != NULL) 1687 spa_event_post(ev); 1688 1689 return (0); 1690 } 1691 1692 static int 1693 spa_vdev_remove_top_check(vdev_t *vd) 1694 { 1695 spa_t *spa = vd->vdev_spa; 1696 1697 if (vd != vd->vdev_top) 1698 return (SET_ERROR(ENOTSUP)); 1699 1700 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)) 1701 return (SET_ERROR(ENOTSUP)); 1702 1703 /* 1704 * There has to be enough free space to remove the 1705 * device and leave double the "slop" space (i.e. we 1706 * must leave at least 3% of the pool free, in addition to 1707 * the normal slop space). 1708 */ 1709 if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir, 1710 NULL, 0, B_TRUE) < 1711 vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) { 1712 return (SET_ERROR(ENOSPC)); 1713 } 1714 1715 /* 1716 * There can not be a removal in progress. 1717 */ 1718 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) 1719 return (SET_ERROR(EBUSY)); 1720 1721 /* 1722 * The device must have all its data. 1723 */ 1724 if (!vdev_dtl_empty(vd, DTL_MISSING) || 1725 !vdev_dtl_empty(vd, DTL_OUTAGE)) 1726 return (SET_ERROR(EBUSY)); 1727 1728 /* 1729 * The device must be healthy. 1730 */ 1731 if (!vdev_readable(vd)) 1732 return (SET_ERROR(EIO)); 1733 1734 /* 1735 * All vdevs in normal class must have the same ashift. 1736 */ 1737 if (spa->spa_max_ashift != spa->spa_min_ashift) { 1738 return (SET_ERROR(EINVAL)); 1739 } 1740 1741 /* 1742 * All vdevs in normal class must have the same ashift 1743 * and not be raidz. 1744 */ 1745 vdev_t *rvd = spa->spa_root_vdev; 1746 int num_indirect = 0; 1747 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 1748 vdev_t *cvd = rvd->vdev_child[id]; 1749 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog) 1750 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift); 1751 if (cvd->vdev_ops == &vdev_indirect_ops) 1752 num_indirect++; 1753 if (!vdev_is_concrete(cvd)) 1754 continue; 1755 if (cvd->vdev_ops == &vdev_raidz_ops) 1756 return (SET_ERROR(EINVAL)); 1757 /* 1758 * Need the mirror to be mirror of leaf vdevs only 1759 */ 1760 if (cvd->vdev_ops == &vdev_mirror_ops) { 1761 for (uint64_t cid = 0; 1762 cid < cvd->vdev_children; cid++) { 1763 vdev_t *tmp = cvd->vdev_child[cid]; 1764 if (!tmp->vdev_ops->vdev_op_leaf) 1765 return (SET_ERROR(EINVAL)); 1766 } 1767 } 1768 } 1769 1770 return (0); 1771 } 1772 1773 /* 1774 * Initiate removal of a top-level vdev, reducing the total space in the pool. 1775 * The config lock is held for the specified TXG. Once initiated, 1776 * evacuation of all allocated space (copying it to other vdevs) happens 1777 * in the background (see spa_vdev_remove_thread()), and can be canceled 1778 * (see spa_vdev_remove_cancel()). If successful, the vdev will 1779 * be transformed to an indirect vdev (see spa_vdev_remove_complete()). 1780 */ 1781 static int 1782 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg) 1783 { 1784 spa_t *spa = vd->vdev_spa; 1785 int error; 1786 1787 /* 1788 * Check for errors up-front, so that we don't waste time 1789 * passivating the metaslab group and clearing the ZIL if there 1790 * are errors. 1791 */ 1792 error = spa_vdev_remove_top_check(vd); 1793 if (error != 0) 1794 return (error); 1795 1796 /* 1797 * Stop allocating from this vdev. Note that we must check 1798 * that this is not the only device in the pool before 1799 * passivating, otherwise we will not be able to make 1800 * progress because we can't allocate from any vdevs. 1801 * The above check for sufficient free space serves this 1802 * purpose. 1803 */ 1804 metaslab_group_t *mg = vd->vdev_mg; 1805 metaslab_group_passivate(mg); 1806 1807 /* 1808 * Wait for the youngest allocations and frees to sync, 1809 * and then wait for the deferral of those frees to finish. 1810 */ 1811 spa_vdev_config_exit(spa, NULL, 1812 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 1813 1814 /* 1815 * We must ensure that no "stubby" log blocks are allocated 1816 * on the device to be removed. These blocks could be 1817 * written at any time, including while we are in the middle 1818 * of copying them. 1819 */ 1820 error = spa_reset_logs(spa); 1821 1822 *txg = spa_vdev_config_enter(spa); 1823 1824 /* 1825 * Things might have changed while the config lock was dropped 1826 * (e.g. space usage). Check for errors again. 1827 */ 1828 if (error == 0) 1829 error = spa_vdev_remove_top_check(vd); 1830 1831 if (error != 0) { 1832 metaslab_group_activate(mg); 1833 return (error); 1834 } 1835 1836 vd->vdev_removing = B_TRUE; 1837 1838 vdev_dirty_leaves(vd, VDD_DTL, *txg); 1839 vdev_config_dirty(vd); 1840 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg); 1841 dsl_sync_task_nowait(spa->spa_dsl_pool, 1842 vdev_remove_initiate_sync, 1843 (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx); 1844 dmu_tx_commit(tx); 1845 1846 return (0); 1847 } 1848 1849 /* 1850 * Remove a device from the pool. 1851 * 1852 * Removing a device from the vdev namespace requires several steps 1853 * and can take a significant amount of time. As a result we use 1854 * the spa_vdev_config_[enter/exit] functions which allow us to 1855 * grab and release the spa_config_lock while still holding the namespace 1856 * lock. During each step the configuration is synced out. 1857 */ 1858 int 1859 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 1860 { 1861 vdev_t *vd; 1862 nvlist_t **spares, **l2cache, *nv; 1863 uint64_t txg = 0; 1864 uint_t nspares, nl2cache; 1865 int error = 0; 1866 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 1867 sysevent_t *ev = NULL; 1868 1869 ASSERT(spa_writeable(spa)); 1870 1871 if (!locked) 1872 txg = spa_vdev_enter(spa); 1873 1874 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1875 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 1876 error = (spa_has_checkpoint(spa)) ? 1877 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 1878 1879 if (!locked) 1880 return (spa_vdev_exit(spa, NULL, txg, error)); 1881 1882 return (error); 1883 } 1884 1885 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1886 1887 if (spa->spa_spares.sav_vdevs != NULL && 1888 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1889 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 1890 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 1891 /* 1892 * Only remove the hot spare if it's not currently in use 1893 * in this pool. 1894 */ 1895 if (vd == NULL || unspare) { 1896 char *nvstr = fnvlist_lookup_string(nv, 1897 ZPOOL_CONFIG_PATH); 1898 spa_history_log_internal(spa, "vdev remove", NULL, 1899 "%s vdev (%s) %s", spa_name(spa), 1900 VDEV_TYPE_SPARE, nvstr); 1901 if (vd == NULL) 1902 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 1903 ev = spa_event_create(spa, vd, NULL, 1904 ESC_ZFS_VDEV_REMOVE_AUX); 1905 spa_vdev_remove_aux(spa->spa_spares.sav_config, 1906 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 1907 spa_load_spares(spa); 1908 spa->spa_spares.sav_sync = B_TRUE; 1909 } else { 1910 error = SET_ERROR(EBUSY); 1911 } 1912 } else if (spa->spa_l2cache.sav_vdevs != NULL && 1913 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 1914 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 1915 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 1916 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH); 1917 spa_history_log_internal(spa, "vdev remove", NULL, 1918 "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr); 1919 /* 1920 * Cache devices can always be removed. 1921 */ 1922 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 1923 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX); 1924 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 1925 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 1926 spa_load_l2cache(spa); 1927 spa->spa_l2cache.sav_sync = B_TRUE; 1928 } else if (vd != NULL && vd->vdev_islog) { 1929 ASSERT(!locked); 1930 error = spa_vdev_remove_log(vd, &txg); 1931 } else if (vd != NULL) { 1932 ASSERT(!locked); 1933 error = spa_vdev_remove_top(vd, &txg); 1934 } else { 1935 /* 1936 * There is no vdev of any kind with the specified guid. 1937 */ 1938 error = SET_ERROR(ENOENT); 1939 } 1940 1941 if (!locked) 1942 error = spa_vdev_exit(spa, NULL, txg, error); 1943 1944 if (ev != NULL) { 1945 if (error != 0) { 1946 spa_event_discard(ev); 1947 } else { 1948 spa_event_post(ev); 1949 } 1950 } 1951 1952 return (error); 1953 } 1954 1955 int 1956 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs) 1957 { 1958 prs->prs_state = spa->spa_removing_phys.sr_state; 1959 1960 if (prs->prs_state == DSS_NONE) 1961 return (SET_ERROR(ENOENT)); 1962 1963 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev; 1964 prs->prs_start_time = spa->spa_removing_phys.sr_start_time; 1965 prs->prs_end_time = spa->spa_removing_phys.sr_end_time; 1966 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy; 1967 prs->prs_copied = spa->spa_removing_phys.sr_copied; 1968 1969 if (spa->spa_vdev_removal != NULL) { 1970 for (int i = 0; i < TXG_SIZE; i++) { 1971 prs->prs_copied += 1972 spa->spa_vdev_removal->svr_bytes_done[i]; 1973 } 1974 } 1975 1976 prs->prs_mapping_memory = 0; 1977 uint64_t indirect_vdev_id = 1978 spa->spa_removing_phys.sr_prev_indirect_vdev; 1979 while (indirect_vdev_id != -1) { 1980 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id]; 1981 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1982 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1983 1984 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 1985 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim); 1986 indirect_vdev_id = vic->vic_prev_indirect_vdev; 1987 } 1988 1989 return (0); 1990 } 1991