xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_raidz_math.c (revision 0153d828c132fdb1a17c11b99386a3d1b87994cf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
23  */
24 
25 #include <sys/zfs_context.h>
26 #include <sys/types.h>
27 #include <sys/zio.h>
28 #include <sys/debug.h>
29 #include <sys/zfs_debug.h>
30 #include <sys/vdev_raidz.h>
31 #include <sys/vdev_raidz_impl.h>
32 #include <sys/simd.h>
33 
34 #ifndef isspace
35 #define	isspace(c)	((c) == ' ' || (c) == '\t' || (c) == '\n' || \
36 			(c) == '\r' || (c) == '\f' || (c) == '\013')
37 #endif
38 
39 extern boolean_t raidz_will_scalar_work(void);
40 
41 /* Opaque implementation with NULL methods to represent original methods */
42 static const raidz_impl_ops_t vdev_raidz_original_impl = {
43 	.name = "original",
44 	.is_supported = raidz_will_scalar_work,
45 };
46 
47 /* RAIDZ parity op that contain the fastest methods */
48 static raidz_impl_ops_t vdev_raidz_fastest_impl = {
49 	.name = "fastest"
50 };
51 
52 /* All compiled in implementations */
53 const raidz_impl_ops_t *raidz_all_maths[] = {
54 	&vdev_raidz_original_impl,
55 	&vdev_raidz_scalar_impl,
56 #if defined(__amd64)
57 	&vdev_raidz_sse2_impl,
58 #endif
59 #if defined(__amd64)
60 	&vdev_raidz_ssse3_impl,
61 #endif
62 #if defined(__amd64)
63 	&vdev_raidz_avx2_impl,
64 #endif
65 };
66 
67 /* Indicate that benchmark has been completed */
68 static boolean_t raidz_math_initialized = B_FALSE;
69 
70 /* Select raidz implementation */
71 #define	IMPL_FASTEST	(UINT32_MAX)
72 #define	IMPL_CYCLE	(UINT32_MAX - 1)
73 #define	IMPL_ORIGINAL	(0)
74 #define	IMPL_SCALAR	(1)
75 
76 #define	RAIDZ_IMPL_READ(i)	(*(volatile uint32_t *) &(i))
77 
78 static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR;
79 static uint32_t user_sel_impl = IMPL_FASTEST;
80 
81 /* Hold all supported implementations */
82 static size_t raidz_supp_impl_cnt = 0;
83 static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)];
84 
85 #if defined(_KERNEL)
86 /*
87  * kstats values for supported implementations
88  * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s]
89  *
90  * PORTING NOTE:
91  * On illumos this is not a kstat. OpenZFS uses their home-grown kstat code
92  * which implements a free-form kstat using additional functionality that does
93  * not exist in illumos. Because there are no software consumers of this
94  * information, we omit a kstat API. If an administrator needs to see this
95  * data for some reason, they can use mdb.
96  *
97  * The format of the kstat data on OpenZFS would be a "header" that looks like
98  * this (a column for each entry in the "raidz_gen_name" and "raidz_rec_name"
99  * arrays, starting with the parity function "implementation" name):
100  *     impl gen_p gen_pq gen_pqr rec_p rec_q rec_r rec_pq rec_pr rec_qr rec_pqr
101  * This is followed by a row for each parity function implementation, showing
102  * the "speed" values calculated for that implementation for each of the
103  * parity generation and reconstruction functions in the "raidz_all_maths"
104  * array.
105  */
106 static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1];
107 
108 #endif
109 
110 /*
111  * Returns the RAIDZ operations for raidz_map() parity calculations.   When
112  * a SIMD implementation is not allowed in the current context, then fallback
113  * to the fastest generic implementation.
114  */
115 const raidz_impl_ops_t *
116 vdev_raidz_math_get_ops(void)
117 {
118 	if (!kfpu_allowed())
119 		return (&vdev_raidz_scalar_impl);
120 
121 	raidz_impl_ops_t *ops = NULL;
122 	const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
123 
124 	switch (impl) {
125 	case IMPL_FASTEST:
126 		ASSERT(raidz_math_initialized);
127 		ops = &vdev_raidz_fastest_impl;
128 		break;
129 	case IMPL_CYCLE:
130 		/* Cycle through all supported implementations */
131 		ASSERT(raidz_math_initialized);
132 		ASSERT3U(raidz_supp_impl_cnt, >, 0);
133 		static size_t cycle_impl_idx = 0;
134 		size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt;
135 		ops = raidz_supp_impl[idx];
136 		break;
137 	case IMPL_ORIGINAL:
138 		ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl;
139 		break;
140 	case IMPL_SCALAR:
141 		ops = (raidz_impl_ops_t *)&vdev_raidz_scalar_impl;
142 		break;
143 	default:
144 		ASSERT3U(impl, <, raidz_supp_impl_cnt);
145 		ASSERT3U(raidz_supp_impl_cnt, >, 0);
146 		if (impl < ARRAY_SIZE(raidz_all_maths))
147 			ops = raidz_supp_impl[impl];
148 		break;
149 	}
150 
151 	ASSERT3P(ops, !=, NULL);
152 
153 	return (ops);
154 }
155 
156 /*
157  * Select parity generation method for raidz_map
158  */
159 int
160 vdev_raidz_math_generate(raidz_map_t *rm)
161 {
162 	raidz_gen_f gen_parity = NULL;
163 
164 	switch (raidz_parity(rm)) {
165 		case 1:
166 			gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P];
167 			break;
168 		case 2:
169 			gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ];
170 			break;
171 		case 3:
172 			gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR];
173 			break;
174 		default:
175 			gen_parity = NULL;
176 			cmn_err(CE_PANIC, "invalid RAID-Z configuration %u",
177 			    (uint_t)raidz_parity(rm));
178 			break;
179 	}
180 
181 	/* if method is NULL execute the original implementation */
182 	if (gen_parity == NULL)
183 		return (RAIDZ_ORIGINAL_IMPL);
184 
185 	gen_parity(rm);
186 
187 	return (0);
188 }
189 
190 static raidz_rec_f
191 reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid,
192     const int nbaddata)
193 {
194 	if (nbaddata == 1 && parity_valid[CODE_P]) {
195 		return (rm->rm_ops->rec[RAIDZ_REC_P]);
196 	}
197 	return ((raidz_rec_f) NULL);
198 }
199 
200 static raidz_rec_f
201 reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid,
202     const int nbaddata)
203 {
204 	if (nbaddata == 1) {
205 		if (parity_valid[CODE_P]) {
206 			return (rm->rm_ops->rec[RAIDZ_REC_P]);
207 		} else if (parity_valid[CODE_Q]) {
208 			return (rm->rm_ops->rec[RAIDZ_REC_Q]);
209 		}
210 	} else if (nbaddata == 2 &&
211 	    parity_valid[CODE_P] && parity_valid[CODE_Q]) {
212 		return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
213 	}
214 	return ((raidz_rec_f) NULL);
215 }
216 
217 static raidz_rec_f
218 reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
219     const int nbaddata)
220 {
221 	if (nbaddata == 1) {
222 		if (parity_valid[CODE_P]) {
223 			return (rm->rm_ops->rec[RAIDZ_REC_P]);
224 		} else if (parity_valid[CODE_Q]) {
225 			return (rm->rm_ops->rec[RAIDZ_REC_Q]);
226 		} else if (parity_valid[CODE_R]) {
227 			return (rm->rm_ops->rec[RAIDZ_REC_R]);
228 		}
229 	} else if (nbaddata == 2) {
230 		if (parity_valid[CODE_P] && parity_valid[CODE_Q]) {
231 			return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
232 		} else if (parity_valid[CODE_P] && parity_valid[CODE_R]) {
233 			return (rm->rm_ops->rec[RAIDZ_REC_PR]);
234 		} else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) {
235 			return (rm->rm_ops->rec[RAIDZ_REC_QR]);
236 		}
237 	} else if (nbaddata == 3 &&
238 	    parity_valid[CODE_P] && parity_valid[CODE_Q] &&
239 	    parity_valid[CODE_R]) {
240 		return (rm->rm_ops->rec[RAIDZ_REC_PQR]);
241 	}
242 	return ((raidz_rec_f) NULL);
243 }
244 
245 /*
246  * Select data reconstruction method for raidz_map
247  * @parity_valid - Parity validity flag
248  * @dt           - Failed data index array
249  * @nbaddata     - Number of failed data columns
250  */
251 int
252 vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
253     const int *dt, const int nbaddata)
254 {
255 	raidz_rec_f rec_fn = NULL;
256 
257 	switch (raidz_parity(rm)) {
258 	case PARITY_P:
259 		rec_fn = reconstruct_fun_p_sel(rm, parity_valid, nbaddata);
260 		break;
261 	case PARITY_PQ:
262 		rec_fn = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata);
263 		break;
264 	case PARITY_PQR:
265 		rec_fn = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata);
266 		break;
267 	default:
268 		cmn_err(CE_PANIC, "invalid RAID-Z configuration %u",
269 		    (uint_t)raidz_parity(rm));
270 		break;
271 	}
272 
273 	if (rec_fn == NULL)
274 		return (RAIDZ_ORIGINAL_IMPL);
275 	else
276 		return (rec_fn(rm, dt));
277 }
278 
279 const char *raidz_gen_name[] = {
280 	"gen_p", "gen_pq", "gen_pqr"
281 };
282 const char *raidz_rec_name[] = {
283 	"rec_p", "rec_q", "rec_r",
284 	"rec_pq", "rec_pr", "rec_qr", "rec_pqr"
285 };
286 
287 #if defined(_KERNEL)
288 
289 #define	BENCH_D_COLS	(8ULL)
290 #define	BENCH_COLS	(BENCH_D_COLS + PARITY_PQR)
291 #define	BENCH_ZIO_SIZE	(1ULL << SPA_OLD_MAXBLOCKSHIFT)	/* 128 kiB */
292 #define	BENCH_NS	MSEC2NSEC(25)			/* 25ms */
293 
294 typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn);
295 
296 static void
297 benchmark_gen_impl(raidz_map_t *rm, const int fn)
298 {
299 	(void) fn;
300 	vdev_raidz_generate_parity(rm);
301 }
302 
303 static void
304 benchmark_rec_impl(raidz_map_t *rm, const int fn)
305 {
306 	static const int rec_tgt[7][3] = {
307 		{1, 2, 3},	/* rec_p:   bad QR & D[0]	*/
308 		{0, 2, 3},	/* rec_q:   bad PR & D[0]	*/
309 		{0, 1, 3},	/* rec_r:   bad PQ & D[0]	*/
310 		{2, 3, 4},	/* rec_pq:  bad R  & D[0][1]	*/
311 		{1, 3, 4},	/* rec_pr:  bad Q  & D[0][1]	*/
312 		{0, 3, 4},	/* rec_qr:  bad P  & D[0][1]	*/
313 		{3, 4, 5}	/* rec_pqr: bad    & D[0][1][2] */
314 	};
315 
316 	vdev_raidz_reconstruct(rm, rec_tgt[fn], 3);
317 }
318 
319 /*
320  * Benchmarking of all supported implementations (raidz_supp_impl_cnt)
321  * is performed by setting the rm_ops pointer and calling the top level
322  * generate/reconstruct methods of bench_rm.
323  */
324 static void
325 benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
326 {
327 	uint64_t run_cnt, speed, best_speed = 0;
328 	hrtime_t t_start, t_diff;
329 	raidz_impl_ops_t *curr_impl;
330 	raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
331 	int impl, i;
332 
333 	for (impl = 0; impl < raidz_supp_impl_cnt; impl++) {
334 		/* set an implementation to benchmark */
335 		curr_impl = raidz_supp_impl[impl];
336 		bench_rm->rm_ops = curr_impl;
337 
338 		run_cnt = 0;
339 		t_start = gethrtime();
340 
341 		do {
342 			for (i = 0; i < 25; i++, run_cnt++)
343 				bench_fn(bench_rm, fn);
344 
345 			t_diff = gethrtime() - t_start;
346 		} while (t_diff < BENCH_NS);
347 
348 		speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC;
349 		speed /= (t_diff * BENCH_COLS);
350 
351 		if (bench_fn == benchmark_gen_impl)
352 			raidz_impl_kstats[impl].gen[fn] = speed;
353 		else
354 			raidz_impl_kstats[impl].rec[fn] = speed;
355 
356 		/* Update fastest implementation method */
357 		if (speed > best_speed) {
358 			best_speed = speed;
359 
360 			if (bench_fn == benchmark_gen_impl) {
361 				fstat->gen[fn] = impl;
362 				vdev_raidz_fastest_impl.gen[fn] =
363 				    curr_impl->gen[fn];
364 			} else {
365 				fstat->rec[fn] = impl;
366 				vdev_raidz_fastest_impl.rec[fn] =
367 				    curr_impl->rec[fn];
368 			}
369 		}
370 	}
371 }
372 #endif
373 
374 /*
375  * Initialize and benchmark all supported implementations.
376  */
377 static void
378 benchmark_raidz(void)
379 {
380 	raidz_impl_ops_t *curr_impl;
381 	int i, c;
382 
383 	/* Move supported impl into raidz_supp_impl */
384 	for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
385 		curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i];
386 
387 		if (curr_impl->init)
388 			curr_impl->init();
389 
390 		if (curr_impl->is_supported())
391 			raidz_supp_impl[c++] = (raidz_impl_ops_t *)curr_impl;
392 	}
393 	membar_producer();		/* complete raidz_supp_impl[] init */
394 	raidz_supp_impl_cnt = c;	/* number of supported impl */
395 
396 #if defined(_KERNEL)
397 	zio_t *bench_zio = NULL;
398 	raidz_map_t *bench_rm = NULL;
399 	uint64_t bench_parity;
400 
401 	/* Fake a zio and run the benchmark on a warmed up buffer */
402 	bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
403 	bench_zio->io_offset = 0;
404 	bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */
405 	bench_zio->io_abd = abd_alloc_linear(BENCH_ZIO_SIZE, B_TRUE);
406 	memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE);
407 
408 	/* Benchmark parity generation methods */
409 	for (int fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
410 		bench_parity = fn + 1;
411 		/* New raidz_map is needed for each generate_p/q/r */
412 		bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
413 		    BENCH_D_COLS + bench_parity, bench_parity);
414 
415 		benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl);
416 
417 		vdev_raidz_map_free(bench_rm);
418 	}
419 
420 	/* Benchmark data reconstruction methods */
421 	bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
422 	    BENCH_COLS, PARITY_PQR);
423 
424 	for (int fn = 0; fn < RAIDZ_REC_NUM; fn++)
425 		benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl);
426 
427 	vdev_raidz_map_free(bench_rm);
428 
429 	/* cleanup the bench zio */
430 	abd_free(bench_zio->io_abd);
431 	kmem_free(bench_zio, sizeof (zio_t));
432 #else
433 	/*
434 	 * Skip the benchmark in user space to avoid impacting libzpool
435 	 * consumers (zdb, zhack, zinject, ztest).  The last implementation
436 	 * is assumed to be the fastest and used by default.
437 	 */
438 	memcpy(&vdev_raidz_fastest_impl,
439 	    raidz_supp_impl[raidz_supp_impl_cnt - 1],
440 	    sizeof (vdev_raidz_fastest_impl));
441 	strcpy(vdev_raidz_fastest_impl.name, "fastest");
442 #endif /* _KERNEL */
443 }
444 
445 void
446 vdev_raidz_math_init(void)
447 {
448 	/* Determine the fastest available implementation. */
449 	benchmark_raidz();
450 
451 	/* Finish initialization */
452 	atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl);
453 	raidz_math_initialized = B_TRUE;
454 }
455 
456 void
457 vdev_raidz_math_fini(void)
458 {
459 	raidz_impl_ops_t const *curr_impl;
460 
461 	for (int i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
462 		curr_impl = raidz_all_maths[i];
463 		if (curr_impl->fini)
464 			curr_impl->fini();
465 	}
466 }
467 
468 static const struct {
469 	char *name;
470 	uint32_t sel;
471 } math_impl_opts[] = {
472 		{ "cycle",	IMPL_CYCLE },
473 		{ "fastest",	IMPL_FASTEST },
474 		{ "original",	IMPL_ORIGINAL },
475 		{ "scalar",	IMPL_SCALAR }
476 };
477 
478 /*
479  * Function sets desired raidz implementation.
480  *
481  * If we are called before init(), user preference will be saved in
482  * user_sel_impl, and applied in later init() call. This occurs when module
483  * parameter is specified on module load. Otherwise, directly update
484  * zfs_vdev_raidz_impl.
485  *
486  * @val		Name of raidz implementation to use
487  * @param	Unused.
488  */
489 int
490 vdev_raidz_impl_set(const char *val)
491 {
492 	int err = -EINVAL;
493 	char req_name[RAIDZ_IMPL_NAME_MAX];
494 	uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl);
495 	size_t i;
496 
497 	/* sanitize input */
498 	i = strnlen(val, RAIDZ_IMPL_NAME_MAX);
499 	if (i == 0 || i == RAIDZ_IMPL_NAME_MAX)
500 		return (err);
501 
502 	strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX);
503 	while (i > 0 && !!isspace(req_name[i-1]))
504 		i--;
505 	req_name[i] = '\0';
506 
507 	/* Check mandatory options */
508 	for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) {
509 		if (strcmp(req_name, math_impl_opts[i].name) == 0) {
510 			impl = math_impl_opts[i].sel;
511 			err = 0;
512 			break;
513 		}
514 	}
515 
516 	/* check all supported impl if init() was already called */
517 	if (err != 0 && raidz_math_initialized) {
518 		/* check all supported implementations */
519 		for (i = 0; i < raidz_supp_impl_cnt; i++) {
520 			if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) {
521 				impl = i;
522 				err = 0;
523 				break;
524 			}
525 		}
526 	}
527 
528 	if (err == 0) {
529 		if (raidz_math_initialized)
530 			atomic_swap_32(&zfs_vdev_raidz_impl, impl);
531 		else
532 			atomic_swap_32(&user_sel_impl, impl);
533 	}
534 
535 	return (err);
536 }
537 
538 #if defined(_KERNEL) && defined(__linux__)
539 
540 static int
541 zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp)
542 {
543 	return (vdev_raidz_impl_set(val));
544 }
545 
546 static int
547 zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp)
548 {
549 	int i, cnt = 0;
550 	char *fmt;
551 	const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
552 
553 	ASSERT(raidz_math_initialized);
554 
555 	/* list mandatory options */
556 	for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) {
557 		fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s ";
558 		cnt += sprintf(buffer + cnt, fmt, math_impl_opts[i].name);
559 	}
560 
561 	/* list all supported implementations */
562 	for (i = 0; i < raidz_supp_impl_cnt; i++) {
563 		fmt = (i == impl) ? "[%s] " : "%s ";
564 		cnt += sprintf(buffer + cnt, fmt, raidz_supp_impl[i]->name);
565 	}
566 
567 	return (cnt);
568 }
569 
570 module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set,
571     zfs_vdev_raidz_impl_get, NULL, 0644);
572 MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation.");
573 #endif
574