xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_raidz.c (revision 6dde88b51419b99fe0aab8e56184c693945826b8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
26  * Copyright 2019 Joyent, Inc.
27  * Copyright (c) 2014 Integros [integros.com]
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_file.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/abd.h>
37 #include <sys/fs/zfs.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/vdev_raidz.h>
40 #include <sys/vdev_raidz_impl.h>
41 
42 #ifdef ZFS_DEBUG
43 #include <sys/vdev.h>	/* For vdev_xlate() in vdev_raidz_io_verify() */
44 #endif
45 
46 /*
47  * Virtual device vector for RAID-Z.
48  *
49  * This vdev supports single, double, and triple parity. For single parity,
50  * we use a simple XOR of all the data columns. For double or triple parity,
51  * we use a special case of Reed-Solomon coding. This extends the
52  * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
53  * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
54  * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
55  * former is also based. The latter is designed to provide higher performance
56  * for writes.
57  *
58  * Note that the Plank paper claimed to support arbitrary N+M, but was then
59  * amended six years later identifying a critical flaw that invalidates its
60  * claims. Nevertheless, the technique can be adapted to work for up to
61  * triple parity. For additional parity, the amendment "Note: Correction to
62  * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
63  * is viable, but the additional complexity means that write performance will
64  * suffer.
65  *
66  * All of the methods above operate on a Galois field, defined over the
67  * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
68  * can be expressed with a single byte. Briefly, the operations on the
69  * field are defined as follows:
70  *
71  *   o addition (+) is represented by a bitwise XOR
72  *   o subtraction (-) is therefore identical to addition: A + B = A - B
73  *   o multiplication of A by 2 is defined by the following bitwise expression:
74  *
75  *	(A * 2)_7 = A_6
76  *	(A * 2)_6 = A_5
77  *	(A * 2)_5 = A_4
78  *	(A * 2)_4 = A_3 + A_7
79  *	(A * 2)_3 = A_2 + A_7
80  *	(A * 2)_2 = A_1 + A_7
81  *	(A * 2)_1 = A_0
82  *	(A * 2)_0 = A_7
83  *
84  * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
85  * As an aside, this multiplication is derived from the error correcting
86  * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
87  *
88  * Observe that any number in the field (except for 0) can be expressed as a
89  * power of 2 -- a generator for the field. We store a table of the powers of
90  * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
91  * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
92  * than field addition). The inverse of a field element A (A^-1) is therefore
93  * A ^ (255 - 1) = A^254.
94  *
95  * The up-to-three parity columns, P, Q, R over several data columns,
96  * D_0, ... D_n-1, can be expressed by field operations:
97  *
98  *	P = D_0 + D_1 + ... + D_n-2 + D_n-1
99  *	Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
100  *	  = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
101  *	R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
102  *	  = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
103  *
104  * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
105  * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
106  * independent coefficients. (There are no additional coefficients that have
107  * this property which is why the uncorrected Plank method breaks down.)
108  *
109  * See the reconstruction code below for how P, Q and R can used individually
110  * or in concert to recover missing data columns.
111  */
112 
113 #define	VDEV_RAIDZ_P		0
114 #define	VDEV_RAIDZ_Q		1
115 #define	VDEV_RAIDZ_R		2
116 
117 #define	VDEV_RAIDZ_MUL_2(x)	(((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
118 #define	VDEV_RAIDZ_MUL_4(x)	(VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
119 
120 /*
121  * We provide a mechanism to perform the field multiplication operation on a
122  * 64-bit value all at once rather than a byte at a time. This works by
123  * creating a mask from the top bit in each byte and using that to
124  * conditionally apply the XOR of 0x1d.
125  */
126 #define	VDEV_RAIDZ_64MUL_2(x, mask) \
127 { \
128 	(mask) = (x) & 0x8080808080808080ULL; \
129 	(mask) = ((mask) << 1) - ((mask) >> 7); \
130 	(x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
131 	    ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
132 }
133 
134 #define	VDEV_RAIDZ_64MUL_4(x, mask) \
135 { \
136 	VDEV_RAIDZ_64MUL_2((x), mask); \
137 	VDEV_RAIDZ_64MUL_2((x), mask); \
138 }
139 
140 void
141 vdev_raidz_map_free(raidz_map_t *rm)
142 {
143 	int c;
144 
145 	for (c = 0; c < rm->rm_firstdatacol; c++) {
146 		abd_free(rm->rm_col[c].rc_abd);
147 
148 		if (rm->rm_col[c].rc_gdata != NULL)
149 			abd_free(rm->rm_col[c].rc_gdata);
150 	}
151 
152 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
153 		abd_put(rm->rm_col[c].rc_abd);
154 
155 	if (rm->rm_abd_copy != NULL)
156 		abd_free(rm->rm_abd_copy);
157 
158 	kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
159 }
160 
161 static void
162 vdev_raidz_map_free_vsd(zio_t *zio)
163 {
164 	raidz_map_t *rm = zio->io_vsd;
165 
166 	ASSERT0(rm->rm_freed);
167 	rm->rm_freed = 1;
168 
169 	if (rm->rm_reports == 0)
170 		vdev_raidz_map_free(rm);
171 }
172 
173 /*ARGSUSED*/
174 static void
175 vdev_raidz_cksum_free(void *arg, size_t ignored)
176 {
177 	raidz_map_t *rm = arg;
178 
179 	ASSERT3U(rm->rm_reports, >, 0);
180 
181 	if (--rm->rm_reports == 0 && rm->rm_freed != 0)
182 		vdev_raidz_map_free(rm);
183 }
184 
185 static void
186 vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data)
187 {
188 	raidz_map_t *rm = zcr->zcr_cbdata;
189 	const size_t c = zcr->zcr_cbinfo;
190 	size_t x, offset;
191 
192 	const abd_t *good = NULL;
193 	const abd_t *bad = rm->rm_col[c].rc_abd;
194 
195 	if (good_data == NULL) {
196 		zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
197 		return;
198 	}
199 
200 	if (c < rm->rm_firstdatacol) {
201 		/*
202 		 * The first time through, calculate the parity blocks for
203 		 * the good data (this relies on the fact that the good
204 		 * data never changes for a given logical ZIO)
205 		 */
206 		if (rm->rm_col[0].rc_gdata == NULL) {
207 			abd_t *bad_parity[VDEV_RAIDZ_MAXPARITY];
208 
209 			/*
210 			 * Set up the rm_col[]s to generate the parity for
211 			 * good_data, first saving the parity bufs and
212 			 * replacing them with buffers to hold the result.
213 			 */
214 			for (x = 0; x < rm->rm_firstdatacol; x++) {
215 				bad_parity[x] = rm->rm_col[x].rc_abd;
216 				rm->rm_col[x].rc_abd =
217 				    rm->rm_col[x].rc_gdata =
218 				    abd_alloc_sametype(rm->rm_col[x].rc_abd,
219 				    rm->rm_col[x].rc_size);
220 			}
221 
222 			/* fill in the data columns from good_data */
223 			offset = 0;
224 			for (; x < rm->rm_cols; x++) {
225 				abd_put(rm->rm_col[x].rc_abd);
226 
227 				rm->rm_col[x].rc_abd =
228 				    abd_get_offset_size((abd_t *)good_data,
229 				    offset, rm->rm_col[x].rc_size);
230 				offset += rm->rm_col[x].rc_size;
231 			}
232 
233 			/*
234 			 * Construct the parity from the good data.
235 			 */
236 			vdev_raidz_generate_parity(rm);
237 
238 			/* restore everything back to its original state */
239 			for (x = 0; x < rm->rm_firstdatacol; x++)
240 				rm->rm_col[x].rc_abd = bad_parity[x];
241 
242 			offset = 0;
243 			for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) {
244 				abd_put(rm->rm_col[x].rc_abd);
245 				rm->rm_col[x].rc_abd = abd_get_offset_size(
246 				    rm->rm_abd_copy, offset,
247 				    rm->rm_col[x].rc_size);
248 				offset += rm->rm_col[x].rc_size;
249 			}
250 		}
251 
252 		ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL);
253 		good = abd_get_offset_size(rm->rm_col[c].rc_gdata, 0,
254 		    rm->rm_col[c].rc_size);
255 	} else {
256 		/* adjust good_data to point at the start of our column */
257 		offset = 0;
258 		for (x = rm->rm_firstdatacol; x < c; x++)
259 			offset += rm->rm_col[x].rc_size;
260 
261 		good = abd_get_offset_size((abd_t *)good_data, offset,
262 		    rm->rm_col[c].rc_size);
263 	}
264 
265 	/* we drop the ereport if it ends up that the data was good */
266 	zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE);
267 	abd_put((abd_t *)good);
268 }
269 
270 /*
271  * Invoked indirectly by zfs_ereport_start_checksum(), called
272  * below when our read operation fails completely.  The main point
273  * is to keep a copy of everything we read from disk, so that at
274  * vdev_raidz_cksum_finish() time we can compare it with the good data.
275  */
276 static void
277 vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
278 {
279 	size_t c = (size_t)(uintptr_t)arg;
280 	size_t offset;
281 
282 	raidz_map_t *rm = zio->io_vsd;
283 	size_t size;
284 
285 	/* set up the report and bump the refcount  */
286 	zcr->zcr_cbdata = rm;
287 	zcr->zcr_cbinfo = c;
288 	zcr->zcr_finish = vdev_raidz_cksum_finish;
289 	zcr->zcr_free = vdev_raidz_cksum_free;
290 
291 	rm->rm_reports++;
292 	ASSERT3U(rm->rm_reports, >, 0);
293 
294 	if (rm->rm_abd_copy != NULL)
295 		return;
296 
297 	/*
298 	 * It's the first time we're called for this raidz_map_t, so we need
299 	 * to copy the data aside; there's no guarantee that our zio's buffer
300 	 * won't be re-used for something else.
301 	 *
302 	 * Our parity data is already in separate buffers, so there's no need
303 	 * to copy them.
304 	 */
305 
306 	size = 0;
307 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
308 		size += rm->rm_col[c].rc_size;
309 
310 	rm->rm_abd_copy = abd_alloc_for_io(size, B_FALSE);
311 
312 	for (offset = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
313 		raidz_col_t *col = &rm->rm_col[c];
314 		abd_t *tmp = abd_get_offset_size(rm->rm_abd_copy, offset,
315 		    col->rc_size);
316 
317 		ASSERT3S(tmp->abd_size, >=, col->rc_size);
318 		ASSERT3S(col->rc_abd->abd_size, >=, col->rc_size);
319 		abd_copy_off(tmp, col->rc_abd, 0, 0, col->rc_size);
320 		abd_put(col->rc_abd);
321 		col->rc_abd = tmp;
322 
323 		offset += col->rc_size;
324 	}
325 	ASSERT3U(offset, ==, size);
326 }
327 
328 static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
329 	vdev_raidz_map_free_vsd,
330 	vdev_raidz_cksum_report
331 };
332 
333 /*
334  * Divides the IO evenly across all child vdevs; usually, dcols is
335  * the number of children in the target vdev.
336  */
337 raidz_map_t *
338 vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
339     uint64_t nparity)
340 {
341 	raidz_map_t *rm;
342 	/* The starting RAIDZ (parent) vdev sector of the block. */
343 	uint64_t b = zio->io_offset >> ashift;
344 	/* The zio's size in units of the vdev's minimum sector size. */
345 	uint64_t s = zio->io_size >> ashift;
346 	/* The first column for this stripe. */
347 	uint64_t f = b % dcols;
348 	/* The starting byte offset on each child vdev. */
349 	uint64_t o = (b / dcols) << ashift;
350 	uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
351 	uint64_t off = 0;
352 
353 	/*
354 	 * "Quotient": The number of data sectors for this stripe on all but
355 	 * the "big column" child vdevs that also contain "remainder" data.
356 	 */
357 	q = s / (dcols - nparity);
358 
359 	/*
360 	 * "Remainder": The number of partial stripe data sectors in this I/O.
361 	 * This will add a sector to some, but not all, child vdevs.
362 	 */
363 	r = s - q * (dcols - nparity);
364 
365 	/* The number of "big columns" - those which contain remainder data. */
366 	bc = (r == 0 ? 0 : r + nparity);
367 
368 	/*
369 	 * The total number of data and parity sectors associated with
370 	 * this I/O.
371 	 */
372 	tot = s + nparity * (q + (r == 0 ? 0 : 1));
373 
374 	/* acols: The columns that will be accessed. */
375 	/* scols: The columns that will be accessed or skipped. */
376 	if (q == 0) {
377 		/* Our I/O request doesn't span all child vdevs. */
378 		acols = bc;
379 		scols = MIN(dcols, roundup(bc, nparity + 1));
380 	} else {
381 		acols = dcols;
382 		scols = dcols;
383 	}
384 
385 	ASSERT3U(acols, <=, scols);
386 
387 	rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP);
388 
389 	rm->rm_cols = acols;
390 	rm->rm_scols = scols;
391 	rm->rm_bigcols = bc;
392 	rm->rm_skipstart = bc;
393 	rm->rm_missingdata = 0;
394 	rm->rm_missingparity = 0;
395 	rm->rm_firstdatacol = nparity;
396 	rm->rm_abd_copy = NULL;
397 	rm->rm_reports = 0;
398 	rm->rm_freed = 0;
399 	rm->rm_ecksuminjected = 0;
400 
401 	asize = 0;
402 
403 	for (c = 0; c < scols; c++) {
404 		col = f + c;
405 		coff = o;
406 		if (col >= dcols) {
407 			col -= dcols;
408 			coff += 1ULL << ashift;
409 		}
410 		rm->rm_col[c].rc_devidx = col;
411 		rm->rm_col[c].rc_offset = coff;
412 		rm->rm_col[c].rc_abd = NULL;
413 		rm->rm_col[c].rc_gdata = NULL;
414 		rm->rm_col[c].rc_error = 0;
415 		rm->rm_col[c].rc_tried = 0;
416 		rm->rm_col[c].rc_skipped = 0;
417 
418 		if (c >= acols)
419 			rm->rm_col[c].rc_size = 0;
420 		else if (c < bc)
421 			rm->rm_col[c].rc_size = (q + 1) << ashift;
422 		else
423 			rm->rm_col[c].rc_size = q << ashift;
424 
425 		asize += rm->rm_col[c].rc_size;
426 	}
427 
428 	ASSERT3U(asize, ==, tot << ashift);
429 	rm->rm_asize = roundup(asize, (nparity + 1) << ashift);
430 	rm->rm_nskip = roundup(tot, nparity + 1) - tot;
431 	ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << ashift);
432 	ASSERT3U(rm->rm_nskip, <=, nparity);
433 
434 	for (c = 0; c < rm->rm_firstdatacol; c++)
435 		rm->rm_col[c].rc_abd =
436 		    abd_alloc_linear(rm->rm_col[c].rc_size, B_FALSE);
437 
438 	rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, 0,
439 	    rm->rm_col[c].rc_size);
440 	off = rm->rm_col[c].rc_size;
441 
442 	for (c = c + 1; c < acols; c++) {
443 		rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, off,
444 		    rm->rm_col[c].rc_size);
445 		off += rm->rm_col[c].rc_size;
446 	}
447 
448 	/*
449 	 * If all data stored spans all columns, there's a danger that parity
450 	 * will always be on the same device and, since parity isn't read
451 	 * during normal operation, that device's I/O bandwidth won't be
452 	 * used effectively. We therefore switch the parity every 1MB.
453 	 *
454 	 * ... at least that was, ostensibly, the theory. As a practical
455 	 * matter unless we juggle the parity between all devices evenly, we
456 	 * won't see any benefit. Further, occasional writes that aren't a
457 	 * multiple of the LCM of the number of children and the minimum
458 	 * stripe width are sufficient to avoid pessimal behavior.
459 	 * Unfortunately, this decision created an implicit on-disk format
460 	 * requirement that we need to support for all eternity, but only
461 	 * for single-parity RAID-Z.
462 	 *
463 	 * If we intend to skip a sector in the zeroth column for padding
464 	 * we must make sure to note this swap. We will never intend to
465 	 * skip the first column since at least one data and one parity
466 	 * column must appear in each row.
467 	 */
468 	ASSERT(rm->rm_cols >= 2);
469 	ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);
470 
471 	if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
472 		devidx = rm->rm_col[0].rc_devidx;
473 		o = rm->rm_col[0].rc_offset;
474 		rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
475 		rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
476 		rm->rm_col[1].rc_devidx = devidx;
477 		rm->rm_col[1].rc_offset = o;
478 
479 		if (rm->rm_skipstart == 0)
480 			rm->rm_skipstart = 1;
481 	}
482 
483 	/* init RAIDZ parity ops */
484 	rm->rm_ops = vdev_raidz_math_get_ops();
485 
486 	return (rm);
487 }
488 
489 struct pqr_struct {
490 	uint64_t *p;
491 	uint64_t *q;
492 	uint64_t *r;
493 };
494 
495 static int
496 vdev_raidz_p_func(void *buf, size_t size, void *private)
497 {
498 	struct pqr_struct *pqr = private;
499 	const uint64_t *src = buf;
500 	int i, cnt = size / sizeof (src[0]);
501 
502 	ASSERT(pqr->p && !pqr->q && !pqr->r);
503 
504 	for (i = 0; i < cnt; i++, src++, pqr->p++)
505 		*pqr->p ^= *src;
506 
507 	return (0);
508 }
509 
510 static int
511 vdev_raidz_pq_func(void *buf, size_t size, void *private)
512 {
513 	struct pqr_struct *pqr = private;
514 	const uint64_t *src = buf;
515 	uint64_t mask;
516 	int i, cnt = size / sizeof (src[0]);
517 
518 	ASSERT(pqr->p && pqr->q && !pqr->r);
519 
520 	for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
521 		*pqr->p ^= *src;
522 		VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
523 		*pqr->q ^= *src;
524 	}
525 
526 	return (0);
527 }
528 
529 static int
530 vdev_raidz_pqr_func(void *buf, size_t size, void *private)
531 {
532 	struct pqr_struct *pqr = private;
533 	const uint64_t *src = buf;
534 	uint64_t mask;
535 	int i, cnt = size / sizeof (src[0]);
536 
537 	ASSERT(pqr->p && pqr->q && pqr->r);
538 
539 	for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
540 		*pqr->p ^= *src;
541 		VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
542 		*pqr->q ^= *src;
543 		VDEV_RAIDZ_64MUL_4(*pqr->r, mask);
544 		*pqr->r ^= *src;
545 	}
546 
547 	return (0);
548 }
549 
550 static void
551 vdev_raidz_generate_parity_p(raidz_map_t *rm)
552 {
553 	uint64_t *p;
554 	int c;
555 	abd_t *src;
556 
557 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
558 		src = rm->rm_col[c].rc_abd;
559 		p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
560 
561 		if (c == rm->rm_firstdatacol) {
562 			abd_copy_to_buf_off(p, src, 0, rm->rm_col[c].rc_size);
563 		} else {
564 			struct pqr_struct pqr = { p, NULL, NULL };
565 			(void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
566 			    vdev_raidz_p_func, &pqr);
567 		}
568 	}
569 }
570 
571 static void
572 vdev_raidz_generate_parity_pq(raidz_map_t *rm)
573 {
574 	uint64_t *p, *q, pcnt, ccnt, mask, i;
575 	int c;
576 	abd_t *src;
577 
578 	pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
579 	ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
580 	    rm->rm_col[VDEV_RAIDZ_Q].rc_size);
581 
582 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
583 		src = rm->rm_col[c].rc_abd;
584 		p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
585 		q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
586 
587 		ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
588 
589 		if (c == rm->rm_firstdatacol) {
590 			ASSERT(ccnt == pcnt || ccnt == 0);
591 
592 			abd_copy_to_buf_off(p, src, 0, rm->rm_col[c].rc_size);
593 			(void) memcpy(q, p, rm->rm_col[c].rc_size);
594 			for (i = ccnt; i < pcnt; i++) {
595 				p[i] = 0;
596 				q[i] = 0;
597 			}
598 		} else {
599 			struct pqr_struct pqr = { p, q, NULL };
600 
601 			ASSERT(ccnt <= pcnt);
602 
603 			(void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
604 			    vdev_raidz_pq_func, &pqr);
605 
606 			/*
607 			 * Treat short columns as though they are full of 0s.
608 			 * Note that there's therefore nothing needed for P.
609 			 */
610 			for (i = ccnt; i < pcnt; i++) {
611 				VDEV_RAIDZ_64MUL_2(q[i], mask);
612 			}
613 		}
614 	}
615 }
616 
617 static void
618 vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
619 {
620 	uint64_t *p, *q, *r, pcnt, ccnt, mask, i;
621 	int c;
622 	abd_t *src;
623 
624 	pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
625 	ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
626 	    rm->rm_col[VDEV_RAIDZ_Q].rc_size);
627 	ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
628 	    rm->rm_col[VDEV_RAIDZ_R].rc_size);
629 
630 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
631 		src = rm->rm_col[c].rc_abd;
632 		p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
633 		q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
634 		r = abd_to_buf(rm->rm_col[VDEV_RAIDZ_R].rc_abd);
635 
636 		ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
637 
638 		if (c == rm->rm_firstdatacol) {
639 			ASSERT3S(src->abd_size, >=, rm->rm_col[c].rc_size);
640 			ASSERT(ccnt == pcnt || ccnt == 0);
641 			abd_copy_to_buf_off(p, src, 0, rm->rm_col[c].rc_size);
642 			(void) memcpy(q, p, rm->rm_col[c].rc_size);
643 			(void) memcpy(r, p, rm->rm_col[c].rc_size);
644 
645 			for (i = ccnt; i < pcnt; i++) {
646 				p[i] = 0;
647 				q[i] = 0;
648 				r[i] = 0;
649 			}
650 		} else {
651 			struct pqr_struct pqr = { p, q, r };
652 
653 			ASSERT(ccnt <= pcnt);
654 			(void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
655 			    vdev_raidz_pqr_func, &pqr);
656 
657 			/*
658 			 * Treat short columns as though they are full of 0s.
659 			 * Note that there's therefore nothing needed for P.
660 			 */
661 			for (i = ccnt; i < pcnt; i++) {
662 				VDEV_RAIDZ_64MUL_2(q[i], mask);
663 				VDEV_RAIDZ_64MUL_4(r[i], mask);
664 			}
665 		}
666 	}
667 }
668 
669 /*
670  * Generate RAID parity in the first virtual columns according to the number of
671  * parity columns available.
672  */
673 void
674 vdev_raidz_generate_parity(raidz_map_t *rm)
675 {
676 	/* Generate using the new math implementation */
677 	if (vdev_raidz_math_generate(rm) != RAIDZ_ORIGINAL_IMPL)
678 		return;
679 
680 	switch (rm->rm_firstdatacol) {
681 	case 1:
682 		vdev_raidz_generate_parity_p(rm);
683 		break;
684 	case 2:
685 		vdev_raidz_generate_parity_pq(rm);
686 		break;
687 	case 3:
688 		vdev_raidz_generate_parity_pqr(rm);
689 		break;
690 	default:
691 		cmn_err(CE_PANIC, "invalid RAID-Z configuration");
692 	}
693 }
694 
695 /* ARGSUSED */
696 static int
697 vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
698 {
699 	uint64_t *dst = dbuf;
700 	uint64_t *src = sbuf;
701 	int cnt = size / sizeof (src[0]);
702 
703 	for (int i = 0; i < cnt; i++) {
704 		dst[i] ^= src[i];
705 	}
706 
707 	return (0);
708 }
709 
710 /* ARGSUSED */
711 static int
712 vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
713     void *private)
714 {
715 	uint64_t *dst = dbuf;
716 	uint64_t *src = sbuf;
717 	uint64_t mask;
718 	int cnt = size / sizeof (dst[0]);
719 
720 	for (int i = 0; i < cnt; i++, dst++, src++) {
721 		VDEV_RAIDZ_64MUL_2(*dst, mask);
722 		*dst ^= *src;
723 	}
724 
725 	return (0);
726 }
727 
728 /* ARGSUSED */
729 static int
730 vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
731 {
732 	uint64_t *dst = buf;
733 	uint64_t mask;
734 	int cnt = size / sizeof (dst[0]);
735 
736 	for (int i = 0; i < cnt; i++, dst++) {
737 		/* same operation as vdev_raidz_reconst_q_pre_func() on dst */
738 		VDEV_RAIDZ_64MUL_2(*dst, mask);
739 	}
740 
741 	return (0);
742 }
743 
744 struct reconst_q_struct {
745 	uint64_t *q;
746 	int exp;
747 };
748 
749 static int
750 vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
751 {
752 	struct reconst_q_struct *rq = private;
753 	uint64_t *dst = buf;
754 	int cnt = size / sizeof (dst[0]);
755 
756 	for (int i = 0; i < cnt; i++, dst++, rq->q++) {
757 
758 		*dst ^= *rq->q;
759 		int j;
760 		uint8_t *b;
761 		for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
762 			*b = vdev_raidz_exp2(*b, rq->exp);
763 		}
764 	}
765 
766 	return (0);
767 }
768 
769 struct reconst_pq_struct {
770 	uint8_t *p;
771 	uint8_t *q;
772 	uint8_t *pxy;
773 	uint8_t *qxy;
774 	int aexp;
775 	int bexp;
776 };
777 
778 static int
779 vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
780 {
781 	struct reconst_pq_struct *rpq = private;
782 	uint8_t *xd = xbuf;
783 	uint8_t *yd = ybuf;
784 
785 	for (int i = 0; i < size;
786 	    i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
787 		*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
788 		    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
789 		*yd = *rpq->p ^ *rpq->pxy ^ *xd;
790 	}
791 
792 	return (0);
793 }
794 
795 static int
796 vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
797 {
798 	struct reconst_pq_struct *rpq = private;
799 	uint8_t *xd = xbuf;
800 
801 	for (int i = 0; i < size;
802 	    i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
803 		/* same operation as vdev_raidz_reconst_pq_func() on xd */
804 		*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
805 		    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
806 	}
807 
808 	return (0);
809 }
810 
811 static int
812 vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
813 {
814 	int x = tgts[0];
815 	int c;
816 	abd_t *dst, *src;
817 
818 	ASSERT(ntgts == 1);
819 	ASSERT(x >= rm->rm_firstdatacol);
820 	ASSERT(x < rm->rm_cols);
821 
822 	ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_P].rc_size);
823 	ASSERT(rm->rm_col[x].rc_size > 0);
824 
825 	src = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
826 	dst = rm->rm_col[x].rc_abd;
827 
828 	ASSERT3S(dst->abd_size, >=, rm->rm_col[x].rc_size);
829 	ASSERT3S(src->abd_size, >=, rm->rm_col[x].rc_size);
830 	abd_copy_off(dst, src, 0, 0, rm->rm_col[x].rc_size);
831 
832 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
833 		uint64_t size = MIN(rm->rm_col[x].rc_size,
834 		    rm->rm_col[c].rc_size);
835 
836 		src = rm->rm_col[c].rc_abd;
837 		dst = rm->rm_col[x].rc_abd;
838 
839 		if (c == x)
840 			continue;
841 
842 		(void) abd_iterate_func2(dst, src, 0, 0, size,
843 		    vdev_raidz_reconst_p_func, NULL);
844 	}
845 
846 	return (1 << VDEV_RAIDZ_P);
847 }
848 
849 static int
850 vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
851 {
852 	int x = tgts[0];
853 	int c, exp;
854 	abd_t *dst, *src;
855 
856 	ASSERT(ntgts == 1);
857 
858 	ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_Q].rc_size);
859 
860 	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
861 		uint64_t size = (c == x) ? 0 : MIN(rm->rm_col[x].rc_size,
862 		    rm->rm_col[c].rc_size);
863 
864 		src = rm->rm_col[c].rc_abd;
865 		dst = rm->rm_col[x].rc_abd;
866 
867 		if (c == rm->rm_firstdatacol) {
868 			if (dst != src) {
869 				ASSERT3S(dst->abd_size, >=, size);
870 				ASSERT3S(src->abd_size, >=, size);
871 				abd_copy_off(dst, src, 0, 0, size);
872 			}
873 			if (rm->rm_col[x].rc_size > size)
874 				abd_zero_off(dst, size,
875 				    rm->rm_col[x].rc_size - size);
876 		} else {
877 			ASSERT3U(size, <=, rm->rm_col[x].rc_size);
878 			if (src != dst)
879 				(void) abd_iterate_func2(dst, src, 0, 0, size,
880 				    vdev_raidz_reconst_q_pre_func, NULL);
881 			(void) abd_iterate_func(dst,
882 			    size, rm->rm_col[x].rc_size - size,
883 			    vdev_raidz_reconst_q_pre_tail_func, NULL);
884 		}
885 	}
886 
887 	src = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
888 	dst = rm->rm_col[x].rc_abd;
889 	exp = 255 - (rm->rm_cols - 1 - x);
890 
891 	struct reconst_q_struct rq = { abd_to_buf(src), exp };
892 	(void) abd_iterate_func(dst, 0, rm->rm_col[x].rc_size,
893 	    vdev_raidz_reconst_q_post_func, &rq);
894 
895 	return (1 << VDEV_RAIDZ_Q);
896 }
897 
898 static int
899 vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
900 {
901 	uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
902 	abd_t *pdata, *qdata;
903 	uint64_t xsize, ysize;
904 	int x = tgts[0];
905 	int y = tgts[1];
906 	abd_t *xd, *yd;
907 
908 	ASSERT(ntgts == 2);
909 	ASSERT(x < y);
910 	ASSERT(x >= rm->rm_firstdatacol);
911 	ASSERT(y < rm->rm_cols);
912 
913 	ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);
914 
915 	/*
916 	 * Move the parity data aside -- we're going to compute parity as
917 	 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
918 	 * reuse the parity generation mechanism without trashing the actual
919 	 * parity so we make those columns appear to be full of zeros by
920 	 * setting their lengths to zero.
921 	 */
922 	pdata = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
923 	qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
924 	xsize = rm->rm_col[x].rc_size;
925 	ysize = rm->rm_col[y].rc_size;
926 
927 	rm->rm_col[VDEV_RAIDZ_P].rc_abd =
928 	    abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
929 	rm->rm_col[VDEV_RAIDZ_Q].rc_abd =
930 	    abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
931 	rm->rm_col[x].rc_size = 0;
932 	rm->rm_col[y].rc_size = 0;
933 
934 	vdev_raidz_generate_parity_pq(rm);
935 
936 	rm->rm_col[x].rc_size = xsize;
937 	rm->rm_col[y].rc_size = ysize;
938 
939 	p = abd_to_buf(pdata);
940 	q = abd_to_buf(qdata);
941 	pxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
942 	qxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
943 	xd = rm->rm_col[x].rc_abd;
944 	yd = rm->rm_col[y].rc_abd;
945 
946 	/*
947 	 * We now have:
948 	 *	Pxy = P + D_x + D_y
949 	 *	Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
950 	 *
951 	 * We can then solve for D_x:
952 	 *	D_x = A * (P + Pxy) + B * (Q + Qxy)
953 	 * where
954 	 *	A = 2^(x - y) * (2^(x - y) + 1)^-1
955 	 *	B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
956 	 *
957 	 * With D_x in hand, we can easily solve for D_y:
958 	 *	D_y = P + Pxy + D_x
959 	 */
960 
961 	a = vdev_raidz_pow2[255 + x - y];
962 	b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
963 	tmp = 255 - vdev_raidz_log2[a ^ 1];
964 
965 	aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
966 	bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
967 
968 	ASSERT3U(xsize, >=, ysize);
969 	struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp };
970 	(void) abd_iterate_func2(xd, yd, 0, 0, ysize,
971 	    vdev_raidz_reconst_pq_func, &rpq);
972 	(void) abd_iterate_func(xd, ysize, xsize - ysize,
973 	    vdev_raidz_reconst_pq_tail_func, &rpq);
974 
975 	abd_free(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
976 	abd_free(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
977 
978 	/*
979 	 * Restore the saved parity data.
980 	 */
981 	rm->rm_col[VDEV_RAIDZ_P].rc_abd = pdata;
982 	rm->rm_col[VDEV_RAIDZ_Q].rc_abd = qdata;
983 
984 	return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q));
985 }
986 
987 /* BEGIN CSTYLED */
988 /*
989  * In the general case of reconstruction, we must solve the system of linear
990  * equations defined by the coeffecients used to generate parity as well as
991  * the contents of the data and parity disks. This can be expressed with
992  * vectors for the original data (D) and the actual data (d) and parity (p)
993  * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
994  *
995  *            __   __                     __     __
996  *            |     |         __     __   |  p_0  |
997  *            |  V  |         |  D_0  |   | p_m-1 |
998  *            |     |    x    |   :   | = |  d_0  |
999  *            |  I  |         | D_n-1 |   |   :   |
1000  *            |     |         ~~     ~~   | d_n-1 |
1001  *            ~~   ~~                     ~~     ~~
1002  *
1003  * I is simply a square identity matrix of size n, and V is a vandermonde
1004  * matrix defined by the coeffecients we chose for the various parity columns
1005  * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
1006  * computation as well as linear separability.
1007  *
1008  *      __               __               __     __
1009  *      |   1   ..  1 1 1 |               |  p_0  |
1010  *      | 2^n-1 ..  4 2 1 |   __     __   |   :   |
1011  *      | 4^n-1 .. 16 4 1 |   |  D_0  |   | p_m-1 |
1012  *      |   1   ..  0 0 0 |   |  D_1  |   |  d_0  |
1013  *      |   0   ..  0 0 0 | x |  D_2  | = |  d_1  |
1014  *      |   :       : : : |   |   :   |   |  d_2  |
1015  *      |   0   ..  1 0 0 |   | D_n-1 |   |   :   |
1016  *      |   0   ..  0 1 0 |   ~~     ~~   |   :   |
1017  *      |   0   ..  0 0 1 |               | d_n-1 |
1018  *      ~~               ~~               ~~     ~~
1019  *
1020  * Note that I, V, d, and p are known. To compute D, we must invert the
1021  * matrix and use the known data and parity values to reconstruct the unknown
1022  * data values. We begin by removing the rows in V|I and d|p that correspond
1023  * to failed or missing columns; we then make V|I square (n x n) and d|p
1024  * sized n by removing rows corresponding to unused parity from the bottom up
1025  * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
1026  * using Gauss-Jordan elimination. In the example below we use m=3 parity
1027  * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
1028  *           __                               __
1029  *           |  1   1   1   1   1   1   1   1  |
1030  *           | 128  64  32  16  8   4   2   1  | <-----+-+-- missing disks
1031  *           |  19 205 116  29  64  16  4   1  |      / /
1032  *           |  1   0   0   0   0   0   0   0  |     / /
1033  *           |  0   1   0   0   0   0   0   0  | <--' /
1034  *  (V|I)  = |  0   0   1   0   0   0   0   0  | <---'
1035  *           |  0   0   0   1   0   0   0   0  |
1036  *           |  0   0   0   0   1   0   0   0  |
1037  *           |  0   0   0   0   0   1   0   0  |
1038  *           |  0   0   0   0   0   0   1   0  |
1039  *           |  0   0   0   0   0   0   0   1  |
1040  *           ~~                               ~~
1041  *           __                               __
1042  *           |  1   1   1   1   1   1   1   1  |
1043  *           | 128  64  32  16  8   4   2   1  |
1044  *           |  19 205 116  29  64  16  4   1  |
1045  *           |  1   0   0   0   0   0   0   0  |
1046  *           |  0   1   0   0   0   0   0   0  |
1047  *  (V|I)' = |  0   0   1   0   0   0   0   0  |
1048  *           |  0   0   0   1   0   0   0   0  |
1049  *           |  0   0   0   0   1   0   0   0  |
1050  *           |  0   0   0   0   0   1   0   0  |
1051  *           |  0   0   0   0   0   0   1   0  |
1052  *           |  0   0   0   0   0   0   0   1  |
1053  *           ~~                               ~~
1054  *
1055  * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
1056  * have carefully chosen the seed values 1, 2, and 4 to ensure that this
1057  * matrix is not singular.
1058  * __                                                                 __
1059  * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
1060  * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
1061  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1062  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1063  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1064  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1065  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1066  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1067  * ~~                                                                 ~~
1068  * __                                                                 __
1069  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1070  * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
1071  * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
1072  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1073  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1074  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1075  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1076  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1077  * ~~                                                                 ~~
1078  * __                                                                 __
1079  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1080  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1081  * |  0  205 116  0   0   0   0   0     0   1   19  29  64  16  4   1  |
1082  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1083  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1084  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1085  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1086  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1087  * ~~                                                                 ~~
1088  * __                                                                 __
1089  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1090  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1091  * |  0   0  185  0   0   0   0   0    205  1  222 208 141 221 201 204 |
1092  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1093  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1094  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1095  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1096  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1097  * ~~                                                                 ~~
1098  * __                                                                 __
1099  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1100  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1101  * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
1102  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1103  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1104  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1105  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1106  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1107  * ~~                                                                 ~~
1108  * __                                                                 __
1109  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1110  * |  0   1   0   0   0   0   0   0    167 100  5   41 159 169 217 208 |
1111  * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
1112  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1113  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1114  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1115  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1116  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1117  * ~~                                                                 ~~
1118  *                   __                               __
1119  *                   |  0   0   1   0   0   0   0   0  |
1120  *                   | 167 100  5   41 159 169 217 208 |
1121  *                   | 166 100  4   40 158 168 216 209 |
1122  *       (V|I)'^-1 = |  0   0   0   1   0   0   0   0  |
1123  *                   |  0   0   0   0   1   0   0   0  |
1124  *                   |  0   0   0   0   0   1   0   0  |
1125  *                   |  0   0   0   0   0   0   1   0  |
1126  *                   |  0   0   0   0   0   0   0   1  |
1127  *                   ~~                               ~~
1128  *
1129  * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
1130  * of the missing data.
1131  *
1132  * As is apparent from the example above, the only non-trivial rows in the
1133  * inverse matrix correspond to the data disks that we're trying to
1134  * reconstruct. Indeed, those are the only rows we need as the others would
1135  * only be useful for reconstructing data known or assumed to be valid. For
1136  * that reason, we only build the coefficients in the rows that correspond to
1137  * targeted columns.
1138  */
1139 /* END CSTYLED */
1140 
1141 static void
1142 vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
1143     uint8_t **rows)
1144 {
1145 	int i, j;
1146 	int pow;
1147 
1148 	ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);
1149 
1150 	/*
1151 	 * Fill in the missing rows of interest.
1152 	 */
1153 	for (i = 0; i < nmap; i++) {
1154 		ASSERT3S(0, <=, map[i]);
1155 		ASSERT3S(map[i], <=, 2);
1156 
1157 		pow = map[i] * n;
1158 		if (pow > 255)
1159 			pow -= 255;
1160 		ASSERT(pow <= 255);
1161 
1162 		for (j = 0; j < n; j++) {
1163 			pow -= map[i];
1164 			if (pow < 0)
1165 				pow += 255;
1166 			rows[i][j] = vdev_raidz_pow2[pow];
1167 		}
1168 	}
1169 }
1170 
1171 static void
1172 vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
1173     uint8_t **rows, uint8_t **invrows, const uint8_t *used)
1174 {
1175 	int i, j, ii, jj;
1176 	uint8_t log;
1177 
1178 	/*
1179 	 * Assert that the first nmissing entries from the array of used
1180 	 * columns correspond to parity columns and that subsequent entries
1181 	 * correspond to data columns.
1182 	 */
1183 	for (i = 0; i < nmissing; i++) {
1184 		ASSERT3S(used[i], <, rm->rm_firstdatacol);
1185 	}
1186 	for (; i < n; i++) {
1187 		ASSERT3S(used[i], >=, rm->rm_firstdatacol);
1188 	}
1189 
1190 	/*
1191 	 * First initialize the storage where we'll compute the inverse rows.
1192 	 */
1193 	for (i = 0; i < nmissing; i++) {
1194 		for (j = 0; j < n; j++) {
1195 			invrows[i][j] = (i == j) ? 1 : 0;
1196 		}
1197 	}
1198 
1199 	/*
1200 	 * Subtract all trivial rows from the rows of consequence.
1201 	 */
1202 	for (i = 0; i < nmissing; i++) {
1203 		for (j = nmissing; j < n; j++) {
1204 			ASSERT3U(used[j], >=, rm->rm_firstdatacol);
1205 			jj = used[j] - rm->rm_firstdatacol;
1206 			ASSERT3S(jj, <, n);
1207 			invrows[i][j] = rows[i][jj];
1208 			rows[i][jj] = 0;
1209 		}
1210 	}
1211 
1212 	/*
1213 	 * For each of the rows of interest, we must normalize it and subtract
1214 	 * a multiple of it from the other rows.
1215 	 */
1216 	for (i = 0; i < nmissing; i++) {
1217 		for (j = 0; j < missing[i]; j++) {
1218 			ASSERT0(rows[i][j]);
1219 		}
1220 		ASSERT3U(rows[i][missing[i]], !=, 0);
1221 
1222 		/*
1223 		 * Compute the inverse of the first element and multiply each
1224 		 * element in the row by that value.
1225 		 */
1226 		log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
1227 
1228 		for (j = 0; j < n; j++) {
1229 			rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1230 			invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
1231 		}
1232 
1233 		for (ii = 0; ii < nmissing; ii++) {
1234 			if (i == ii)
1235 				continue;
1236 
1237 			ASSERT3U(rows[ii][missing[i]], !=, 0);
1238 
1239 			log = vdev_raidz_log2[rows[ii][missing[i]]];
1240 
1241 			for (j = 0; j < n; j++) {
1242 				rows[ii][j] ^=
1243 				    vdev_raidz_exp2(rows[i][j], log);
1244 				invrows[ii][j] ^=
1245 				    vdev_raidz_exp2(invrows[i][j], log);
1246 			}
1247 		}
1248 	}
1249 
1250 	/*
1251 	 * Verify that the data that is left in the rows are properly part of
1252 	 * an identity matrix.
1253 	 */
1254 	for (i = 0; i < nmissing; i++) {
1255 		for (j = 0; j < n; j++) {
1256 			if (j == missing[i]) {
1257 				ASSERT3U(rows[i][j], ==, 1);
1258 			} else {
1259 				ASSERT0(rows[i][j]);
1260 			}
1261 		}
1262 	}
1263 }
1264 
1265 static void
1266 vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
1267     int *missing, uint8_t **invrows, const uint8_t *used)
1268 {
1269 	int i, j, x, cc, c;
1270 	uint8_t *src;
1271 	uint64_t ccount;
1272 	uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
1273 	uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
1274 	uint8_t log = 0;
1275 	uint8_t val;
1276 	int ll;
1277 	uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
1278 	uint8_t *p, *pp;
1279 	size_t psize;
1280 
1281 	psize = sizeof (invlog[0][0]) * n * nmissing;
1282 	p = kmem_alloc(psize, KM_SLEEP);
1283 
1284 	for (pp = p, i = 0; i < nmissing; i++) {
1285 		invlog[i] = pp;
1286 		pp += n;
1287 	}
1288 
1289 	for (i = 0; i < nmissing; i++) {
1290 		for (j = 0; j < n; j++) {
1291 			ASSERT3U(invrows[i][j], !=, 0);
1292 			invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
1293 		}
1294 	}
1295 
1296 	for (i = 0; i < n; i++) {
1297 		c = used[i];
1298 		ASSERT3U(c, <, rm->rm_cols);
1299 
1300 		src = abd_to_buf(rm->rm_col[c].rc_abd);
1301 		ccount = rm->rm_col[c].rc_size;
1302 		for (j = 0; j < nmissing; j++) {
1303 			cc = missing[j] + rm->rm_firstdatacol;
1304 			ASSERT3U(cc, >=, rm->rm_firstdatacol);
1305 			ASSERT3U(cc, <, rm->rm_cols);
1306 			ASSERT3U(cc, !=, c);
1307 
1308 			dst[j] = abd_to_buf(rm->rm_col[cc].rc_abd);
1309 			dcount[j] = rm->rm_col[cc].rc_size;
1310 		}
1311 
1312 		ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);
1313 
1314 		for (x = 0; x < ccount; x++, src++) {
1315 			if (*src != 0)
1316 				log = vdev_raidz_log2[*src];
1317 
1318 			for (cc = 0; cc < nmissing; cc++) {
1319 				if (x >= dcount[cc])
1320 					continue;
1321 
1322 				if (*src == 0) {
1323 					val = 0;
1324 				} else {
1325 					if ((ll = log + invlog[cc][i]) >= 255)
1326 						ll -= 255;
1327 					val = vdev_raidz_pow2[ll];
1328 				}
1329 
1330 				if (i == 0)
1331 					dst[cc][x] = val;
1332 				else
1333 					dst[cc][x] ^= val;
1334 			}
1335 		}
1336 	}
1337 
1338 	kmem_free(p, psize);
1339 }
1340 
1341 static int
1342 vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
1343 {
1344 	int n, i, c, t, tt;
1345 	int nmissing_rows;
1346 	int missing_rows[VDEV_RAIDZ_MAXPARITY];
1347 	int parity_map[VDEV_RAIDZ_MAXPARITY];
1348 
1349 	uint8_t *p, *pp;
1350 	size_t psize;
1351 
1352 	uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
1353 	uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
1354 	uint8_t *used;
1355 
1356 	abd_t **bufs = NULL;
1357 
1358 	int code = 0;
1359 
1360 	/*
1361 	 * Matrix reconstruction can't use scatter ABDs yet, so we allocate
1362 	 * temporary linear ABDs.
1363 	 */
1364 	if (!abd_is_linear(rm->rm_col[rm->rm_firstdatacol].rc_abd)) {
1365 		bufs = kmem_alloc(rm->rm_cols * sizeof (abd_t *), KM_PUSHPAGE);
1366 
1367 		for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1368 			raidz_col_t *col = &rm->rm_col[c];
1369 
1370 			bufs[c] = col->rc_abd;
1371 			col->rc_abd = abd_alloc_linear(col->rc_size, B_TRUE);
1372 			ASSERT3S(col->rc_abd->abd_size, >=, col->rc_size);
1373 			ASSERT3S(bufs[c]->abd_size, >=, col->rc_size);
1374 			abd_copy_off(col->rc_abd, bufs[c], 0, 0, col->rc_size);
1375 		}
1376 	}
1377 
1378 	n = rm->rm_cols - rm->rm_firstdatacol;
1379 
1380 	/*
1381 	 * Figure out which data columns are missing.
1382 	 */
1383 	nmissing_rows = 0;
1384 	for (t = 0; t < ntgts; t++) {
1385 		if (tgts[t] >= rm->rm_firstdatacol) {
1386 			missing_rows[nmissing_rows++] =
1387 			    tgts[t] - rm->rm_firstdatacol;
1388 		}
1389 	}
1390 
1391 	/*
1392 	 * Figure out which parity columns to use to help generate the missing
1393 	 * data columns.
1394 	 */
1395 	for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
1396 		ASSERT(tt < ntgts);
1397 		ASSERT(c < rm->rm_firstdatacol);
1398 
1399 		/*
1400 		 * Skip any targeted parity columns.
1401 		 */
1402 		if (c == tgts[tt]) {
1403 			tt++;
1404 			continue;
1405 		}
1406 
1407 		code |= 1 << c;
1408 
1409 		parity_map[i] = c;
1410 		i++;
1411 	}
1412 
1413 	ASSERT(code != 0);
1414 	ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);
1415 
1416 	psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
1417 	    nmissing_rows * n + sizeof (used[0]) * n;
1418 	p = kmem_alloc(psize, KM_SLEEP);
1419 
1420 	for (pp = p, i = 0; i < nmissing_rows; i++) {
1421 		rows[i] = pp;
1422 		pp += n;
1423 		invrows[i] = pp;
1424 		pp += n;
1425 	}
1426 	used = pp;
1427 
1428 	for (i = 0; i < nmissing_rows; i++) {
1429 		used[i] = parity_map[i];
1430 	}
1431 
1432 	for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1433 		if (tt < nmissing_rows &&
1434 		    c == missing_rows[tt] + rm->rm_firstdatacol) {
1435 			tt++;
1436 			continue;
1437 		}
1438 
1439 		ASSERT3S(i, <, n);
1440 		used[i] = c;
1441 		i++;
1442 	}
1443 
1444 	/*
1445 	 * Initialize the interesting rows of the matrix.
1446 	 */
1447 	vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);
1448 
1449 	/*
1450 	 * Invert the matrix.
1451 	 */
1452 	vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
1453 	    invrows, used);
1454 
1455 	/*
1456 	 * Reconstruct the missing data using the generated matrix.
1457 	 */
1458 	vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
1459 	    invrows, used);
1460 
1461 	kmem_free(p, psize);
1462 
1463 	/*
1464 	 * copy back from temporary linear abds and free them
1465 	 */
1466 	if (bufs) {
1467 		for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1468 			raidz_col_t *col = &rm->rm_col[c];
1469 
1470 			ASSERT3S(bufs[c]->abd_size, >=, col->rc_size);
1471 			ASSERT3S(col->rc_abd->abd_size, >=, col->rc_size);
1472 			abd_copy_off(bufs[c], col->rc_abd, 0, 0, col->rc_size);
1473 			abd_free(col->rc_abd);
1474 			col->rc_abd = bufs[c];
1475 		}
1476 		kmem_free(bufs, rm->rm_cols * sizeof (abd_t *));
1477 	}
1478 
1479 	return (code);
1480 }
1481 
1482 int
1483 vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
1484 {
1485 	int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
1486 	int ntgts;
1487 	int i, c, ret;
1488 	int code;
1489 	int nbadparity, nbaddata;
1490 	int parity_valid[VDEV_RAIDZ_MAXPARITY];
1491 
1492 	/*
1493 	 * The tgts list must already be sorted.
1494 	 */
1495 	for (i = 1; i < nt; i++) {
1496 		ASSERT(t[i] > t[i - 1]);
1497 	}
1498 
1499 	nbadparity = rm->rm_firstdatacol;
1500 	nbaddata = rm->rm_cols - nbadparity;
1501 	ntgts = 0;
1502 	for (i = 0, c = 0; c < rm->rm_cols; c++) {
1503 		if (c < rm->rm_firstdatacol)
1504 			parity_valid[c] = B_FALSE;
1505 
1506 		if (i < nt && c == t[i]) {
1507 			tgts[ntgts++] = c;
1508 			i++;
1509 		} else if (rm->rm_col[c].rc_error != 0) {
1510 			tgts[ntgts++] = c;
1511 		} else if (c >= rm->rm_firstdatacol) {
1512 			nbaddata--;
1513 		} else {
1514 			parity_valid[c] = B_TRUE;
1515 			nbadparity--;
1516 		}
1517 	}
1518 
1519 	ASSERT(ntgts >= nt);
1520 	ASSERT(nbaddata >= 0);
1521 	ASSERT(nbaddata + nbadparity == ntgts);
1522 
1523 	dt = &tgts[nbadparity];
1524 
1525 	/* Reconstruct using the new math implementation */
1526 	ret = vdev_raidz_math_reconstruct(rm, parity_valid, dt, nbaddata);
1527 	if (ret != RAIDZ_ORIGINAL_IMPL)
1528 		return (ret);
1529 
1530 	/*
1531 	 * See if we can use any of our optimized reconstruction routines.
1532 	 */
1533 	switch (nbaddata) {
1534 	case 1:
1535 		if (parity_valid[VDEV_RAIDZ_P])
1536 			return (vdev_raidz_reconstruct_p(rm, dt, 1));
1537 
1538 		ASSERT(rm->rm_firstdatacol > 1);
1539 
1540 		if (parity_valid[VDEV_RAIDZ_Q])
1541 			return (vdev_raidz_reconstruct_q(rm, dt, 1));
1542 
1543 		ASSERT(rm->rm_firstdatacol > 2);
1544 		break;
1545 
1546 	case 2:
1547 		ASSERT(rm->rm_firstdatacol > 1);
1548 
1549 		if (parity_valid[VDEV_RAIDZ_P] &&
1550 		    parity_valid[VDEV_RAIDZ_Q])
1551 			return (vdev_raidz_reconstruct_pq(rm, dt, 2));
1552 
1553 		ASSERT(rm->rm_firstdatacol > 2);
1554 
1555 		break;
1556 	}
1557 
1558 	code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
1559 	ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
1560 	ASSERT(code > 0);
1561 	return (code);
1562 }
1563 
1564 static int
1565 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1566     uint64_t *ashift)
1567 {
1568 	vdev_t *cvd;
1569 	uint64_t nparity = vd->vdev_nparity;
1570 	int c;
1571 	int lasterror = 0;
1572 	int numerrors = 0;
1573 
1574 	ASSERT(nparity > 0);
1575 
1576 	if (nparity > VDEV_RAIDZ_MAXPARITY ||
1577 	    vd->vdev_children < nparity + 1) {
1578 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1579 		return (SET_ERROR(EINVAL));
1580 	}
1581 
1582 	vdev_open_children(vd);
1583 
1584 	for (c = 0; c < vd->vdev_children; c++) {
1585 		cvd = vd->vdev_child[c];
1586 
1587 		if (cvd->vdev_open_error != 0) {
1588 			lasterror = cvd->vdev_open_error;
1589 			numerrors++;
1590 			continue;
1591 		}
1592 
1593 		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
1594 		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1595 		*ashift = MAX(*ashift, cvd->vdev_ashift);
1596 	}
1597 
1598 	*asize *= vd->vdev_children;
1599 	*max_asize *= vd->vdev_children;
1600 
1601 	if (numerrors > nparity) {
1602 		vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1603 		return (lasterror);
1604 	}
1605 
1606 	return (0);
1607 }
1608 
1609 static void
1610 vdev_raidz_close(vdev_t *vd)
1611 {
1612 	int c;
1613 
1614 	for (c = 0; c < vd->vdev_children; c++)
1615 		vdev_close(vd->vdev_child[c]);
1616 }
1617 
1618 /*
1619  * Handle a read or write I/O to a RAID-Z dump device.
1620  *
1621  * The dump device is in a unique situation compared to other ZFS datasets:
1622  * writing to this device should be as simple and fast as possible.  In
1623  * addition, durability matters much less since the dump will be extracted
1624  * once the machine reboots.  For that reason, this function eschews parity for
1625  * performance and simplicity.  The dump device uses the checksum setting
1626  * ZIO_CHECKSUM_NOPARITY to indicate that parity is not maintained for this
1627  * dataset.
1628  *
1629  * Blocks of size 128 KB have been preallocated for this volume.  I/Os less than
1630  * 128 KB will not fill an entire block; in addition, they may not be properly
1631  * aligned.  In that case, this function uses the preallocated 128 KB block and
1632  * omits reading or writing any "empty" portions of that block, as opposed to
1633  * allocating a fresh appropriately-sized block.
1634  *
1635  * Looking at an example of a 32 KB I/O to a RAID-Z vdev with 5 child vdevs:
1636  *
1637  *     vdev_raidz_io_start(data, size: 32 KB, offset: 64 KB)
1638  *
1639  * If this were a standard RAID-Z dataset, a block of at least 40 KB would be
1640  * allocated which spans all five child vdevs.  8 KB of data would be written to
1641  * each of four vdevs, with the fifth containing the parity bits.
1642  *
1643  *       parity    data     data     data     data
1644  *     |   PP   |   XX   |   XX   |   XX   |   XX   |
1645  *         ^        ^        ^        ^        ^
1646  *         |        |        |        |        |
1647  *   8 KB parity    ------8 KB data blocks------
1648  *
1649  * However, when writing to the dump device, the behavior is different:
1650  *
1651  *     vdev_raidz_dumpio(data, size: 32 KB, offset: 64 KB)
1652  *
1653  * Unlike the normal RAID-Z case in which the block is allocated based on the
1654  * I/O size, reads and writes here always use a 128 KB logical I/O size.  If the
1655  * I/O size is less than 128 KB, only the actual portions of data are written.
1656  * In this example the data is written to the third data vdev since that vdev
1657  * contains the offset [64 KB, 96 KB).
1658  *
1659  *       parity    data     data     data     data
1660  *     |        |        |        |   XX   |        |
1661  *                                    ^
1662  *                                    |
1663  *                             32 KB data block
1664  *
1665  * As a result, an individual I/O may not span all child vdevs; moreover, a
1666  * small I/O may only operate on a single child vdev.
1667  *
1668  * Note that since there are no parity bits calculated or written, this format
1669  * remains the same no matter how many parity bits are used in a normal RAID-Z
1670  * stripe.  On a RAID-Z3 configuration with seven child vdevs, the example above
1671  * would look like:
1672  *
1673  *       parity   parity   parity    data     data     data     data
1674  *     |        |        |        |        |        |   XX   |        |
1675  *                                                      ^
1676  *                                                      |
1677  *                                               32 KB data block
1678  */
1679 static int
1680 vdev_raidz_dumpio(vdev_t *vd, caddr_t data, size_t size,
1681     uint64_t offset, uint64_t origoffset, boolean_t doread, boolean_t isdump)
1682 {
1683 	vdev_t *tvd = vd->vdev_top;
1684 	vdev_t *cvd;
1685 	raidz_map_t *rm;
1686 	raidz_col_t *rc;
1687 	int c, err = 0;
1688 
1689 	uint64_t start, end, colstart, colend;
1690 	uint64_t coloffset, colsize, colskip;
1691 
1692 #ifdef	_KERNEL
1693 
1694 	/*
1695 	 * Don't write past the end of the block
1696 	 */
1697 	VERIFY3U(offset + size, <=, origoffset + SPA_OLD_MAXBLOCKSIZE);
1698 
1699 	start = offset;
1700 	end = start + size;
1701 
1702 	/*
1703 	 * Allocate a RAID-Z map for this block.  Note that this block starts
1704 	 * from the "original" offset, this is, the offset of the extent which
1705 	 * contains the requisite offset of the data being read or written.
1706 	 *
1707 	 * Even if this I/O operation doesn't span the full block size, let's
1708 	 * treat the on-disk format as if the only blocks are the complete 128
1709 	 * KB size.
1710 	 */
1711 
1712 	/* First, fake a zio for vdev_raidz_map_alloc. */
1713 	zio_t *zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
1714 	zio->io_offset = origoffset;
1715 	zio->io_size = SPA_OLD_MAXBLOCKSIZE;
1716 	zio->io_abd = abd_get_from_buf(data - (offset - origoffset),
1717 	    SPA_OLD_MAXBLOCKSIZE);
1718 
1719 	rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
1720 	    vd->vdev_nparity);
1721 
1722 	coloffset = origoffset;
1723 
1724 	for (c = rm->rm_firstdatacol; c < rm->rm_cols;
1725 	    c++, coloffset += rc->rc_size) {
1726 		rc = &rm->rm_col[c];
1727 		cvd = vd->vdev_child[rc->rc_devidx];
1728 
1729 		if (cvd->vdev_ops->vdev_op_dumpio == NULL) {
1730 			err = EINVAL;
1731 			break;
1732 		}
1733 
1734 		/*
1735 		 * Find the start and end of this column in the RAID-Z map,
1736 		 * keeping in mind that the stated size and offset of the
1737 		 * operation may not fill the entire column for this vdev.
1738 		 *
1739 		 * If any portion of the data spans this column, issue the
1740 		 * appropriate operation to the vdev.
1741 		 */
1742 		if (coloffset + rc->rc_size <= start)
1743 			continue;
1744 		if (coloffset >= end)
1745 			continue;
1746 
1747 		colstart = MAX(coloffset, start);
1748 		colend = MIN(end, coloffset + rc->rc_size);
1749 		colsize = colend - colstart;
1750 		colskip = colstart - coloffset;
1751 
1752 		VERIFY3U(colsize, <=, rc->rc_size);
1753 		VERIFY3U(colskip, <=, rc->rc_size);
1754 
1755 		if ((err = cvd->vdev_ops->vdev_op_dumpio(cvd,
1756 		    ((char *)abd_to_buf(rc->rc_abd)) + colskip, colsize,
1757 		    rc->rc_offset + colskip, 0, doread, isdump)) != 0) {
1758 			break;
1759 		}
1760 	}
1761 
1762 	vdev_raidz_map_free(rm);
1763 	abd_put(zio->io_abd);
1764 	kmem_free(zio, sizeof (zio_t));
1765 
1766 #endif	/* KERNEL */
1767 
1768 	return (err);
1769 }
1770 
1771 static uint64_t
1772 vdev_raidz_asize(vdev_t *vd, uint64_t psize)
1773 {
1774 	uint64_t asize;
1775 	uint64_t ashift = vd->vdev_top->vdev_ashift;
1776 	uint64_t cols = vd->vdev_children;
1777 	uint64_t nparity = vd->vdev_nparity;
1778 
1779 	asize = ((psize - 1) >> ashift) + 1;
1780 	asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
1781 	asize = roundup(asize, nparity + 1) << ashift;
1782 
1783 	return (asize);
1784 }
1785 
1786 static void
1787 vdev_raidz_child_done(zio_t *zio)
1788 {
1789 	raidz_col_t *rc = zio->io_private;
1790 
1791 	rc->rc_error = zio->io_error;
1792 	rc->rc_tried = 1;
1793 	rc->rc_skipped = 0;
1794 }
1795 
1796 static void
1797 vdev_raidz_io_verify(zio_t *zio, raidz_map_t *rm, int col)
1798 {
1799 #ifdef ZFS_DEBUG
1800 	vdev_t *vd = zio->io_vd;
1801 	vdev_t *tvd = vd->vdev_top;
1802 
1803 	range_seg64_t logical_rs, physical_rs;
1804 	logical_rs.rs_start = zio->io_offset;
1805 	logical_rs.rs_end = logical_rs.rs_start +
1806 	    vdev_raidz_asize(zio->io_vd, zio->io_size);
1807 
1808 	raidz_col_t *rc = &rm->rm_col[col];
1809 	vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1810 
1811 	vdev_xlate(cvd, &logical_rs, &physical_rs);
1812 	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1813 	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1814 	/*
1815 	 * It would be nice to assert that rs_end is equal
1816 	 * to rc_offset + rc_size but there might be an
1817 	 * optional I/O at the end that is not accounted in
1818 	 * rc_size.
1819 	 */
1820 	if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) {
1821 		ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset +
1822 		    rc->rc_size + (1 << tvd->vdev_ashift));
1823 	} else {
1824 		ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size);
1825 	}
1826 #endif
1827 }
1828 
1829 /*
1830  * Start an IO operation on a RAIDZ VDev
1831  *
1832  * Outline:
1833  * - For write operations:
1834  *   1. Generate the parity data
1835  *   2. Create child zio write operations to each column's vdev, for both
1836  *      data and parity.
1837  *   3. If the column skips any sectors for padding, create optional dummy
1838  *      write zio children for those areas to improve aggregation continuity.
1839  * - For read operations:
1840  *   1. Create child zio read operations to each data column's vdev to read
1841  *      the range of data required for zio.
1842  *   2. If this is a scrub or resilver operation, or if any of the data
1843  *      vdevs have had errors, then create zio read operations to the parity
1844  *      columns' VDevs as well.
1845  */
1846 static void
1847 vdev_raidz_io_start(zio_t *zio)
1848 {
1849 	vdev_t *vd = zio->io_vd;
1850 	vdev_t *tvd = vd->vdev_top;
1851 	vdev_t *cvd;
1852 	raidz_map_t *rm;
1853 	raidz_col_t *rc;
1854 	int c, i;
1855 
1856 	rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
1857 	    vd->vdev_nparity);
1858 
1859 	zio->io_vsd = rm;
1860 	zio->io_vsd_ops = &vdev_raidz_vsd_ops;
1861 
1862 	ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));
1863 
1864 	if (zio->io_type == ZIO_TYPE_WRITE) {
1865 		vdev_raidz_generate_parity(rm);
1866 
1867 		for (c = 0; c < rm->rm_cols; c++) {
1868 			rc = &rm->rm_col[c];
1869 			cvd = vd->vdev_child[rc->rc_devidx];
1870 
1871 			/*
1872 			 * Verify physical to logical translation.
1873 			 */
1874 			vdev_raidz_io_verify(zio, rm, c);
1875 
1876 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1877 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
1878 			    zio->io_type, zio->io_priority, 0,
1879 			    vdev_raidz_child_done, rc));
1880 		}
1881 
1882 		/*
1883 		 * Generate optional I/Os for any skipped sectors to improve
1884 		 * aggregation contiguity.
1885 		 */
1886 		for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
1887 			ASSERT(c <= rm->rm_scols);
1888 			if (c == rm->rm_scols)
1889 				c = 0;
1890 			rc = &rm->rm_col[c];
1891 			cvd = vd->vdev_child[rc->rc_devidx];
1892 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1893 			    rc->rc_offset + rc->rc_size, NULL,
1894 			    1 << tvd->vdev_ashift,
1895 			    zio->io_type, zio->io_priority,
1896 			    ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
1897 		}
1898 
1899 		zio_execute(zio);
1900 		return;
1901 	}
1902 
1903 	ASSERT(zio->io_type == ZIO_TYPE_READ);
1904 
1905 	/*
1906 	 * Iterate over the columns in reverse order so that we hit the parity
1907 	 * last -- any errors along the way will force us to read the parity.
1908 	 */
1909 	for (c = rm->rm_cols - 1; c >= 0; c--) {
1910 		rc = &rm->rm_col[c];
1911 		cvd = vd->vdev_child[rc->rc_devidx];
1912 		if (!vdev_readable(cvd)) {
1913 			if (c >= rm->rm_firstdatacol)
1914 				rm->rm_missingdata++;
1915 			else
1916 				rm->rm_missingparity++;
1917 			rc->rc_error = SET_ERROR(ENXIO);
1918 			rc->rc_tried = 1;	/* don't even try */
1919 			rc->rc_skipped = 1;
1920 			continue;
1921 		}
1922 		if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
1923 			if (c >= rm->rm_firstdatacol)
1924 				rm->rm_missingdata++;
1925 			else
1926 				rm->rm_missingparity++;
1927 			rc->rc_error = SET_ERROR(ESTALE);
1928 			rc->rc_skipped = 1;
1929 			continue;
1930 		}
1931 		if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
1932 		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1933 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1934 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
1935 			    zio->io_type, zio->io_priority, 0,
1936 			    vdev_raidz_child_done, rc));
1937 		}
1938 	}
1939 
1940 	zio_execute(zio);
1941 }
1942 
1943 
1944 /*
1945  * Report a checksum error for a child of a RAID-Z device.
1946  */
1947 static void
1948 raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
1949 {
1950 	vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
1951 
1952 	if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1953 		zio_bad_cksum_t zbc;
1954 		raidz_map_t *rm = zio->io_vsd;
1955 
1956 		mutex_enter(&vd->vdev_stat_lock);
1957 		vd->vdev_stat.vs_checksum_errors++;
1958 		mutex_exit(&vd->vdev_stat_lock);
1959 
1960 		zbc.zbc_has_cksum = 0;
1961 		zbc.zbc_injected = rm->rm_ecksuminjected;
1962 
1963 		(void) zfs_ereport_post_checksum(zio->io_spa, vd,
1964 		    &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size,
1965 		    rc->rc_abd, bad_data, &zbc);
1966 	}
1967 }
1968 
1969 /*
1970  * We keep track of whether or not there were any injected errors, so that
1971  * any ereports we generate can note it.
1972  */
1973 static int
1974 raidz_checksum_verify(zio_t *zio)
1975 {
1976 	zio_bad_cksum_t zbc;
1977 	raidz_map_t *rm = zio->io_vsd;
1978 
1979 	int ret = zio_checksum_error(zio, &zbc);
1980 	if (ret != 0 && zbc.zbc_injected != 0)
1981 		rm->rm_ecksuminjected = 1;
1982 
1983 	return (ret);
1984 }
1985 
1986 /*
1987  * Generate the parity from the data columns. If we tried and were able to
1988  * read the parity without error, verify that the generated parity matches the
1989  * data we read. If it doesn't, we fire off a checksum error. Return the
1990  * number such failures.
1991  */
1992 static int
1993 raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
1994 {
1995 	abd_t *orig[VDEV_RAIDZ_MAXPARITY];
1996 	int c, ret = 0;
1997 	raidz_col_t *rc;
1998 
1999 	blkptr_t *bp = zio->io_bp;
2000 	enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum :
2001 	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
2002 
2003 	if (checksum == ZIO_CHECKSUM_NOPARITY)
2004 		return (ret);
2005 
2006 	for (c = 0; c < rm->rm_firstdatacol; c++) {
2007 		rc = &rm->rm_col[c];
2008 		if (!rc->rc_tried || rc->rc_error != 0)
2009 			continue;
2010 		orig[c] = abd_alloc_sametype(rc->rc_abd, rc->rc_size);
2011 		abd_copy(orig[c], rc->rc_abd, rc->rc_size);
2012 	}
2013 
2014 	vdev_raidz_generate_parity(rm);
2015 
2016 	for (c = 0; c < rm->rm_firstdatacol; c++) {
2017 		rc = &rm->rm_col[c];
2018 		if (!rc->rc_tried || rc->rc_error != 0)
2019 			continue;
2020 		if (abd_cmp(orig[c], rc->rc_abd, rc->rc_abd->abd_size) != 0) {
2021 			raidz_checksum_error(zio, rc, orig[c]);
2022 			rc->rc_error = SET_ERROR(ECKSUM);
2023 			ret++;
2024 		}
2025 		abd_free(orig[c]);
2026 	}
2027 
2028 	return (ret);
2029 }
2030 
2031 static int
2032 vdev_raidz_worst_error(raidz_map_t *rm)
2033 {
2034 	int error = 0;
2035 
2036 	for (int c = 0; c < rm->rm_cols; c++)
2037 		error = zio_worst_error(error, rm->rm_col[c].rc_error);
2038 
2039 	return (error);
2040 }
2041 
2042 /*
2043  * Iterate over all combinations of bad data and attempt a reconstruction.
2044  * Note that the algorithm below is non-optimal because it doesn't take into
2045  * account how reconstruction is actually performed. For example, with
2046  * triple-parity RAID-Z the reconstruction procedure is the same if column 4
2047  * is targeted as invalid as if columns 1 and 4 are targeted since in both
2048  * cases we'd only use parity information in column 0.
2049  */
2050 static int
2051 vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
2052 {
2053 	raidz_map_t *rm = zio->io_vsd;
2054 	raidz_col_t *rc;
2055 	abd_t *orig[VDEV_RAIDZ_MAXPARITY];
2056 	int tstore[VDEV_RAIDZ_MAXPARITY + 2];
2057 	int *tgts = &tstore[1];
2058 	int current, next, i, c, n;
2059 	int code, ret = 0;
2060 
2061 	ASSERT(total_errors < rm->rm_firstdatacol);
2062 
2063 	/*
2064 	 * This simplifies one edge condition.
2065 	 */
2066 	tgts[-1] = -1;
2067 
2068 	for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
2069 		/*
2070 		 * Initialize the targets array by finding the first n columns
2071 		 * that contain no error.
2072 		 *
2073 		 * If there were no data errors, we need to ensure that we're
2074 		 * always explicitly attempting to reconstruct at least one
2075 		 * data column. To do this, we simply push the highest target
2076 		 * up into the data columns.
2077 		 */
2078 		for (c = 0, i = 0; i < n; i++) {
2079 			if (i == n - 1 && data_errors == 0 &&
2080 			    c < rm->rm_firstdatacol) {
2081 				c = rm->rm_firstdatacol;
2082 			}
2083 
2084 			while (rm->rm_col[c].rc_error != 0) {
2085 				c++;
2086 				ASSERT3S(c, <, rm->rm_cols);
2087 			}
2088 
2089 			tgts[i] = c++;
2090 		}
2091 
2092 		/*
2093 		 * Setting tgts[n] simplifies the other edge condition.
2094 		 */
2095 		tgts[n] = rm->rm_cols;
2096 
2097 		/*
2098 		 * These buffers were allocated in previous iterations.
2099 		 */
2100 		for (i = 0; i < n - 1; i++) {
2101 			ASSERT(orig[i] != NULL);
2102 		}
2103 
2104 		orig[n - 1] = abd_alloc_sametype(rm->rm_col[0].rc_abd,
2105 		    rm->rm_col[0].rc_size);
2106 
2107 		current = 0;
2108 		next = tgts[current];
2109 
2110 		while (current != n) {
2111 			tgts[current] = next;
2112 			current = 0;
2113 
2114 			/*
2115 			 * Save off the original data that we're going to
2116 			 * attempt to reconstruct.
2117 			 */
2118 			for (i = 0; i < n; i++) {
2119 				ASSERT(orig[i] != NULL);
2120 				c = tgts[i];
2121 				ASSERT3S(c, >=, 0);
2122 				ASSERT3S(c, <, rm->rm_cols);
2123 				rc = &rm->rm_col[c];
2124 				ASSERT3S(orig[i]->abd_size, >=, rc->rc_size);
2125 				ASSERT3S(rc->rc_abd->abd_size, >=, rc->rc_size);
2126 				abd_copy_off(orig[i], rc->rc_abd, 0, 0,
2127 				    rc->rc_size);
2128 			}
2129 
2130 			/*
2131 			 * Attempt a reconstruction and exit the outer loop on
2132 			 * success.
2133 			 */
2134 			code = vdev_raidz_reconstruct(rm, tgts, n);
2135 			if (raidz_checksum_verify(zio) == 0) {
2136 
2137 				for (i = 0; i < n; i++) {
2138 					c = tgts[i];
2139 					rc = &rm->rm_col[c];
2140 					ASSERT(rc->rc_error == 0);
2141 					if (rc->rc_tried)
2142 						raidz_checksum_error(zio, rc,
2143 						    orig[i]);
2144 					rc->rc_error = SET_ERROR(ECKSUM);
2145 				}
2146 
2147 				ret = code;
2148 				goto done;
2149 			}
2150 
2151 			/*
2152 			 * Restore the original data.
2153 			 */
2154 			for (i = 0; i < n; i++) {
2155 				c = tgts[i];
2156 				rc = &rm->rm_col[c];
2157 				ASSERT3S(rc->rc_abd->abd_size, >=, rc->rc_size);
2158 				ASSERT3S(orig[i]->abd_size, >=, rc->rc_size);
2159 				abd_copy_off(rc->rc_abd, orig[i], 0, 0,
2160 				    rc->rc_size);
2161 			}
2162 
2163 			do {
2164 				/*
2165 				 * Find the next valid column after the current
2166 				 * position..
2167 				 */
2168 				for (next = tgts[current] + 1;
2169 				    next < rm->rm_cols &&
2170 				    rm->rm_col[next].rc_error != 0; next++)
2171 					continue;
2172 
2173 				ASSERT(next <= tgts[current + 1]);
2174 
2175 				/*
2176 				 * If that spot is available, we're done here.
2177 				 */
2178 				if (next != tgts[current + 1])
2179 					break;
2180 
2181 				/*
2182 				 * Otherwise, find the next valid column after
2183 				 * the previous position.
2184 				 */
2185 				for (c = tgts[current - 1] + 1;
2186 				    rm->rm_col[c].rc_error != 0; c++)
2187 					continue;
2188 
2189 				tgts[current] = c;
2190 				current++;
2191 
2192 			} while (current != n);
2193 		}
2194 	}
2195 	n--;
2196 done:
2197 	for (i = 0; i < n; i++)
2198 		abd_free(orig[i]);
2199 
2200 	return (ret);
2201 }
2202 
2203 /*
2204  * Complete an IO operation on a RAIDZ VDev
2205  *
2206  * Outline:
2207  * - For write operations:
2208  *   1. Check for errors on the child IOs.
2209  *   2. Return, setting an error code if too few child VDevs were written
2210  *      to reconstruct the data later.  Note that partial writes are
2211  *      considered successful if they can be reconstructed at all.
2212  * - For read operations:
2213  *   1. Check for errors on the child IOs.
2214  *   2. If data errors occurred:
2215  *      a. Try to reassemble the data from the parity available.
2216  *      b. If we haven't yet read the parity drives, read them now.
2217  *      c. If all parity drives have been read but the data still doesn't
2218  *         reassemble with a correct checksum, then try combinatorial
2219  *         reconstruction.
2220  *      d. If that doesn't work, return an error.
2221  *   3. If there were unexpected errors or this is a resilver operation,
2222  *      rewrite the vdevs that had errors.
2223  */
2224 static void
2225 vdev_raidz_io_done(zio_t *zio)
2226 {
2227 	vdev_t *vd = zio->io_vd;
2228 	vdev_t *cvd;
2229 	raidz_map_t *rm = zio->io_vsd;
2230 	raidz_col_t *rc;
2231 	int unexpected_errors = 0;
2232 	int parity_errors = 0;
2233 	int parity_untried = 0;
2234 	int data_errors = 0;
2235 	int total_errors = 0;
2236 	int n, c;
2237 	int tgts[VDEV_RAIDZ_MAXPARITY];
2238 	int code;
2239 
2240 	ASSERT(zio->io_bp != NULL);  /* XXX need to add code to enforce this */
2241 
2242 	ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
2243 	ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);
2244 
2245 	for (c = 0; c < rm->rm_cols; c++) {
2246 		rc = &rm->rm_col[c];
2247 
2248 		if (rc->rc_error) {
2249 			ASSERT(rc->rc_error != ECKSUM);	/* child has no bp */
2250 
2251 			if (c < rm->rm_firstdatacol)
2252 				parity_errors++;
2253 			else
2254 				data_errors++;
2255 
2256 			if (!rc->rc_skipped)
2257 				unexpected_errors++;
2258 
2259 			total_errors++;
2260 		} else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
2261 			parity_untried++;
2262 		}
2263 	}
2264 
2265 	if (zio->io_type == ZIO_TYPE_WRITE) {
2266 		/*
2267 		 * XXX -- for now, treat partial writes as a success.
2268 		 * (If we couldn't write enough columns to reconstruct
2269 		 * the data, the I/O failed.  Otherwise, good enough.)
2270 		 *
2271 		 * Now that we support write reallocation, it would be better
2272 		 * to treat partial failure as real failure unless there are
2273 		 * no non-degraded top-level vdevs left, and not update DTLs
2274 		 * if we intend to reallocate.
2275 		 */
2276 		/* XXPOLICY */
2277 		if (total_errors > rm->rm_firstdatacol)
2278 			zio->io_error = vdev_raidz_worst_error(rm);
2279 
2280 		return;
2281 	}
2282 
2283 	ASSERT(zio->io_type == ZIO_TYPE_READ);
2284 	/*
2285 	 * There are three potential phases for a read:
2286 	 *	1. produce valid data from the columns read
2287 	 *	2. read all disks and try again
2288 	 *	3. perform combinatorial reconstruction
2289 	 *
2290 	 * Each phase is progressively both more expensive and less likely to
2291 	 * occur. If we encounter more errors than we can repair or all phases
2292 	 * fail, we have no choice but to return an error.
2293 	 */
2294 
2295 	/*
2296 	 * If the number of errors we saw was correctable -- less than or equal
2297 	 * to the number of parity disks read -- attempt to produce data that
2298 	 * has a valid checksum. Naturally, this case applies in the absence of
2299 	 * any errors.
2300 	 */
2301 	if (total_errors <= rm->rm_firstdatacol - parity_untried) {
2302 		if (data_errors == 0) {
2303 			if (raidz_checksum_verify(zio) == 0) {
2304 				/*
2305 				 * If we read parity information (unnecessarily
2306 				 * as it happens since no reconstruction was
2307 				 * needed) regenerate and verify the parity.
2308 				 * We also regenerate parity when resilvering
2309 				 * so we can write it out to the failed device
2310 				 * later.
2311 				 */
2312 				if (parity_errors + parity_untried <
2313 				    rm->rm_firstdatacol ||
2314 				    (zio->io_flags & ZIO_FLAG_RESILVER)) {
2315 					n = raidz_parity_verify(zio, rm);
2316 					unexpected_errors += n;
2317 					ASSERT(parity_errors + n <=
2318 					    rm->rm_firstdatacol);
2319 				}
2320 				goto done;
2321 			}
2322 		} else {
2323 			/*
2324 			 * We either attempt to read all the parity columns or
2325 			 * none of them. If we didn't try to read parity, we
2326 			 * wouldn't be here in the correctable case. There must
2327 			 * also have been fewer parity errors than parity
2328 			 * columns or, again, we wouldn't be in this code path.
2329 			 */
2330 			ASSERT(parity_untried == 0);
2331 			ASSERT(parity_errors < rm->rm_firstdatacol);
2332 
2333 			/*
2334 			 * Identify the data columns that reported an error.
2335 			 */
2336 			n = 0;
2337 			for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
2338 				rc = &rm->rm_col[c];
2339 				if (rc->rc_error != 0) {
2340 					ASSERT(n < VDEV_RAIDZ_MAXPARITY);
2341 					tgts[n++] = c;
2342 				}
2343 			}
2344 
2345 			ASSERT(rm->rm_firstdatacol >= n);
2346 
2347 			code = vdev_raidz_reconstruct(rm, tgts, n);
2348 
2349 			if (raidz_checksum_verify(zio) == 0) {
2350 				/*
2351 				 * If we read more parity disks than were used
2352 				 * for reconstruction, confirm that the other
2353 				 * parity disks produced correct data. This
2354 				 * routine is suboptimal in that it regenerates
2355 				 * the parity that we already used in addition
2356 				 * to the parity that we're attempting to
2357 				 * verify, but this should be a relatively
2358 				 * uncommon case, and can be optimized if it
2359 				 * becomes a problem. Note that we regenerate
2360 				 * parity when resilvering so we can write it
2361 				 * out to failed devices later.
2362 				 */
2363 				if (parity_errors < rm->rm_firstdatacol - n ||
2364 				    (zio->io_flags & ZIO_FLAG_RESILVER)) {
2365 					n = raidz_parity_verify(zio, rm);
2366 					unexpected_errors += n;
2367 					ASSERT(parity_errors + n <=
2368 					    rm->rm_firstdatacol);
2369 				}
2370 
2371 				goto done;
2372 			}
2373 		}
2374 	}
2375 
2376 	/*
2377 	 * This isn't a typical situation -- either we got a read error or
2378 	 * a child silently returned bad data. Read every block so we can
2379 	 * try again with as much data and parity as we can track down. If
2380 	 * we've already been through once before, all children will be marked
2381 	 * as tried so we'll proceed to combinatorial reconstruction.
2382 	 */
2383 	unexpected_errors = 1;
2384 	rm->rm_missingdata = 0;
2385 	rm->rm_missingparity = 0;
2386 
2387 	for (c = 0; c < rm->rm_cols; c++) {
2388 		if (rm->rm_col[c].rc_tried)
2389 			continue;
2390 
2391 		zio_vdev_io_redone(zio);
2392 		do {
2393 			rc = &rm->rm_col[c];
2394 			if (rc->rc_tried)
2395 				continue;
2396 			zio_nowait(zio_vdev_child_io(zio, NULL,
2397 			    vd->vdev_child[rc->rc_devidx],
2398 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2399 			    zio->io_type, zio->io_priority, 0,
2400 			    vdev_raidz_child_done, rc));
2401 		} while (++c < rm->rm_cols);
2402 
2403 		return;
2404 	}
2405 
2406 	/*
2407 	 * At this point we've attempted to reconstruct the data given the
2408 	 * errors we detected, and we've attempted to read all columns. There
2409 	 * must, therefore, be one or more additional problems -- silent errors
2410 	 * resulting in invalid data rather than explicit I/O errors resulting
2411 	 * in absent data. We check if there is enough additional data to
2412 	 * possibly reconstruct the data and then perform combinatorial
2413 	 * reconstruction over all possible combinations. If that fails,
2414 	 * we're cooked.
2415 	 */
2416 	if (total_errors > rm->rm_firstdatacol) {
2417 		zio->io_error = vdev_raidz_worst_error(rm);
2418 
2419 	} else if (total_errors < rm->rm_firstdatacol &&
2420 	    (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) {
2421 		/*
2422 		 * If we didn't use all the available parity for the
2423 		 * combinatorial reconstruction, verify that the remaining
2424 		 * parity is correct.
2425 		 */
2426 		if (code != (1 << rm->rm_firstdatacol) - 1)
2427 			(void) raidz_parity_verify(zio, rm);
2428 	} else {
2429 		/*
2430 		 * We're here because either:
2431 		 *
2432 		 *	total_errors == rm_first_datacol, or
2433 		 *	vdev_raidz_combrec() failed
2434 		 *
2435 		 * In either case, there is enough bad data to prevent
2436 		 * reconstruction.
2437 		 *
2438 		 * Start checksum ereports for all children which haven't
2439 		 * failed, and the IO wasn't speculative.
2440 		 */
2441 		zio->io_error = SET_ERROR(ECKSUM);
2442 
2443 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2444 			for (c = 0; c < rm->rm_cols; c++) {
2445 				rc = &rm->rm_col[c];
2446 				if (rc->rc_error == 0) {
2447 					zio_bad_cksum_t zbc;
2448 					zbc.zbc_has_cksum = 0;
2449 					zbc.zbc_injected =
2450 					    rm->rm_ecksuminjected;
2451 
2452 					zfs_ereport_start_checksum(
2453 					    zio->io_spa,
2454 					    vd->vdev_child[rc->rc_devidx],
2455 					    &zio->io_bookmark, zio,
2456 					    rc->rc_offset, rc->rc_size,
2457 					    (void *)(uintptr_t)c, &zbc);
2458 				}
2459 			}
2460 		}
2461 	}
2462 
2463 done:
2464 	zio_checksum_verified(zio);
2465 
2466 	if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
2467 	    (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
2468 		/*
2469 		 * Use the good data we have in hand to repair damaged children.
2470 		 */
2471 		for (c = 0; c < rm->rm_cols; c++) {
2472 			rc = &rm->rm_col[c];
2473 			cvd = vd->vdev_child[rc->rc_devidx];
2474 
2475 			if (rc->rc_error == 0)
2476 				continue;
2477 
2478 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2479 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2480 			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
2481 			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
2482 			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
2483 		}
2484 	}
2485 }
2486 
2487 static void
2488 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
2489 {
2490 	if (faulted > vd->vdev_nparity)
2491 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2492 		    VDEV_AUX_NO_REPLICAS);
2493 	else if (degraded + faulted != 0)
2494 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2495 	else
2496 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2497 }
2498 
2499 /*
2500  * Determine if any portion of the provided block resides on a child vdev
2501  * with a dirty DTL and therefore needs to be resilvered.  The function
2502  * assumes that at least one DTL is dirty which implies that full stripe
2503  * width blocks must be resilvered.
2504  */
2505 static boolean_t
2506 vdev_raidz_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2507 {
2508 	uint64_t dcols = vd->vdev_children;
2509 	uint64_t nparity = vd->vdev_nparity;
2510 	uint64_t ashift = vd->vdev_top->vdev_ashift;
2511 	/* The starting RAIDZ (parent) vdev sector of the block. */
2512 	uint64_t b = offset >> ashift;
2513 	/* The zio's size in units of the vdev's minimum sector size. */
2514 	uint64_t s = ((psize - 1) >> ashift) + 1;
2515 	/* The first column for this stripe. */
2516 	uint64_t f = b % dcols;
2517 
2518 	if (s + nparity >= dcols)
2519 		return (B_TRUE);
2520 
2521 	for (uint64_t c = 0; c < s + nparity; c++) {
2522 		uint64_t devidx = (f + c) % dcols;
2523 		vdev_t *cvd = vd->vdev_child[devidx];
2524 
2525 		/*
2526 		 * dsl_scan_need_resilver() already checked vd with
2527 		 * vdev_dtl_contains(). So here just check cvd with
2528 		 * vdev_dtl_empty(), cheaper and a good approximation.
2529 		 */
2530 		if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
2531 			return (B_TRUE);
2532 	}
2533 
2534 	return (B_FALSE);
2535 }
2536 
2537 static void
2538 vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *in, range_seg64_t *res)
2539 {
2540 	vdev_t *raidvd = cvd->vdev_parent;
2541 	ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
2542 
2543 	uint64_t width = raidvd->vdev_children;
2544 	uint64_t tgt_col = cvd->vdev_id;
2545 	uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2546 
2547 	/* make sure the offsets are block-aligned */
2548 	ASSERT0(in->rs_start % (1 << ashift));
2549 	ASSERT0(in->rs_end % (1 << ashift));
2550 	uint64_t b_start = in->rs_start >> ashift;
2551 	uint64_t b_end = in->rs_end >> ashift;
2552 
2553 	uint64_t start_row = 0;
2554 	if (b_start > tgt_col) /* avoid underflow */
2555 		start_row = ((b_start - tgt_col - 1) / width) + 1;
2556 
2557 	uint64_t end_row = 0;
2558 	if (b_end > tgt_col)
2559 		end_row = ((b_end - tgt_col - 1) / width) + 1;
2560 
2561 	res->rs_start = start_row << ashift;
2562 	res->rs_end = end_row << ashift;
2563 
2564 	ASSERT3U(res->rs_start, <=, in->rs_start);
2565 	ASSERT3U(res->rs_end - res->rs_start, <=, in->rs_end - in->rs_start);
2566 }
2567 
2568 vdev_ops_t vdev_raidz_ops = {
2569 	.vdev_op_open = vdev_raidz_open,
2570 	.vdev_op_close = vdev_raidz_close,
2571 	.vdev_op_asize = vdev_raidz_asize,
2572 	.vdev_op_io_start = vdev_raidz_io_start,
2573 	.vdev_op_io_done = vdev_raidz_io_done,
2574 	.vdev_op_state_change = vdev_raidz_state_change,
2575 	.vdev_op_need_resilver = vdev_raidz_need_resilver,
2576 	.vdev_op_hold = NULL,
2577 	.vdev_op_rele = NULL,
2578 	.vdev_op_remap = NULL,
2579 	.vdev_op_xlate = vdev_raidz_xlate,
2580 	.vdev_op_dumpio = vdev_raidz_dumpio,
2581 	.vdev_op_type = VDEV_TYPE_RAIDZ,	/* name of this vdev type */
2582 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
2583 };
2584