xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_removal.c (revision 3299f39fdcbdab4be7a9c70daa3873f2b78a398d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 
48 /*
49  * This file contains the necessary logic to remove vdevs from a
50  * storage pool.  Currently, the only devices that can be removed
51  * are log, cache, and spare devices; and top level vdevs from a pool
52  * w/o raidz.  (Note that members of a mirror can also be removed
53  * by the detach operation.)
54  *
55  * Log vdevs are removed by evacuating them and then turning the vdev
56  * into a hole vdev while holding spa config locks.
57  *
58  * Top level vdevs are removed and converted into an indirect vdev via
59  * a multi-step process:
60  *
61  *  - Disable allocations from this device (spa_vdev_remove_top).
62  *
63  *  - From a new thread (spa_vdev_remove_thread), copy data from
64  *    the removing vdev to a different vdev.  The copy happens in open
65  *    context (spa_vdev_copy_impl) and issues a sync task
66  *    (vdev_mapping_sync) so the sync thread can update the partial
67  *    indirect mappings in core and on disk.
68  *
69  *  - If a free happens during a removal, it is freed from the
70  *    removing vdev, and if it has already been copied, from the new
71  *    location as well (free_from_removing_vdev).
72  *
73  *  - After the removal is completed, the copy thread converts the vdev
74  *    into an indirect vdev (vdev_remove_complete) before instructing
75  *    the sync thread to destroy the space maps and finish the removal
76  *    (spa_finish_removal).
77  */
78 
79 typedef struct vdev_copy_arg {
80 	metaslab_t	*vca_msp;
81 	uint64_t	vca_outstanding_bytes;
82 	kcondvar_t	vca_cv;
83 	kmutex_t	vca_lock;
84 } vdev_copy_arg_t;
85 
86 typedef struct vdev_copy_seg_arg {
87 	vdev_copy_arg_t	*vcsa_copy_arg;
88 	uint64_t	vcsa_txg;
89 	dva_t		*vcsa_dest_dva;
90 	blkptr_t	*vcsa_dest_bp;
91 } vdev_copy_seg_arg_t;
92 
93 /*
94  * The maximum amount of allowed data we're allowed to copy from a device
95  * at a time when removing it.
96  */
97 int zfs_remove_max_copy_bytes = 8 * 1024 * 1024;
98 
99 /*
100  * The largest contiguous segment that we will attempt to allocate when
101  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
102  * there is a performance problem with attempting to allocate large blocks,
103  * consider decreasing this.
104  *
105  * Note: we will issue I/Os of up to this size.  The mpt driver does not
106  * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
107  * mpt processes an I/O larger than 1MB, it needs to do an allocation of
108  * 2 physically contiguous pages; if this allocation fails, mpt will drop
109  * the I/O and hang the device.)
110  */
111 int zfs_remove_max_segment = 1024 * 1024;
112 
113 /*
114  * This is used by the test suite so that it can ensure that certain
115  * actions happen while in the middle of a removal.
116  */
117 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
118 
119 #define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
120 
121 static void spa_vdev_remove_thread(void *arg);
122 
123 static void
124 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
125 {
126 	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
127 	    DMU_POOL_DIRECTORY_OBJECT,
128 	    DMU_POOL_REMOVING, sizeof (uint64_t),
129 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
130 	    &spa->spa_removing_phys, tx));
131 }
132 
133 static nvlist_t *
134 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
135 {
136 	for (int i = 0; i < count; i++) {
137 		uint64_t guid =
138 		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
139 
140 		if (guid == target_guid)
141 			return (nvpp[i]);
142 	}
143 
144 	return (NULL);
145 }
146 
147 static void
148 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
149     nvlist_t *dev_to_remove)
150 {
151 	nvlist_t **newdev = NULL;
152 
153 	if (count > 1)
154 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
155 
156 	for (int i = 0, j = 0; i < count; i++) {
157 		if (dev[i] == dev_to_remove)
158 			continue;
159 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
160 	}
161 
162 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
163 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
164 
165 	for (int i = 0; i < count - 1; i++)
166 		nvlist_free(newdev[i]);
167 
168 	if (count > 1)
169 		kmem_free(newdev, (count - 1) * sizeof (void *));
170 }
171 
172 static spa_vdev_removal_t *
173 spa_vdev_removal_create(vdev_t *vd)
174 {
175 	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
176 	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
177 	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
178 	svr->svr_allocd_segs = range_tree_create(NULL, NULL);
179 	svr->svr_vdev = vd;
180 
181 	for (int i = 0; i < TXG_SIZE; i++) {
182 		svr->svr_frees[i] = range_tree_create(NULL, NULL);
183 		list_create(&svr->svr_new_segments[i],
184 		    sizeof (vdev_indirect_mapping_entry_t),
185 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
186 	}
187 
188 	return (svr);
189 }
190 
191 void
192 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
193 {
194 	for (int i = 0; i < TXG_SIZE; i++) {
195 		ASSERT0(svr->svr_bytes_done[i]);
196 		ASSERT0(svr->svr_max_offset_to_sync[i]);
197 		range_tree_destroy(svr->svr_frees[i]);
198 		list_destroy(&svr->svr_new_segments[i]);
199 	}
200 
201 	range_tree_destroy(svr->svr_allocd_segs);
202 	mutex_destroy(&svr->svr_lock);
203 	cv_destroy(&svr->svr_cv);
204 	kmem_free(svr, sizeof (*svr));
205 }
206 
207 /*
208  * This is called as a synctask in the txg in which we will mark this vdev
209  * as removing (in the config stored in the MOS).
210  *
211  * It begins the evacuation of a toplevel vdev by:
212  * - initializing the spa_removing_phys which tracks this removal
213  * - computing the amount of space to remove for accounting purposes
214  * - dirtying all dbufs in the spa_config_object
215  * - creating the spa_vdev_removal
216  * - starting the spa_vdev_remove_thread
217  */
218 static void
219 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
220 {
221 	vdev_t *vd = arg;
222 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
223 	spa_t *spa = vd->vdev_spa;
224 	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
225 	spa_vdev_removal_t *svr = NULL;
226 	uint64_t txg = dmu_tx_get_txg(tx);
227 
228 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
229 	svr = spa_vdev_removal_create(vd);
230 
231 	ASSERT(vd->vdev_removing);
232 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
233 
234 	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
235 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
236 		/*
237 		 * By activating the OBSOLETE_COUNTS feature, we prevent
238 		 * the pool from being downgraded and ensure that the
239 		 * refcounts are precise.
240 		 */
241 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
242 		uint64_t one = 1;
243 		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
244 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
245 		    &one, tx));
246 		ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
247 	}
248 
249 	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
250 	vd->vdev_indirect_mapping =
251 	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
252 	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
253 	vd->vdev_indirect_births =
254 	    vdev_indirect_births_open(mos, vic->vic_births_object);
255 	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
256 	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
257 	spa->spa_removing_phys.sr_end_time = 0;
258 	spa->spa_removing_phys.sr_state = DSS_SCANNING;
259 	spa->spa_removing_phys.sr_to_copy = 0;
260 	spa->spa_removing_phys.sr_copied = 0;
261 
262 	/*
263 	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
264 	 * there may be space in the defer tree, which is free, but still
265 	 * counted in vs_alloc.
266 	 */
267 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
268 		metaslab_t *ms = vd->vdev_ms[i];
269 		if (ms->ms_sm == NULL)
270 			continue;
271 
272 		/*
273 		 * Sync tasks happen before metaslab_sync(), therefore
274 		 * smp_alloc and sm_alloc must be the same.
275 		 */
276 		ASSERT3U(space_map_allocated(ms->ms_sm), ==,
277 		    ms->ms_sm->sm_phys->smp_alloc);
278 
279 		spa->spa_removing_phys.sr_to_copy +=
280 		    space_map_allocated(ms->ms_sm);
281 
282 		/*
283 		 * Space which we are freeing this txg does not need to
284 		 * be copied.
285 		 */
286 		spa->spa_removing_phys.sr_to_copy -=
287 		    range_tree_space(ms->ms_freeing);
288 
289 		ASSERT0(range_tree_space(ms->ms_freed));
290 		for (int t = 0; t < TXG_SIZE; t++)
291 			ASSERT0(range_tree_space(ms->ms_allocating[t]));
292 	}
293 
294 	/*
295 	 * Sync tasks are called before metaslab_sync(), so there should
296 	 * be no already-synced metaslabs in the TXG_CLEAN list.
297 	 */
298 	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
299 
300 	spa_sync_removing_state(spa, tx);
301 
302 	/*
303 	 * All blocks that we need to read the most recent mapping must be
304 	 * stored on concrete vdevs.  Therefore, we must dirty anything that
305 	 * is read before spa_remove_init().  Specifically, the
306 	 * spa_config_object.  (Note that although we already modified the
307 	 * spa_config_object in spa_sync_removing_state, that may not have
308 	 * modified all blocks of the object.)
309 	 */
310 	dmu_object_info_t doi;
311 	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
312 	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
313 		dmu_buf_t *dbuf;
314 		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
315 		    offset, FTAG, &dbuf, 0));
316 		dmu_buf_will_dirty(dbuf, tx);
317 		offset += dbuf->db_size;
318 		dmu_buf_rele(dbuf, FTAG);
319 	}
320 
321 	/*
322 	 * Now that we've allocated the im_object, dirty the vdev to ensure
323 	 * that the object gets written to the config on disk.
324 	 */
325 	vdev_config_dirty(vd);
326 
327 	zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
328 	    "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
329 	    vic->vic_mapping_object);
330 
331 	spa_history_log_internal(spa, "vdev remove started", tx,
332 	    "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
333 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
334 	/*
335 	 * Setting spa_vdev_removal causes subsequent frees to call
336 	 * free_from_removing_vdev().  Note that we don't need any locking
337 	 * because we are the sync thread, and metaslab_free_impl() is only
338 	 * called from syncing context (potentially from a zio taskq thread,
339 	 * but in any case only when there are outstanding free i/os, which
340 	 * there are not).
341 	 */
342 	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
343 	spa->spa_vdev_removal = svr;
344 	svr->svr_thread = thread_create(NULL, 0,
345 	    spa_vdev_remove_thread, vd, 0, &p0, TS_RUN, minclsyspri);
346 }
347 
348 /*
349  * When we are opening a pool, we must read the mapping for each
350  * indirect vdev in order from most recently removed to least
351  * recently removed.  We do this because the blocks for the mapping
352  * of older indirect vdevs may be stored on more recently removed vdevs.
353  * In order to read each indirect mapping object, we must have
354  * initialized all more recently removed vdevs.
355  */
356 int
357 spa_remove_init(spa_t *spa)
358 {
359 	int error;
360 
361 	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
362 	    DMU_POOL_DIRECTORY_OBJECT,
363 	    DMU_POOL_REMOVING, sizeof (uint64_t),
364 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
365 	    &spa->spa_removing_phys);
366 
367 	if (error == ENOENT) {
368 		spa->spa_removing_phys.sr_state = DSS_NONE;
369 		spa->spa_removing_phys.sr_removing_vdev = -1;
370 		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
371 		return (0);
372 	} else if (error != 0) {
373 		return (error);
374 	}
375 
376 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
377 		/*
378 		 * We are currently removing a vdev.  Create and
379 		 * initialize a spa_vdev_removal_t from the bonus
380 		 * buffer of the removing vdevs vdev_im_object, and
381 		 * initialize its partial mapping.
382 		 */
383 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
384 		vdev_t *vd = vdev_lookup_top(spa,
385 		    spa->spa_removing_phys.sr_removing_vdev);
386 		spa_config_exit(spa, SCL_STATE, FTAG);
387 
388 		if (vd == NULL)
389 			return (EINVAL);
390 
391 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
392 
393 		ASSERT(vdev_is_concrete(vd));
394 		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
395 		ASSERT(svr->svr_vdev->vdev_removing);
396 
397 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
398 		    spa->spa_meta_objset, vic->vic_mapping_object);
399 		vd->vdev_indirect_births = vdev_indirect_births_open(
400 		    spa->spa_meta_objset, vic->vic_births_object);
401 
402 		spa->spa_vdev_removal = svr;
403 	}
404 
405 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
406 	uint64_t indirect_vdev_id =
407 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
408 	while (indirect_vdev_id != UINT64_MAX) {
409 		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
410 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
411 
412 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
413 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
414 		    spa->spa_meta_objset, vic->vic_mapping_object);
415 		vd->vdev_indirect_births = vdev_indirect_births_open(
416 		    spa->spa_meta_objset, vic->vic_births_object);
417 
418 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
419 	}
420 	spa_config_exit(spa, SCL_STATE, FTAG);
421 
422 	/*
423 	 * Now that we've loaded all the indirect mappings, we can allow
424 	 * reads from other blocks (e.g. via predictive prefetch).
425 	 */
426 	spa->spa_indirect_vdevs_loaded = B_TRUE;
427 	return (0);
428 }
429 
430 void
431 spa_restart_removal(spa_t *spa)
432 {
433 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
434 
435 	if (svr == NULL)
436 		return;
437 
438 	/*
439 	 * In general when this function is called there is no
440 	 * removal thread running. The only scenario where this
441 	 * is not true is during spa_import() where this function
442 	 * is called twice [once from spa_import_impl() and
443 	 * spa_async_resume()]. Thus, in the scenario where we
444 	 * import a pool that has an ongoing removal we don't
445 	 * want to spawn a second thread.
446 	 */
447 	if (svr->svr_thread != NULL)
448 		return;
449 
450 	if (!spa_writeable(spa))
451 		return;
452 
453 	vdev_t *vd = svr->svr_vdev;
454 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
455 
456 	ASSERT3P(vd, !=, NULL);
457 	ASSERT(vd->vdev_removing);
458 
459 	zfs_dbgmsg("restarting removal of %llu at count=%llu",
460 	    vd->vdev_id, vdev_indirect_mapping_num_entries(vim));
461 	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, vd,
462 	    0, &p0, TS_RUN, minclsyspri);
463 }
464 
465 /*
466  * Process freeing from a device which is in the middle of being removed.
467  * We must handle this carefully so that we attempt to copy freed data,
468  * and we correctly free already-copied data.
469  */
470 void
471 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
472 {
473 	spa_t *spa = vd->vdev_spa;
474 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
475 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
476 	uint64_t txg = spa_syncing_txg(spa);
477 	uint64_t max_offset_yet = 0;
478 
479 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
480 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
481 	    vdev_indirect_mapping_object(vim));
482 	ASSERT3P(vd, ==, svr->svr_vdev);
483 
484 	mutex_enter(&svr->svr_lock);
485 
486 	/*
487 	 * Remove the segment from the removing vdev's spacemap.  This
488 	 * ensures that we will not attempt to copy this space (if the
489 	 * removal thread has not yet visited it), and also ensures
490 	 * that we know what is actually allocated on the new vdevs
491 	 * (needed if we cancel the removal).
492 	 *
493 	 * Note: we must do the metaslab_free_concrete() with the svr_lock
494 	 * held, so that the remove_thread can not load this metaslab and then
495 	 * visit this offset between the time that we metaslab_free_concrete()
496 	 * and when we check to see if it has been visited.
497 	 *
498 	 * Note: The checkpoint flag is set to false as having/taking
499 	 * a checkpoint and removing a device can't happen at the same
500 	 * time.
501 	 */
502 	ASSERT(!spa_has_checkpoint(spa));
503 	metaslab_free_concrete(vd, offset, size, B_FALSE);
504 
505 	uint64_t synced_size = 0;
506 	uint64_t synced_offset = 0;
507 	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
508 	if (offset < max_offset_synced) {
509 		/*
510 		 * The mapping for this offset is already on disk.
511 		 * Free from the new location.
512 		 *
513 		 * Note that we use svr_max_synced_offset because it is
514 		 * updated atomically with respect to the in-core mapping.
515 		 * By contrast, vim_max_offset is not.
516 		 *
517 		 * This block may be split between a synced entry and an
518 		 * in-flight or unvisited entry.  Only process the synced
519 		 * portion of it here.
520 		 */
521 		synced_size = MIN(size, max_offset_synced - offset);
522 		synced_offset = offset;
523 
524 		ASSERT3U(max_offset_yet, <=, max_offset_synced);
525 		max_offset_yet = max_offset_synced;
526 
527 		DTRACE_PROBE3(remove__free__synced,
528 		    spa_t *, spa,
529 		    uint64_t, offset,
530 		    uint64_t, synced_size);
531 
532 		size -= synced_size;
533 		offset += synced_size;
534 	}
535 
536 	/*
537 	 * Look at all in-flight txgs starting from the currently syncing one
538 	 * and see if a section of this free is being copied. By starting from
539 	 * this txg and iterating forward, we might find that this region
540 	 * was copied in two different txgs and handle it appropriately.
541 	 */
542 	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
543 		int txgoff = (txg + i) & TXG_MASK;
544 		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
545 			/*
546 			 * The mapping for this offset is in flight, and
547 			 * will be synced in txg+i.
548 			 */
549 			uint64_t inflight_size = MIN(size,
550 			    svr->svr_max_offset_to_sync[txgoff] - offset);
551 
552 			DTRACE_PROBE4(remove__free__inflight,
553 			    spa_t *, spa,
554 			    uint64_t, offset,
555 			    uint64_t, inflight_size,
556 			    uint64_t, txg + i);
557 
558 			/*
559 			 * We copy data in order of increasing offset.
560 			 * Therefore the max_offset_to_sync[] must increase
561 			 * (or be zero, indicating that nothing is being
562 			 * copied in that txg).
563 			 */
564 			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
565 				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
566 				    >=, max_offset_yet);
567 				max_offset_yet =
568 				    svr->svr_max_offset_to_sync[txgoff];
569 			}
570 
571 			/*
572 			 * We've already committed to copying this segment:
573 			 * we have allocated space elsewhere in the pool for
574 			 * it and have an IO outstanding to copy the data. We
575 			 * cannot free the space before the copy has
576 			 * completed, or else the copy IO might overwrite any
577 			 * new data. To free that space, we record the
578 			 * segment in the appropriate svr_frees tree and free
579 			 * the mapped space later, in the txg where we have
580 			 * completed the copy and synced the mapping (see
581 			 * vdev_mapping_sync).
582 			 */
583 			range_tree_add(svr->svr_frees[txgoff],
584 			    offset, inflight_size);
585 			size -= inflight_size;
586 			offset += inflight_size;
587 
588 			/*
589 			 * This space is already accounted for as being
590 			 * done, because it is being copied in txg+i.
591 			 * However, if i!=0, then it is being copied in
592 			 * a future txg.  If we crash after this txg
593 			 * syncs but before txg+i syncs, then the space
594 			 * will be free.  Therefore we must account
595 			 * for the space being done in *this* txg
596 			 * (when it is freed) rather than the future txg
597 			 * (when it will be copied).
598 			 */
599 			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
600 			    inflight_size);
601 			svr->svr_bytes_done[txgoff] -= inflight_size;
602 			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
603 		}
604 	}
605 	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
606 
607 	if (size > 0) {
608 		/*
609 		 * The copy thread has not yet visited this offset.  Ensure
610 		 * that it doesn't.
611 		 */
612 
613 		DTRACE_PROBE3(remove__free__unvisited,
614 		    spa_t *, spa,
615 		    uint64_t, offset,
616 		    uint64_t, size);
617 
618 		if (svr->svr_allocd_segs != NULL)
619 			range_tree_clear(svr->svr_allocd_segs, offset, size);
620 
621 		/*
622 		 * Since we now do not need to copy this data, for
623 		 * accounting purposes we have done our job and can count
624 		 * it as completed.
625 		 */
626 		svr->svr_bytes_done[txg & TXG_MASK] += size;
627 	}
628 	mutex_exit(&svr->svr_lock);
629 
630 	/*
631 	 * Now that we have dropped svr_lock, process the synced portion
632 	 * of this free.
633 	 */
634 	if (synced_size > 0) {
635 		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
636 
637 		/*
638 		 * Note: this can only be called from syncing context,
639 		 * and the vdev_indirect_mapping is only changed from the
640 		 * sync thread, so we don't need svr_lock while doing
641 		 * metaslab_free_impl_cb.
642 		 */
643 		boolean_t checkpoint = B_FALSE;
644 		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
645 		    metaslab_free_impl_cb, &checkpoint);
646 	}
647 }
648 
649 /*
650  * Stop an active removal and update the spa_removing phys.
651  */
652 static void
653 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
654 {
655 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
656 	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
657 
658 	/* Ensure the removal thread has completed before we free the svr. */
659 	spa_vdev_remove_suspend(spa);
660 
661 	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
662 
663 	if (state == DSS_FINISHED) {
664 		spa_removing_phys_t *srp = &spa->spa_removing_phys;
665 		vdev_t *vd = svr->svr_vdev;
666 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
667 
668 		if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
669 			vdev_t *pvd = vdev_lookup_top(spa,
670 			    srp->sr_prev_indirect_vdev);
671 			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
672 		}
673 
674 		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
675 		srp->sr_prev_indirect_vdev = vd->vdev_id;
676 	}
677 	spa->spa_removing_phys.sr_state = state;
678 	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
679 
680 	spa->spa_vdev_removal = NULL;
681 	spa_vdev_removal_destroy(svr);
682 
683 	spa_sync_removing_state(spa, tx);
684 
685 	vdev_config_dirty(spa->spa_root_vdev);
686 }
687 
688 static void
689 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
690 {
691 	vdev_t *vd = arg;
692 	vdev_indirect_mark_obsolete(vd, offset, size);
693 	boolean_t checkpoint = B_FALSE;
694 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
695 	    metaslab_free_impl_cb, &checkpoint);
696 }
697 
698 /*
699  * On behalf of the removal thread, syncs an incremental bit more of
700  * the indirect mapping to disk and updates the in-memory mapping.
701  * Called as a sync task in every txg that the removal thread makes progress.
702  */
703 static void
704 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
705 {
706 	spa_vdev_removal_t *svr = arg;
707 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
708 	vdev_t *vd = svr->svr_vdev;
709 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
710 	uint64_t txg = dmu_tx_get_txg(tx);
711 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
712 
713 	ASSERT(vic->vic_mapping_object != 0);
714 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
715 
716 	vdev_indirect_mapping_add_entries(vim,
717 	    &svr->svr_new_segments[txg & TXG_MASK], tx);
718 	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
719 	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
720 
721 	/*
722 	 * Free the copied data for anything that was freed while the
723 	 * mapping entries were in flight.
724 	 */
725 	mutex_enter(&svr->svr_lock);
726 	range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
727 	    free_mapped_segment_cb, vd);
728 	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
729 	    vdev_indirect_mapping_max_offset(vim));
730 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
731 	mutex_exit(&svr->svr_lock);
732 
733 	spa_sync_removing_state(spa, tx);
734 }
735 
736 static void
737 spa_vdev_copy_segment_write_done(zio_t *zio)
738 {
739 	vdev_copy_seg_arg_t *vcsa = zio->io_private;
740 	vdev_copy_arg_t *vca = vcsa->vcsa_copy_arg;
741 	spa_config_exit(zio->io_spa, SCL_STATE, FTAG);
742 	abd_free(zio->io_abd);
743 
744 	mutex_enter(&vca->vca_lock);
745 	vca->vca_outstanding_bytes -= zio->io_size;
746 	cv_signal(&vca->vca_cv);
747 	mutex_exit(&vca->vca_lock);
748 
749 	ASSERT0(zio->io_error);
750 	kmem_free(vcsa->vcsa_dest_bp, sizeof (blkptr_t));
751 	kmem_free(vcsa, sizeof (vdev_copy_seg_arg_t));
752 }
753 
754 static void
755 spa_vdev_copy_segment_read_done(zio_t *zio)
756 {
757 	vdev_copy_seg_arg_t *vcsa = zio->io_private;
758 	dva_t *dest_dva = vcsa->vcsa_dest_dva;
759 	uint64_t txg = vcsa->vcsa_txg;
760 	spa_t *spa = zio->io_spa;
761 	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(dest_dva));
762 	blkptr_t *bp = NULL;
763 	dva_t *dva = NULL;
764 	uint64_t size = zio->io_size;
765 
766 	ASSERT3P(dest_vd, !=, NULL);
767 	ASSERT0(zio->io_error);
768 
769 	vcsa->vcsa_dest_bp = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
770 	bp = vcsa->vcsa_dest_bp;
771 	dva = bp->blk_dva;
772 
773 	BP_ZERO(bp);
774 
775 	/* initialize with dest_dva */
776 	bcopy(dest_dva, dva, sizeof (dva_t));
777 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
778 
779 	BP_SET_LSIZE(bp, size);
780 	BP_SET_PSIZE(bp, size);
781 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
782 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
783 	BP_SET_TYPE(bp, DMU_OT_NONE);
784 	BP_SET_LEVEL(bp, 0);
785 	BP_SET_DEDUP(bp, 0);
786 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
787 
788 	zio_nowait(zio_rewrite(spa->spa_txg_zio[txg & TXG_MASK], spa,
789 	    txg, bp, zio->io_abd, size,
790 	    spa_vdev_copy_segment_write_done, vcsa,
791 	    ZIO_PRIORITY_REMOVAL, 0, NULL));
792 }
793 
794 static int
795 spa_vdev_copy_segment(vdev_t *vd, uint64_t start, uint64_t size, uint64_t txg,
796     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
797 {
798 	metaslab_group_t *mg = vd->vdev_mg;
799 	spa_t *spa = vd->vdev_spa;
800 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
801 	vdev_indirect_mapping_entry_t *entry;
802 	vdev_copy_seg_arg_t *private;
803 	dva_t dst = { 0 };
804 	blkptr_t blk, *bp = &blk;
805 	dva_t *dva = bp->blk_dva;
806 
807 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
808 
809 	/*
810 	 * We use allocator 0 for this I/O because we don't expect device remap
811 	 * to be the steady state of the system, so parallelizing is not as
812 	 * critical as it is for other allocation types. We also want to ensure
813 	 * that the IOs are allocated together as much as possible, to reduce
814 	 * mapping sizes.
815 	 */
816 	int error = metaslab_alloc_dva(spa, mg->mg_class, size,
817 	    &dst, 0, NULL, txg, 0, zal, 0);
818 	if (error != 0)
819 		return (error);
820 
821 	/*
822 	 * We can't have any padding of the allocated size, otherwise we will
823 	 * misunderstand what's allocated, and the size of the mapping.
824 	 * The caller ensures this will be true by passing in a size that is
825 	 * aligned to the worst (highest) ashift in the pool.
826 	 */
827 	ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
828 
829 	mutex_enter(&vca->vca_lock);
830 	vca->vca_outstanding_bytes += size;
831 	mutex_exit(&vca->vca_lock);
832 
833 	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
834 	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
835 	entry->vime_mapping.vimep_dst = dst;
836 
837 	private = kmem_alloc(sizeof (vdev_copy_seg_arg_t), KM_SLEEP);
838 	private->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
839 	private->vcsa_txg = txg;
840 	private->vcsa_copy_arg = vca;
841 
842 	/*
843 	 * This lock is eventually released by the donefunc for the
844 	 * zio_write_phys that finishes copying the data.
845 	 */
846 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
847 
848 	/*
849 	 * Do logical I/O, letting the redundancy vdevs (like mirror)
850 	 * handle their own I/O instead of duplicating that code here.
851 	 */
852 	BP_ZERO(bp);
853 
854 	DVA_SET_VDEV(&dva[0], vd->vdev_id);
855 	DVA_SET_OFFSET(&dva[0], start);
856 	DVA_SET_GANG(&dva[0], 0);
857 	DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, size));
858 
859 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
860 
861 	BP_SET_LSIZE(bp, size);
862 	BP_SET_PSIZE(bp, size);
863 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
864 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
865 	BP_SET_TYPE(bp, DMU_OT_NONE);
866 	BP_SET_LEVEL(bp, 0);
867 	BP_SET_DEDUP(bp, 0);
868 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
869 
870 	zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa,
871 	    bp, abd_alloc_for_io(size, B_FALSE), size,
872 	    spa_vdev_copy_segment_read_done, private,
873 	    ZIO_PRIORITY_REMOVAL, 0, NULL));
874 
875 	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
876 	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
877 	vdev_dirty(vd, 0, NULL, txg);
878 
879 	return (0);
880 }
881 
882 /*
883  * Complete the removal of a toplevel vdev. This is called as a
884  * synctask in the same txg that we will sync out the new config (to the
885  * MOS object) which indicates that this vdev is indirect.
886  */
887 static void
888 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
889 {
890 	spa_vdev_removal_t *svr = arg;
891 	vdev_t *vd = svr->svr_vdev;
892 	spa_t *spa = vd->vdev_spa;
893 
894 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
895 
896 	for (int i = 0; i < TXG_SIZE; i++) {
897 		ASSERT0(svr->svr_bytes_done[i]);
898 	}
899 
900 	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
901 	    spa->spa_removing_phys.sr_to_copy);
902 
903 	vdev_destroy_spacemaps(vd, tx);
904 
905 	/* destroy leaf zaps, if any */
906 	ASSERT3P(svr->svr_zaplist, !=, NULL);
907 	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
908 	    pair != NULL;
909 	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
910 		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
911 	}
912 	fnvlist_free(svr->svr_zaplist);
913 
914 	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
915 	/* vd->vdev_path is not available here */
916 	spa_history_log_internal(spa, "vdev remove completed",  tx,
917 	    "%s vdev %llu", spa_name(spa), vd->vdev_id);
918 }
919 
920 static void
921 vdev_indirect_state_transfer(vdev_t *ivd, vdev_t *vd)
922 {
923 	ivd->vdev_indirect_config = vd->vdev_indirect_config;
924 
925 	ASSERT3P(ivd->vdev_indirect_mapping, ==, NULL);
926 	ASSERT(vd->vdev_indirect_mapping != NULL);
927 	ivd->vdev_indirect_mapping = vd->vdev_indirect_mapping;
928 	vd->vdev_indirect_mapping = NULL;
929 
930 	ASSERT3P(ivd->vdev_indirect_births, ==, NULL);
931 	ASSERT(vd->vdev_indirect_births != NULL);
932 	ivd->vdev_indirect_births = vd->vdev_indirect_births;
933 	vd->vdev_indirect_births = NULL;
934 
935 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
936 	ASSERT0(range_tree_space(ivd->vdev_obsolete_segments));
937 
938 	if (vd->vdev_obsolete_sm != NULL) {
939 		ASSERT3U(ivd->vdev_asize, ==, vd->vdev_asize);
940 
941 		/*
942 		 * We cannot use space_map_{open,close} because we hold all
943 		 * the config locks as writer.
944 		 */
945 		ASSERT3P(ivd->vdev_obsolete_sm, ==, NULL);
946 		ivd->vdev_obsolete_sm = vd->vdev_obsolete_sm;
947 		vd->vdev_obsolete_sm = NULL;
948 	}
949 }
950 
951 static void
952 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
953 {
954 	ASSERT3P(zlist, !=, NULL);
955 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
956 
957 	if (vd->vdev_leaf_zap != 0) {
958 		char zkey[32];
959 		(void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64,
960 		    VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap);
961 		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
962 	}
963 
964 	for (uint64_t id = 0; id < vd->vdev_children; id++) {
965 		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
966 	}
967 }
968 
969 static void
970 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
971 {
972 	vdev_t *ivd;
973 	dmu_tx_t *tx;
974 	spa_t *spa = vd->vdev_spa;
975 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
976 
977 	/*
978 	 * First, build a list of leaf zaps to be destroyed.
979 	 * This is passed to the sync context thread,
980 	 * which does the actual unlinking.
981 	 */
982 	svr->svr_zaplist = fnvlist_alloc();
983 	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
984 
985 	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
986 
987 	vd->vdev_leaf_zap = 0;
988 
989 	vdev_remove_child(ivd, vd);
990 	vdev_compact_children(ivd);
991 
992 	vdev_indirect_state_transfer(ivd, vd);
993 
994 	svr->svr_vdev = ivd;
995 
996 	ASSERT(!ivd->vdev_removing);
997 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
998 
999 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1000 	dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1001 	    0, ZFS_SPACE_CHECK_NONE, tx);
1002 	dmu_tx_commit(tx);
1003 
1004 	/*
1005 	 * Indicate that this thread has exited.
1006 	 * After this, we can not use svr.
1007 	 */
1008 	mutex_enter(&svr->svr_lock);
1009 	svr->svr_thread = NULL;
1010 	cv_broadcast(&svr->svr_cv);
1011 	mutex_exit(&svr->svr_lock);
1012 }
1013 
1014 /*
1015  * Complete the removal of a toplevel vdev. This is called in open
1016  * context by the removal thread after we have copied all vdev's data.
1017  */
1018 static void
1019 vdev_remove_complete(vdev_t *vd)
1020 {
1021 	spa_t *spa = vd->vdev_spa;
1022 	uint64_t txg;
1023 
1024 	/*
1025 	 * Wait for any deferred frees to be synced before we call
1026 	 * vdev_metaslab_fini()
1027 	 */
1028 	txg_wait_synced(spa->spa_dsl_pool, 0);
1029 
1030 	txg = spa_vdev_enter(spa);
1031 	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1032 	    vd->vdev_id, txg);
1033 
1034 	/*
1035 	 * Discard allocation state.
1036 	 */
1037 	if (vd->vdev_mg != NULL) {
1038 		vdev_metaslab_fini(vd);
1039 		metaslab_group_destroy(vd->vdev_mg);
1040 		vd->vdev_mg = NULL;
1041 	}
1042 	ASSERT0(vd->vdev_stat.vs_space);
1043 	ASSERT0(vd->vdev_stat.vs_dspace);
1044 
1045 	vdev_remove_replace_with_indirect(vd, txg);
1046 
1047 	/*
1048 	 * We now release the locks, allowing spa_sync to run and finish the
1049 	 * removal via vdev_remove_complete_sync in syncing context.
1050 	 */
1051 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1052 
1053 	/*
1054 	 * Top ZAP should have been transferred to the indirect vdev in
1055 	 * vdev_remove_replace_with_indirect.
1056 	 */
1057 	ASSERT0(vd->vdev_top_zap);
1058 
1059 	/*
1060 	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1061 	 */
1062 	ASSERT0(vd->vdev_leaf_zap);
1063 
1064 	txg = spa_vdev_enter(spa);
1065 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1066 	/*
1067 	 * Request to update the config and the config cachefile.
1068 	 */
1069 	vdev_config_dirty(spa->spa_root_vdev);
1070 	(void) spa_vdev_exit(spa, vd, txg, 0);
1071 }
1072 
1073 /*
1074  * Evacuates a segment of size at most max_alloc from the vdev
1075  * via repeated calls to spa_vdev_copy_segment. If an allocation
1076  * fails, the pool is probably too fragmented to handle such a
1077  * large size, so decrease max_alloc so that the caller will not try
1078  * this size again this txg.
1079  */
1080 static void
1081 spa_vdev_copy_impl(spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1082     uint64_t *max_alloc, dmu_tx_t *tx)
1083 {
1084 	uint64_t txg = dmu_tx_get_txg(tx);
1085 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1086 
1087 	mutex_enter(&svr->svr_lock);
1088 
1089 	range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1090 	if (rs == NULL) {
1091 		mutex_exit(&svr->svr_lock);
1092 		return;
1093 	}
1094 	uint64_t offset = rs->rs_start;
1095 	uint64_t length = MIN(rs->rs_end - rs->rs_start, *max_alloc);
1096 
1097 	range_tree_remove(svr->svr_allocd_segs, offset, length);
1098 
1099 	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1100 		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1101 		    svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1102 	}
1103 
1104 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = offset + length;
1105 
1106 	/*
1107 	 * Note: this is the amount of *allocated* space
1108 	 * that we are taking care of each txg.
1109 	 */
1110 	svr->svr_bytes_done[txg & TXG_MASK] += length;
1111 
1112 	mutex_exit(&svr->svr_lock);
1113 
1114 	zio_alloc_list_t zal;
1115 	metaslab_trace_init(&zal);
1116 	uint64_t thismax = *max_alloc;
1117 	while (length > 0) {
1118 		uint64_t mylen = MIN(length, thismax);
1119 
1120 		int error = spa_vdev_copy_segment(svr->svr_vdev,
1121 		    offset, mylen, txg, vca, &zal);
1122 
1123 		if (error == ENOSPC) {
1124 			/*
1125 			 * Cut our segment in half, and don't try this
1126 			 * segment size again this txg.  Note that the
1127 			 * allocation size must be aligned to the highest
1128 			 * ashift in the pool, so that the allocation will
1129 			 * not be padded out to a multiple of the ashift,
1130 			 * which could cause us to think that this mapping
1131 			 * is larger than we intended.
1132 			 */
1133 			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1134 			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1135 			thismax = P2ROUNDUP(mylen / 2,
1136 			    1 << spa->spa_max_ashift);
1137 			ASSERT3U(thismax, <, mylen);
1138 			/*
1139 			 * The minimum-size allocation can not fail.
1140 			 */
1141 			ASSERT3U(mylen, >, 1 << spa->spa_max_ashift);
1142 			*max_alloc = mylen - (1 << spa->spa_max_ashift);
1143 		} else {
1144 			ASSERT0(error);
1145 			length -= mylen;
1146 			offset += mylen;
1147 
1148 			/*
1149 			 * We've performed an allocation, so reset the
1150 			 * alloc trace list.
1151 			 */
1152 			metaslab_trace_fini(&zal);
1153 			metaslab_trace_init(&zal);
1154 		}
1155 	}
1156 	metaslab_trace_fini(&zal);
1157 }
1158 
1159 /*
1160  * The removal thread operates in open context.  It iterates over all
1161  * allocated space in the vdev, by loading each metaslab's spacemap.
1162  * For each contiguous segment of allocated space (capping the segment
1163  * size at SPA_MAXBLOCKSIZE), we:
1164  *    - Allocate space for it on another vdev.
1165  *    - Create a new mapping from the old location to the new location
1166  *      (as a record in svr_new_segments).
1167  *    - Initiate a logical read zio to get the data off the removing disk.
1168  *    - In the read zio's done callback, initiate a logical write zio to
1169  *      write it to the new vdev.
1170  * Note that all of this will take effect when a particular TXG syncs.
1171  * The sync thread ensures that all the phys reads and writes for the syncing
1172  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1173  * (see vdev_mapping_sync()).
1174  */
1175 static void
1176 spa_vdev_remove_thread(void *arg)
1177 {
1178 	vdev_t *vd = arg;
1179 	spa_t *spa = vd->vdev_spa;
1180 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1181 	vdev_copy_arg_t vca;
1182 	uint64_t max_alloc = zfs_remove_max_segment;
1183 	uint64_t last_txg = 0;
1184 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1185 	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1186 
1187 	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1188 	ASSERT(vdev_is_concrete(vd));
1189 	ASSERT(vd->vdev_removing);
1190 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1191 	ASSERT3P(svr->svr_vdev, ==, vd);
1192 	ASSERT(vim != NULL);
1193 
1194 	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1195 	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1196 	vca.vca_outstanding_bytes = 0;
1197 
1198 	mutex_enter(&svr->svr_lock);
1199 
1200 	/*
1201 	 * Start from vim_max_offset so we pick up where we left off
1202 	 * if we are restarting the removal after opening the pool.
1203 	 */
1204 	uint64_t msi;
1205 	for (msi = start_offset >> vd->vdev_ms_shift;
1206 	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1207 		metaslab_t *msp = vd->vdev_ms[msi];
1208 		ASSERT3U(msi, <=, vd->vdev_ms_count);
1209 
1210 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1211 
1212 		mutex_enter(&msp->ms_sync_lock);
1213 		mutex_enter(&msp->ms_lock);
1214 
1215 		/*
1216 		 * Assert nothing in flight -- ms_*tree is empty.
1217 		 */
1218 		for (int i = 0; i < TXG_SIZE; i++) {
1219 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1220 		}
1221 
1222 		/*
1223 		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1224 		 * read the allocated segments from the space map object
1225 		 * into svr_allocd_segs. Since we do this while holding
1226 		 * svr_lock and ms_sync_lock, concurrent frees (which
1227 		 * would have modified the space map) will wait for us
1228 		 * to finish loading the spacemap, and then take the
1229 		 * appropriate action (see free_from_removing_vdev()).
1230 		 */
1231 		if (msp->ms_sm != NULL) {
1232 			space_map_t *sm = NULL;
1233 
1234 			/*
1235 			 * We have to open a new space map here, because
1236 			 * ms_sm's sm_length and sm_alloc may not reflect
1237 			 * what's in the object contents, if we are in between
1238 			 * metaslab_sync() and metaslab_sync_done().
1239 			 */
1240 			VERIFY0(space_map_open(&sm,
1241 			    spa->spa_dsl_pool->dp_meta_objset,
1242 			    msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1243 			    msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1244 			space_map_update(sm);
1245 			VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1246 			    SM_ALLOC));
1247 			space_map_close(sm);
1248 
1249 			range_tree_walk(msp->ms_freeing,
1250 			    range_tree_remove, svr->svr_allocd_segs);
1251 
1252 			/*
1253 			 * When we are resuming from a paused removal (i.e.
1254 			 * when importing a pool with a removal in progress),
1255 			 * discard any state that we have already processed.
1256 			 */
1257 			range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1258 		}
1259 		mutex_exit(&msp->ms_lock);
1260 		mutex_exit(&msp->ms_sync_lock);
1261 
1262 		vca.vca_msp = msp;
1263 		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1264 		    avl_numnodes(&svr->svr_allocd_segs->rt_root),
1265 		    msp->ms_id);
1266 
1267 		while (!svr->svr_thread_exit &&
1268 		    !range_tree_is_empty(svr->svr_allocd_segs)) {
1269 
1270 			mutex_exit(&svr->svr_lock);
1271 
1272 			/*
1273 			 * This delay will pause the removal around the point
1274 			 * specified by zfs_remove_max_bytes_pause. We do this
1275 			 * solely from the test suite or during debugging.
1276 			 */
1277 			uint64_t bytes_copied =
1278 			    spa->spa_removing_phys.sr_copied;
1279 			for (int i = 0; i < TXG_SIZE; i++)
1280 				bytes_copied += svr->svr_bytes_done[i];
1281 			while (zfs_remove_max_bytes_pause <= bytes_copied &&
1282 			    !svr->svr_thread_exit)
1283 				delay(hz);
1284 
1285 			mutex_enter(&vca.vca_lock);
1286 			while (vca.vca_outstanding_bytes >
1287 			    zfs_remove_max_copy_bytes) {
1288 				cv_wait(&vca.vca_cv, &vca.vca_lock);
1289 			}
1290 			mutex_exit(&vca.vca_lock);
1291 
1292 			dmu_tx_t *tx =
1293 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1294 
1295 			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1296 			uint64_t txg = dmu_tx_get_txg(tx);
1297 
1298 			if (txg != last_txg)
1299 				max_alloc = zfs_remove_max_segment;
1300 			last_txg = txg;
1301 
1302 			spa_vdev_copy_impl(svr, &vca, &max_alloc, tx);
1303 
1304 			dmu_tx_commit(tx);
1305 			mutex_enter(&svr->svr_lock);
1306 		}
1307 	}
1308 
1309 	mutex_exit(&svr->svr_lock);
1310 	/*
1311 	 * Wait for all copies to finish before cleaning up the vca.
1312 	 */
1313 	txg_wait_synced(spa->spa_dsl_pool, 0);
1314 	ASSERT0(vca.vca_outstanding_bytes);
1315 
1316 	mutex_destroy(&vca.vca_lock);
1317 	cv_destroy(&vca.vca_cv);
1318 
1319 	if (svr->svr_thread_exit) {
1320 		mutex_enter(&svr->svr_lock);
1321 		range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1322 		svr->svr_thread = NULL;
1323 		cv_broadcast(&svr->svr_cv);
1324 		mutex_exit(&svr->svr_lock);
1325 	} else {
1326 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1327 		vdev_remove_complete(vd);
1328 	}
1329 }
1330 
1331 void
1332 spa_vdev_remove_suspend(spa_t *spa)
1333 {
1334 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1335 
1336 	if (svr == NULL)
1337 		return;
1338 
1339 	mutex_enter(&svr->svr_lock);
1340 	svr->svr_thread_exit = B_TRUE;
1341 	while (svr->svr_thread != NULL)
1342 		cv_wait(&svr->svr_cv, &svr->svr_lock);
1343 	svr->svr_thread_exit = B_FALSE;
1344 	mutex_exit(&svr->svr_lock);
1345 }
1346 
1347 /* ARGSUSED */
1348 static int
1349 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1350 {
1351 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1352 
1353 	if (spa->spa_vdev_removal == NULL)
1354 		return (ENOTACTIVE);
1355 	return (0);
1356 }
1357 
1358 /*
1359  * Cancel a removal by freeing all entries from the partial mapping
1360  * and marking the vdev as no longer being removing.
1361  */
1362 /* ARGSUSED */
1363 static void
1364 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1365 {
1366 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1367 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1368 	vdev_t *vd = svr->svr_vdev;
1369 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1370 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1371 	objset_t *mos = spa->spa_meta_objset;
1372 
1373 	ASSERT3P(svr->svr_thread, ==, NULL);
1374 
1375 	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1376 	if (vdev_obsolete_counts_are_precise(vd)) {
1377 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1378 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1379 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1380 	}
1381 
1382 	if (vdev_obsolete_sm_object(vd) != 0) {
1383 		ASSERT(vd->vdev_obsolete_sm != NULL);
1384 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1385 		    space_map_object(vd->vdev_obsolete_sm));
1386 
1387 		space_map_free(vd->vdev_obsolete_sm, tx);
1388 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1389 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1390 		space_map_close(vd->vdev_obsolete_sm);
1391 		vd->vdev_obsolete_sm = NULL;
1392 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1393 	}
1394 	for (int i = 0; i < TXG_SIZE; i++) {
1395 		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1396 		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1397 		    vdev_indirect_mapping_max_offset(vim));
1398 	}
1399 
1400 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1401 		metaslab_t *msp = vd->vdev_ms[msi];
1402 
1403 		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1404 			break;
1405 
1406 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1407 
1408 		mutex_enter(&msp->ms_lock);
1409 
1410 		/*
1411 		 * Assert nothing in flight -- ms_*tree is empty.
1412 		 */
1413 		for (int i = 0; i < TXG_SIZE; i++)
1414 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1415 		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1416 			ASSERT0(range_tree_space(msp->ms_defer[i]));
1417 		ASSERT0(range_tree_space(msp->ms_freed));
1418 
1419 		if (msp->ms_sm != NULL) {
1420 			/*
1421 			 * Assert that the in-core spacemap has the same
1422 			 * length as the on-disk one, so we can use the
1423 			 * existing in-core spacemap to load it from disk.
1424 			 */
1425 			ASSERT3U(msp->ms_sm->sm_alloc, ==,
1426 			    msp->ms_sm->sm_phys->smp_alloc);
1427 			ASSERT3U(msp->ms_sm->sm_length, ==,
1428 			    msp->ms_sm->sm_phys->smp_objsize);
1429 
1430 			mutex_enter(&svr->svr_lock);
1431 			VERIFY0(space_map_load(msp->ms_sm,
1432 			    svr->svr_allocd_segs, SM_ALLOC));
1433 			range_tree_walk(msp->ms_freeing,
1434 			    range_tree_remove, svr->svr_allocd_segs);
1435 
1436 			/*
1437 			 * Clear everything past what has been synced,
1438 			 * because we have not allocated mappings for it yet.
1439 			 */
1440 			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1441 			range_tree_clear(svr->svr_allocd_segs, syncd,
1442 			    msp->ms_sm->sm_start + msp->ms_sm->sm_size - syncd);
1443 
1444 			mutex_exit(&svr->svr_lock);
1445 		}
1446 		mutex_exit(&msp->ms_lock);
1447 
1448 		mutex_enter(&svr->svr_lock);
1449 		range_tree_vacate(svr->svr_allocd_segs,
1450 		    free_mapped_segment_cb, vd);
1451 		mutex_exit(&svr->svr_lock);
1452 	}
1453 
1454 	/*
1455 	 * Note: this must happen after we invoke free_mapped_segment_cb,
1456 	 * because it adds to the obsolete_segments.
1457 	 */
1458 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1459 
1460 	ASSERT3U(vic->vic_mapping_object, ==,
1461 	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1462 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1463 	vd->vdev_indirect_mapping = NULL;
1464 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1465 	vic->vic_mapping_object = 0;
1466 
1467 	ASSERT3U(vic->vic_births_object, ==,
1468 	    vdev_indirect_births_object(vd->vdev_indirect_births));
1469 	vdev_indirect_births_close(vd->vdev_indirect_births);
1470 	vd->vdev_indirect_births = NULL;
1471 	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1472 	vic->vic_births_object = 0;
1473 
1474 	/*
1475 	 * We may have processed some frees from the removing vdev in this
1476 	 * txg, thus increasing svr_bytes_done; discard that here to
1477 	 * satisfy the assertions in spa_vdev_removal_destroy().
1478 	 * Note that future txg's can not have any bytes_done, because
1479 	 * future TXG's are only modified from open context, and we have
1480 	 * already shut down the copying thread.
1481 	 */
1482 	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1483 	spa_finish_removal(spa, DSS_CANCELED, tx);
1484 
1485 	vd->vdev_removing = B_FALSE;
1486 	vdev_config_dirty(vd);
1487 
1488 	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1489 	    vd->vdev_id, dmu_tx_get_txg(tx));
1490 	spa_history_log_internal(spa, "vdev remove canceled", tx,
1491 	    "%s vdev %llu %s", spa_name(spa),
1492 	    vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1493 }
1494 
1495 int
1496 spa_vdev_remove_cancel(spa_t *spa)
1497 {
1498 	spa_vdev_remove_suspend(spa);
1499 
1500 	if (spa->spa_vdev_removal == NULL)
1501 		return (ENOTACTIVE);
1502 
1503 	uint64_t vdid = spa->spa_vdev_removal->svr_vdev->vdev_id;
1504 
1505 	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1506 	    spa_vdev_remove_cancel_sync, NULL, 0,
1507 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
1508 
1509 	if (error == 0) {
1510 		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1511 		vdev_t *vd = vdev_lookup_top(spa, vdid);
1512 		metaslab_group_activate(vd->vdev_mg);
1513 		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1514 	}
1515 
1516 	return (error);
1517 }
1518 
1519 /*
1520  * Called every sync pass of every txg if there's a svr.
1521  */
1522 void
1523 svr_sync(spa_t *spa, dmu_tx_t *tx)
1524 {
1525 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1526 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1527 
1528 	/*
1529 	 * This check is necessary so that we do not dirty the
1530 	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1531 	 * is nothing to do.  Dirtying it every time would prevent us
1532 	 * from syncing-to-convergence.
1533 	 */
1534 	if (svr->svr_bytes_done[txgoff] == 0)
1535 		return;
1536 
1537 	/*
1538 	 * Update progress accounting.
1539 	 */
1540 	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1541 	svr->svr_bytes_done[txgoff] = 0;
1542 
1543 	spa_sync_removing_state(spa, tx);
1544 }
1545 
1546 static void
1547 vdev_remove_make_hole_and_free(vdev_t *vd)
1548 {
1549 	uint64_t id = vd->vdev_id;
1550 	spa_t *spa = vd->vdev_spa;
1551 	vdev_t *rvd = spa->spa_root_vdev;
1552 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1553 
1554 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1555 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1556 
1557 	vdev_free(vd);
1558 
1559 	if (last_vdev) {
1560 		vdev_compact_children(rvd);
1561 	} else {
1562 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1563 		vdev_add_child(rvd, vd);
1564 	}
1565 	vdev_config_dirty(rvd);
1566 
1567 	/*
1568 	 * Reassess the health of our root vdev.
1569 	 */
1570 	vdev_reopen(rvd);
1571 }
1572 
1573 /*
1574  * Remove a log device.  The config lock is held for the specified TXG.
1575  */
1576 static int
1577 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1578 {
1579 	metaslab_group_t *mg = vd->vdev_mg;
1580 	spa_t *spa = vd->vdev_spa;
1581 	int error = 0;
1582 
1583 	ASSERT(vd->vdev_islog);
1584 	ASSERT(vd == vd->vdev_top);
1585 
1586 	/*
1587 	 * Stop allocating from this vdev.
1588 	 */
1589 	metaslab_group_passivate(mg);
1590 
1591 	/*
1592 	 * Wait for the youngest allocations and frees to sync,
1593 	 * and then wait for the deferral of those frees to finish.
1594 	 */
1595 	spa_vdev_config_exit(spa, NULL,
1596 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1597 
1598 	/*
1599 	 * Evacuate the device.  We don't hold the config lock as writer
1600 	 * since we need to do I/O but we do keep the
1601 	 * spa_namespace_lock held.  Once this completes the device
1602 	 * should no longer have any blocks allocated on it.
1603 	 */
1604 	if (vd->vdev_islog) {
1605 		if (vd->vdev_stat.vs_alloc != 0)
1606 			error = spa_reset_logs(spa);
1607 	}
1608 
1609 	*txg = spa_vdev_config_enter(spa);
1610 
1611 	if (error != 0) {
1612 		metaslab_group_activate(mg);
1613 		return (error);
1614 	}
1615 	ASSERT0(vd->vdev_stat.vs_alloc);
1616 
1617 	/*
1618 	 * The evacuation succeeded.  Remove any remaining MOS metadata
1619 	 * associated with this vdev, and wait for these changes to sync.
1620 	 */
1621 	vd->vdev_removing = B_TRUE;
1622 
1623 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1624 	vdev_config_dirty(vd);
1625 
1626 	spa_history_log_internal(spa, "vdev remove", NULL,
1627 	    "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1628 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1629 
1630 	/* Make sure these changes are sync'ed */
1631 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1632 
1633 	*txg = spa_vdev_config_enter(spa);
1634 
1635 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1636 	    ESC_ZFS_VDEV_REMOVE_DEV);
1637 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1638 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1639 
1640 	/* The top ZAP should have been destroyed by vdev_remove_empty. */
1641 	ASSERT0(vd->vdev_top_zap);
1642 	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1643 	ASSERT0(vd->vdev_leaf_zap);
1644 
1645 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1646 
1647 	if (list_link_active(&vd->vdev_state_dirty_node))
1648 		vdev_state_clean(vd);
1649 	if (list_link_active(&vd->vdev_config_dirty_node))
1650 		vdev_config_clean(vd);
1651 
1652 	/*
1653 	 * Clean up the vdev namespace.
1654 	 */
1655 	vdev_remove_make_hole_and_free(vd);
1656 
1657 	if (ev != NULL)
1658 		spa_event_post(ev);
1659 
1660 	return (0);
1661 }
1662 
1663 static int
1664 spa_vdev_remove_top_check(vdev_t *vd)
1665 {
1666 	spa_t *spa = vd->vdev_spa;
1667 
1668 	if (vd != vd->vdev_top)
1669 		return (SET_ERROR(ENOTSUP));
1670 
1671 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1672 		return (SET_ERROR(ENOTSUP));
1673 
1674 	/*
1675 	 * There has to be enough free space to remove the
1676 	 * device and leave double the "slop" space (i.e. we
1677 	 * must leave at least 3% of the pool free, in addition to
1678 	 * the normal slop space).
1679 	 */
1680 	if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
1681 	    NULL, 0, B_TRUE) <
1682 	    vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1683 		return (SET_ERROR(ENOSPC));
1684 	}
1685 
1686 	/*
1687 	 * There can not be a removal in progress.
1688 	 */
1689 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1690 		return (SET_ERROR(EBUSY));
1691 
1692 	/*
1693 	 * The device must have all its data.
1694 	 */
1695 	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1696 	    !vdev_dtl_empty(vd, DTL_OUTAGE))
1697 		return (SET_ERROR(EBUSY));
1698 
1699 	/*
1700 	 * The device must be healthy.
1701 	 */
1702 	if (!vdev_readable(vd))
1703 		return (SET_ERROR(EIO));
1704 
1705 	/*
1706 	 * All vdevs in normal class must have the same ashift.
1707 	 */
1708 	if (spa->spa_max_ashift != spa->spa_min_ashift) {
1709 		return (SET_ERROR(EINVAL));
1710 	}
1711 
1712 	/*
1713 	 * All vdevs in normal class must have the same ashift
1714 	 * and not be raidz.
1715 	 */
1716 	vdev_t *rvd = spa->spa_root_vdev;
1717 	int num_indirect = 0;
1718 	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1719 		vdev_t *cvd = rvd->vdev_child[id];
1720 		if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1721 			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1722 		if (cvd->vdev_ops == &vdev_indirect_ops)
1723 			num_indirect++;
1724 		if (!vdev_is_concrete(cvd))
1725 			continue;
1726 		if (cvd->vdev_ops == &vdev_raidz_ops)
1727 			return (SET_ERROR(EINVAL));
1728 		/*
1729 		 * Need the mirror to be mirror of leaf vdevs only
1730 		 */
1731 		if (cvd->vdev_ops == &vdev_mirror_ops) {
1732 			for (uint64_t cid = 0;
1733 			    cid < cvd->vdev_children; cid++) {
1734 				vdev_t *tmp = cvd->vdev_child[cid];
1735 				if (!tmp->vdev_ops->vdev_op_leaf)
1736 					return (SET_ERROR(EINVAL));
1737 			}
1738 		}
1739 	}
1740 
1741 	return (0);
1742 }
1743 
1744 /*
1745  * Initiate removal of a top-level vdev, reducing the total space in the pool.
1746  * The config lock is held for the specified TXG.  Once initiated,
1747  * evacuation of all allocated space (copying it to other vdevs) happens
1748  * in the background (see spa_vdev_remove_thread()), and can be canceled
1749  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1750  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1751  */
1752 static int
1753 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1754 {
1755 	spa_t *spa = vd->vdev_spa;
1756 	int error;
1757 
1758 	/*
1759 	 * Check for errors up-front, so that we don't waste time
1760 	 * passivating the metaslab group and clearing the ZIL if there
1761 	 * are errors.
1762 	 */
1763 	error = spa_vdev_remove_top_check(vd);
1764 	if (error != 0)
1765 		return (error);
1766 
1767 	/*
1768 	 * Stop allocating from this vdev.  Note that we must check
1769 	 * that this is not the only device in the pool before
1770 	 * passivating, otherwise we will not be able to make
1771 	 * progress because we can't allocate from any vdevs.
1772 	 * The above check for sufficient free space serves this
1773 	 * purpose.
1774 	 */
1775 	metaslab_group_t *mg = vd->vdev_mg;
1776 	metaslab_group_passivate(mg);
1777 
1778 	/*
1779 	 * Wait for the youngest allocations and frees to sync,
1780 	 * and then wait for the deferral of those frees to finish.
1781 	 */
1782 	spa_vdev_config_exit(spa, NULL,
1783 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1784 
1785 	/*
1786 	 * We must ensure that no "stubby" log blocks are allocated
1787 	 * on the device to be removed.  These blocks could be
1788 	 * written at any time, including while we are in the middle
1789 	 * of copying them.
1790 	 */
1791 	error = spa_reset_logs(spa);
1792 
1793 	*txg = spa_vdev_config_enter(spa);
1794 
1795 	/*
1796 	 * Things might have changed while the config lock was dropped
1797 	 * (e.g. space usage).  Check for errors again.
1798 	 */
1799 	if (error == 0)
1800 		error = spa_vdev_remove_top_check(vd);
1801 
1802 	if (error != 0) {
1803 		metaslab_group_activate(mg);
1804 		return (error);
1805 	}
1806 
1807 	vd->vdev_removing = B_TRUE;
1808 
1809 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1810 	vdev_config_dirty(vd);
1811 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
1812 	dsl_sync_task_nowait(spa->spa_dsl_pool,
1813 	    vdev_remove_initiate_sync,
1814 	    vd, 0, ZFS_SPACE_CHECK_NONE, tx);
1815 	dmu_tx_commit(tx);
1816 
1817 	return (0);
1818 }
1819 
1820 /*
1821  * Remove a device from the pool.
1822  *
1823  * Removing a device from the vdev namespace requires several steps
1824  * and can take a significant amount of time.  As a result we use
1825  * the spa_vdev_config_[enter/exit] functions which allow us to
1826  * grab and release the spa_config_lock while still holding the namespace
1827  * lock.  During each step the configuration is synced out.
1828  */
1829 int
1830 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1831 {
1832 	vdev_t *vd;
1833 	nvlist_t **spares, **l2cache, *nv;
1834 	uint64_t txg = 0;
1835 	uint_t nspares, nl2cache;
1836 	int error = 0;
1837 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
1838 	sysevent_t *ev = NULL;
1839 
1840 	ASSERT(spa_writeable(spa));
1841 
1842 	if (!locked)
1843 		txg = spa_vdev_enter(spa);
1844 
1845 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1846 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1847 		error = (spa_has_checkpoint(spa)) ?
1848 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
1849 
1850 		if (!locked)
1851 			return (spa_vdev_exit(spa, NULL, txg, error));
1852 
1853 		return (error);
1854 	}
1855 
1856 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1857 
1858 	if (spa->spa_spares.sav_vdevs != NULL &&
1859 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1860 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
1861 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
1862 		/*
1863 		 * Only remove the hot spare if it's not currently in use
1864 		 * in this pool.
1865 		 */
1866 		if (vd == NULL || unspare) {
1867 			char *nvstr = fnvlist_lookup_string(nv,
1868 			    ZPOOL_CONFIG_PATH);
1869 			spa_history_log_internal(spa, "vdev remove", NULL,
1870 			    "%s vdev (%s) %s", spa_name(spa),
1871 			    VDEV_TYPE_SPARE, nvstr);
1872 			if (vd == NULL)
1873 				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1874 			ev = spa_event_create(spa, vd, NULL,
1875 			    ESC_ZFS_VDEV_REMOVE_AUX);
1876 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
1877 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
1878 			spa_load_spares(spa);
1879 			spa->spa_spares.sav_sync = B_TRUE;
1880 		} else {
1881 			error = SET_ERROR(EBUSY);
1882 		}
1883 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
1884 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1885 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
1886 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
1887 		char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
1888 		spa_history_log_internal(spa, "vdev remove", NULL,
1889 		    "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
1890 		/*
1891 		 * Cache devices can always be removed.
1892 		 */
1893 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1894 		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
1895 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
1896 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
1897 		spa_load_l2cache(spa);
1898 		spa->spa_l2cache.sav_sync = B_TRUE;
1899 	} else if (vd != NULL && vd->vdev_islog) {
1900 		ASSERT(!locked);
1901 		error = spa_vdev_remove_log(vd, &txg);
1902 	} else if (vd != NULL) {
1903 		ASSERT(!locked);
1904 		error = spa_vdev_remove_top(vd, &txg);
1905 	} else {
1906 		/*
1907 		 * There is no vdev of any kind with the specified guid.
1908 		 */
1909 		error = SET_ERROR(ENOENT);
1910 	}
1911 
1912 	if (!locked)
1913 		error = spa_vdev_exit(spa, NULL, txg, error);
1914 
1915 	if (ev != NULL) {
1916 		if (error != 0) {
1917 			spa_event_discard(ev);
1918 		} else {
1919 			spa_event_post(ev);
1920 		}
1921 	}
1922 
1923 	return (error);
1924 }
1925 
1926 int
1927 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
1928 {
1929 	prs->prs_state = spa->spa_removing_phys.sr_state;
1930 
1931 	if (prs->prs_state == DSS_NONE)
1932 		return (SET_ERROR(ENOENT));
1933 
1934 	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
1935 	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
1936 	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
1937 	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
1938 	prs->prs_copied = spa->spa_removing_phys.sr_copied;
1939 
1940 	if (spa->spa_vdev_removal != NULL) {
1941 		for (int i = 0; i < TXG_SIZE; i++) {
1942 			prs->prs_copied +=
1943 			    spa->spa_vdev_removal->svr_bytes_done[i];
1944 		}
1945 	}
1946 
1947 	prs->prs_mapping_memory = 0;
1948 	uint64_t indirect_vdev_id =
1949 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
1950 	while (indirect_vdev_id != -1) {
1951 		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
1952 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1953 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1954 
1955 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1956 		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
1957 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
1958 	}
1959 
1960 	return (0);
1961 }
1962