xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_queue.c (revision fa79a855d371dfcb29461ad6ebaf48a458bf9f14)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/avl.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/abd.h>
39 
40 /*
41  * ZFS I/O Scheduler
42  * ---------------
43  *
44  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
45  * I/O scheduler determines when and in what order those operations are
46  * issued.  The I/O scheduler divides operations into five I/O classes
47  * prioritized in the following order: sync read, sync write, async read,
48  * async write, and scrub/resilver.  Each queue defines the minimum and
49  * maximum number of concurrent operations that may be issued to the device.
50  * In addition, the device has an aggregate maximum. Note that the sum of the
51  * per-queue minimums must not exceed the aggregate maximum, and if the
52  * aggregate maximum is equal to or greater than the sum of the per-queue
53  * maximums, the per-queue minimum has no effect.
54  *
55  * For many physical devices, throughput increases with the number of
56  * concurrent operations, but latency typically suffers. Further, physical
57  * devices typically have a limit at which more concurrent operations have no
58  * effect on throughput or can actually cause it to decrease.
59  *
60  * The scheduler selects the next operation to issue by first looking for an
61  * I/O class whose minimum has not been satisfied. Once all are satisfied and
62  * the aggregate maximum has not been hit, the scheduler looks for classes
63  * whose maximum has not been satisfied. Iteration through the I/O classes is
64  * done in the order specified above. No further operations are issued if the
65  * aggregate maximum number of concurrent operations has been hit or if there
66  * are no operations queued for an I/O class that has not hit its maximum.
67  * Every time an i/o is queued or an operation completes, the I/O scheduler
68  * looks for new operations to issue.
69  *
70  * All I/O classes have a fixed maximum number of outstanding operations
71  * except for the async write class. Asynchronous writes represent the data
72  * that is committed to stable storage during the syncing stage for
73  * transaction groups (see txg.c). Transaction groups enter the syncing state
74  * periodically so the number of queued async writes will quickly burst up and
75  * then bleed down to zero. Rather than servicing them as quickly as possible,
76  * the I/O scheduler changes the maximum number of active async write i/os
77  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
78  * both throughput and latency typically increase with the number of
79  * concurrent operations issued to physical devices, reducing the burstiness
80  * in the number of concurrent operations also stabilizes the response time of
81  * operations from other -- and in particular synchronous -- queues. In broad
82  * strokes, the I/O scheduler will issue more concurrent operations from the
83  * async write queue as there's more dirty data in the pool.
84  *
85  * Async Writes
86  *
87  * The number of concurrent operations issued for the async write I/O class
88  * follows a piece-wise linear function defined by a few adjustable points.
89  *
90  *        |                   o---------| <-- zfs_vdev_async_write_max_active
91  *   ^    |                  /^         |
92  *   |    |                 / |         |
93  * active |                /  |         |
94  *  I/O   |               /   |         |
95  * count  |              /    |         |
96  *        |             /     |         |
97  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
98  *       0|____________^______|_________|
99  *        0%           |      |       100% of zfs_dirty_data_max
100  *                     |      |
101  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
102  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
103  *
104  * Until the amount of dirty data exceeds a minimum percentage of the dirty
105  * data allowed in the pool, the I/O scheduler will limit the number of
106  * concurrent operations to the minimum. As that threshold is crossed, the
107  * number of concurrent operations issued increases linearly to the maximum at
108  * the specified maximum percentage of the dirty data allowed in the pool.
109  *
110  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
111  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
112  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
113  * maximum percentage, this indicates that the rate of incoming data is
114  * greater than the rate that the backend storage can handle. In this case, we
115  * must further throttle incoming writes (see dmu_tx_delay() for details).
116  */
117 
118 /*
119  * The maximum number of i/os active to each device.  Ideally, this will be >=
120  * the sum of each queue's max_active.  It must be at least the sum of each
121  * queue's min_active.
122  */
123 uint32_t zfs_vdev_max_active = 1000;
124 
125 /*
126  * Per-queue limits on the number of i/os active to each device.  If the
127  * sum of the queue's max_active is < zfs_vdev_max_active, then the
128  * min_active comes into play.  We will send min_active from each queue,
129  * and then select from queues in the order defined by zio_priority_t.
130  *
131  * In general, smaller max_active's will lead to lower latency of synchronous
132  * operations.  Larger max_active's may lead to higher overall throughput,
133  * depending on underlying storage.
134  *
135  * The ratio of the queues' max_actives determines the balance of performance
136  * between reads, writes, and scrubs.  E.g., increasing
137  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
138  * more quickly, but reads and writes to have higher latency and lower
139  * throughput.
140  */
141 uint32_t zfs_vdev_sync_read_min_active = 10;
142 uint32_t zfs_vdev_sync_read_max_active = 10;
143 uint32_t zfs_vdev_sync_write_min_active = 10;
144 uint32_t zfs_vdev_sync_write_max_active = 10;
145 uint32_t zfs_vdev_async_read_min_active = 1;
146 uint32_t zfs_vdev_async_read_max_active = 3;
147 uint32_t zfs_vdev_async_write_min_active = 1;
148 uint32_t zfs_vdev_async_write_max_active = 10;
149 uint32_t zfs_vdev_scrub_min_active = 1;
150 uint32_t zfs_vdev_scrub_max_active = 2;
151 uint32_t zfs_vdev_removal_min_active = 1;
152 uint32_t zfs_vdev_removal_max_active = 2;
153 uint32_t zfs_vdev_initializing_min_active = 1;
154 uint32_t zfs_vdev_initializing_max_active = 1;
155 
156 /*
157  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
158  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
159  * zfs_vdev_async_write_active_max_dirty_percent, use
160  * zfs_vdev_async_write_max_active. The value is linearly interpolated
161  * between min and max.
162  */
163 int zfs_vdev_async_write_active_min_dirty_percent = 30;
164 int zfs_vdev_async_write_active_max_dirty_percent = 60;
165 
166 /*
167  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
168  * For read I/Os, we also aggregate across small adjacency gaps; for writes
169  * we include spans of optional I/Os to aid aggregation at the disk even when
170  * they aren't able to help us aggregate at this level.
171  */
172 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
173 int zfs_vdev_read_gap_limit = 32 << 10;
174 int zfs_vdev_write_gap_limit = 4 << 10;
175 
176 /*
177  * Define the queue depth percentage for each top-level. This percentage is
178  * used in conjunction with zfs_vdev_async_max_active to determine how many
179  * allocations a specific top-level vdev should handle. Once the queue depth
180  * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
181  * then allocator will stop allocating blocks on that top-level device.
182  * The default kernel setting is 1000% which will yield 100 allocations per
183  * device. For userland testing, the default setting is 300% which equates
184  * to 30 allocations per device.
185  */
186 #ifdef _KERNEL
187 int zfs_vdev_queue_depth_pct = 1000;
188 #else
189 int zfs_vdev_queue_depth_pct = 300;
190 #endif
191 
192 /*
193  * When performing allocations for a given metaslab, we want to make sure that
194  * there are enough IOs to aggregate together to improve throughput. We want to
195  * ensure that there are at least 128k worth of IOs that can be aggregated, and
196  * we assume that the average allocation size is 4k, so we need the queue depth
197  * to be 32 per allocator to get good aggregation of sequential writes.
198  */
199 int zfs_vdev_def_queue_depth = 32;
200 
201 
202 int
203 vdev_queue_offset_compare(const void *x1, const void *x2)
204 {
205 	const zio_t *z1 = x1;
206 	const zio_t *z2 = x2;
207 
208 	if (z1->io_offset < z2->io_offset)
209 		return (-1);
210 	if (z1->io_offset > z2->io_offset)
211 		return (1);
212 
213 	if (z1 < z2)
214 		return (-1);
215 	if (z1 > z2)
216 		return (1);
217 
218 	return (0);
219 }
220 
221 static inline avl_tree_t *
222 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
223 {
224 	return (&vq->vq_class[p].vqc_queued_tree);
225 }
226 
227 static inline avl_tree_t *
228 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
229 {
230 	ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
231 	if (t == ZIO_TYPE_READ)
232 		return (&vq->vq_read_offset_tree);
233 	else
234 		return (&vq->vq_write_offset_tree);
235 }
236 
237 int
238 vdev_queue_timestamp_compare(const void *x1, const void *x2)
239 {
240 	const zio_t *z1 = x1;
241 	const zio_t *z2 = x2;
242 
243 	if (z1->io_timestamp < z2->io_timestamp)
244 		return (-1);
245 	if (z1->io_timestamp > z2->io_timestamp)
246 		return (1);
247 
248 	if (z1 < z2)
249 		return (-1);
250 	if (z1 > z2)
251 		return (1);
252 
253 	return (0);
254 }
255 
256 void
257 vdev_queue_init(vdev_t *vd)
258 {
259 	vdev_queue_t *vq = &vd->vdev_queue;
260 
261 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
262 	vq->vq_vdev = vd;
263 
264 	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
265 	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
266 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
267 	    vdev_queue_offset_compare, sizeof (zio_t),
268 	    offsetof(struct zio, io_offset_node));
269 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
270 	    vdev_queue_offset_compare, sizeof (zio_t),
271 	    offsetof(struct zio, io_offset_node));
272 
273 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
274 		int (*compfn) (const void *, const void *);
275 
276 		/*
277 		 * The synchronous i/o queues are dispatched in FIFO rather
278 		 * than LBA order.  This provides more consistent latency for
279 		 * these i/os.
280 		 */
281 		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
282 			compfn = vdev_queue_timestamp_compare;
283 		else
284 			compfn = vdev_queue_offset_compare;
285 
286 		avl_create(vdev_queue_class_tree(vq, p), compfn,
287 		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
288 	}
289 }
290 
291 void
292 vdev_queue_fini(vdev_t *vd)
293 {
294 	vdev_queue_t *vq = &vd->vdev_queue;
295 
296 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
297 		avl_destroy(vdev_queue_class_tree(vq, p));
298 	avl_destroy(&vq->vq_active_tree);
299 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
300 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
301 
302 	mutex_destroy(&vq->vq_lock);
303 }
304 
305 static void
306 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
307 {
308 	spa_t *spa = zio->io_spa;
309 
310 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
311 	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
312 	avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
313 
314 	mutex_enter(&spa->spa_iokstat_lock);
315 	spa->spa_queue_stats[zio->io_priority].spa_queued++;
316 	if (spa->spa_iokstat != NULL)
317 		kstat_waitq_enter(spa->spa_iokstat->ks_data);
318 	mutex_exit(&spa->spa_iokstat_lock);
319 }
320 
321 static void
322 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
323 {
324 	spa_t *spa = zio->io_spa;
325 
326 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
327 	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
328 	avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
329 
330 	mutex_enter(&spa->spa_iokstat_lock);
331 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
332 	spa->spa_queue_stats[zio->io_priority].spa_queued--;
333 	if (spa->spa_iokstat != NULL)
334 		kstat_waitq_exit(spa->spa_iokstat->ks_data);
335 	mutex_exit(&spa->spa_iokstat_lock);
336 }
337 
338 static void
339 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
340 {
341 	spa_t *spa = zio->io_spa;
342 	ASSERT(MUTEX_HELD(&vq->vq_lock));
343 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
344 	vq->vq_class[zio->io_priority].vqc_active++;
345 	avl_add(&vq->vq_active_tree, zio);
346 
347 	mutex_enter(&spa->spa_iokstat_lock);
348 	spa->spa_queue_stats[zio->io_priority].spa_active++;
349 	if (spa->spa_iokstat != NULL)
350 		kstat_runq_enter(spa->spa_iokstat->ks_data);
351 	mutex_exit(&spa->spa_iokstat_lock);
352 }
353 
354 static void
355 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
356 {
357 	spa_t *spa = zio->io_spa;
358 	ASSERT(MUTEX_HELD(&vq->vq_lock));
359 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
360 	vq->vq_class[zio->io_priority].vqc_active--;
361 	avl_remove(&vq->vq_active_tree, zio);
362 
363 	mutex_enter(&spa->spa_iokstat_lock);
364 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
365 	spa->spa_queue_stats[zio->io_priority].spa_active--;
366 	if (spa->spa_iokstat != NULL) {
367 		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
368 
369 		kstat_runq_exit(spa->spa_iokstat->ks_data);
370 		if (zio->io_type == ZIO_TYPE_READ) {
371 			ksio->reads++;
372 			ksio->nread += zio->io_size;
373 		} else if (zio->io_type == ZIO_TYPE_WRITE) {
374 			ksio->writes++;
375 			ksio->nwritten += zio->io_size;
376 		}
377 	}
378 	mutex_exit(&spa->spa_iokstat_lock);
379 }
380 
381 static void
382 vdev_queue_agg_io_done(zio_t *aio)
383 {
384 	if (aio->io_type == ZIO_TYPE_READ) {
385 		zio_t *pio;
386 		zio_link_t *zl = NULL;
387 		while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
388 			abd_copy_off(pio->io_abd, aio->io_abd,
389 			    0, pio->io_offset - aio->io_offset, pio->io_size);
390 		}
391 	}
392 
393 	abd_free(aio->io_abd);
394 }
395 
396 static int
397 vdev_queue_class_min_active(zio_priority_t p)
398 {
399 	switch (p) {
400 	case ZIO_PRIORITY_SYNC_READ:
401 		return (zfs_vdev_sync_read_min_active);
402 	case ZIO_PRIORITY_SYNC_WRITE:
403 		return (zfs_vdev_sync_write_min_active);
404 	case ZIO_PRIORITY_ASYNC_READ:
405 		return (zfs_vdev_async_read_min_active);
406 	case ZIO_PRIORITY_ASYNC_WRITE:
407 		return (zfs_vdev_async_write_min_active);
408 	case ZIO_PRIORITY_SCRUB:
409 		return (zfs_vdev_scrub_min_active);
410 	case ZIO_PRIORITY_REMOVAL:
411 		return (zfs_vdev_removal_min_active);
412 	case ZIO_PRIORITY_INITIALIZING:
413 		return (zfs_vdev_initializing_min_active);
414 	default:
415 		panic("invalid priority %u", p);
416 		return (0);
417 	}
418 }
419 
420 static int
421 vdev_queue_max_async_writes(spa_t *spa)
422 {
423 	int writes;
424 	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
425 	uint64_t min_bytes = zfs_dirty_data_max *
426 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
427 	uint64_t max_bytes = zfs_dirty_data_max *
428 	    zfs_vdev_async_write_active_max_dirty_percent / 100;
429 
430 	/*
431 	 * Sync tasks correspond to interactive user actions. To reduce the
432 	 * execution time of those actions we push data out as fast as possible.
433 	 */
434 	if (spa_has_pending_synctask(spa)) {
435 		return (zfs_vdev_async_write_max_active);
436 	}
437 
438 	if (dirty < min_bytes)
439 		return (zfs_vdev_async_write_min_active);
440 	if (dirty > max_bytes)
441 		return (zfs_vdev_async_write_max_active);
442 
443 	/*
444 	 * linear interpolation:
445 	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
446 	 * move right by min_bytes
447 	 * move up by min_writes
448 	 */
449 	writes = (dirty - min_bytes) *
450 	    (zfs_vdev_async_write_max_active -
451 	    zfs_vdev_async_write_min_active) /
452 	    (max_bytes - min_bytes) +
453 	    zfs_vdev_async_write_min_active;
454 	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
455 	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
456 	return (writes);
457 }
458 
459 static int
460 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
461 {
462 	switch (p) {
463 	case ZIO_PRIORITY_SYNC_READ:
464 		return (zfs_vdev_sync_read_max_active);
465 	case ZIO_PRIORITY_SYNC_WRITE:
466 		return (zfs_vdev_sync_write_max_active);
467 	case ZIO_PRIORITY_ASYNC_READ:
468 		return (zfs_vdev_async_read_max_active);
469 	case ZIO_PRIORITY_ASYNC_WRITE:
470 		return (vdev_queue_max_async_writes(spa));
471 	case ZIO_PRIORITY_SCRUB:
472 		return (zfs_vdev_scrub_max_active);
473 	case ZIO_PRIORITY_REMOVAL:
474 		return (zfs_vdev_removal_max_active);
475 	case ZIO_PRIORITY_INITIALIZING:
476 		return (zfs_vdev_initializing_max_active);
477 	default:
478 		panic("invalid priority %u", p);
479 		return (0);
480 	}
481 }
482 
483 /*
484  * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
485  * there is no eligible class.
486  */
487 static zio_priority_t
488 vdev_queue_class_to_issue(vdev_queue_t *vq)
489 {
490 	spa_t *spa = vq->vq_vdev->vdev_spa;
491 	zio_priority_t p;
492 
493 	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
494 		return (ZIO_PRIORITY_NUM_QUEUEABLE);
495 
496 	/* find a queue that has not reached its minimum # outstanding i/os */
497 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
498 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
499 		    vq->vq_class[p].vqc_active <
500 		    vdev_queue_class_min_active(p))
501 			return (p);
502 	}
503 
504 	/*
505 	 * If we haven't found a queue, look for one that hasn't reached its
506 	 * maximum # outstanding i/os.
507 	 */
508 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
509 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
510 		    vq->vq_class[p].vqc_active <
511 		    vdev_queue_class_max_active(spa, p))
512 			return (p);
513 	}
514 
515 	/* No eligible queued i/os */
516 	return (ZIO_PRIORITY_NUM_QUEUEABLE);
517 }
518 
519 /*
520  * Compute the range spanned by two i/os, which is the endpoint of the last
521  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
522  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
523  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
524  */
525 #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
526 #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
527 
528 static zio_t *
529 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
530 {
531 	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
532 	uint64_t maxgap = 0;
533 	uint64_t size;
534 	boolean_t stretch = B_FALSE;
535 	avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
536 	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
537 
538 	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
539 		return (NULL);
540 
541 	first = last = zio;
542 
543 	if (zio->io_type == ZIO_TYPE_READ)
544 		maxgap = zfs_vdev_read_gap_limit;
545 
546 	/*
547 	 * We can aggregate I/Os that are sufficiently adjacent and of
548 	 * the same flavor, as expressed by the AGG_INHERIT flags.
549 	 * The latter requirement is necessary so that certain
550 	 * attributes of the I/O, such as whether it's a normal I/O
551 	 * or a scrub/resilver, can be preserved in the aggregate.
552 	 * We can include optional I/Os, but don't allow them
553 	 * to begin a range as they add no benefit in that situation.
554 	 */
555 
556 	/*
557 	 * We keep track of the last non-optional I/O.
558 	 */
559 	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
560 
561 	/*
562 	 * Walk backwards through sufficiently contiguous I/Os
563 	 * recording the last non-optional I/O.
564 	 */
565 	while ((dio = AVL_PREV(t, first)) != NULL &&
566 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
567 	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
568 	    IO_GAP(dio, first) <= maxgap &&
569 	    dio->io_type == zio->io_type) {
570 		first = dio;
571 		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
572 			mandatory = first;
573 	}
574 
575 	/*
576 	 * Skip any initial optional I/Os.
577 	 */
578 	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
579 		first = AVL_NEXT(t, first);
580 		ASSERT(first != NULL);
581 	}
582 
583 	/*
584 	 * Walk forward through sufficiently contiguous I/Os.
585 	 * The aggregation limit does not apply to optional i/os, so that
586 	 * we can issue contiguous writes even if they are larger than the
587 	 * aggregation limit.
588 	 */
589 	while ((dio = AVL_NEXT(t, last)) != NULL &&
590 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
591 	    (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit ||
592 	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
593 	    IO_GAP(last, dio) <= maxgap &&
594 	    dio->io_type == zio->io_type) {
595 		last = dio;
596 		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
597 			mandatory = last;
598 	}
599 
600 	/*
601 	 * Now that we've established the range of the I/O aggregation
602 	 * we must decide what to do with trailing optional I/Os.
603 	 * For reads, there's nothing to do. While we are unable to
604 	 * aggregate further, it's possible that a trailing optional
605 	 * I/O would allow the underlying device to aggregate with
606 	 * subsequent I/Os. We must therefore determine if the next
607 	 * non-optional I/O is close enough to make aggregation
608 	 * worthwhile.
609 	 */
610 	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
611 		zio_t *nio = last;
612 		while ((dio = AVL_NEXT(t, nio)) != NULL &&
613 		    IO_GAP(nio, dio) == 0 &&
614 		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
615 			nio = dio;
616 			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
617 				stretch = B_TRUE;
618 				break;
619 			}
620 		}
621 	}
622 
623 	if (stretch) {
624 		/*
625 		 * We are going to include an optional io in our aggregated
626 		 * span, thus closing the write gap.  Only mandatory i/os can
627 		 * start aggregated spans, so make sure that the next i/o
628 		 * after our span is mandatory.
629 		 */
630 		dio = AVL_NEXT(t, last);
631 		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
632 	} else {
633 		/* do not include the optional i/o */
634 		while (last != mandatory && last != first) {
635 			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
636 			last = AVL_PREV(t, last);
637 			ASSERT(last != NULL);
638 		}
639 	}
640 
641 	if (first == last)
642 		return (NULL);
643 
644 	size = IO_SPAN(first, last);
645 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
646 
647 	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
648 	    abd_alloc_for_io(size, B_TRUE), size, first->io_type,
649 	    zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
650 	    vdev_queue_agg_io_done, NULL);
651 	aio->io_timestamp = first->io_timestamp;
652 
653 	nio = first;
654 	do {
655 		dio = nio;
656 		nio = AVL_NEXT(t, dio);
657 		ASSERT3U(dio->io_type, ==, aio->io_type);
658 
659 		if (dio->io_flags & ZIO_FLAG_NODATA) {
660 			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
661 			abd_zero_off(aio->io_abd,
662 			    dio->io_offset - aio->io_offset, dio->io_size);
663 		} else if (dio->io_type == ZIO_TYPE_WRITE) {
664 			abd_copy_off(aio->io_abd, dio->io_abd,
665 			    dio->io_offset - aio->io_offset, 0, dio->io_size);
666 		}
667 
668 		zio_add_child(dio, aio);
669 		vdev_queue_io_remove(vq, dio);
670 		zio_vdev_io_bypass(dio);
671 		zio_execute(dio);
672 	} while (dio != last);
673 
674 	return (aio);
675 }
676 
677 static zio_t *
678 vdev_queue_io_to_issue(vdev_queue_t *vq)
679 {
680 	zio_t *zio, *aio;
681 	zio_priority_t p;
682 	avl_index_t idx;
683 	avl_tree_t *tree;
684 	zio_t search;
685 
686 again:
687 	ASSERT(MUTEX_HELD(&vq->vq_lock));
688 
689 	p = vdev_queue_class_to_issue(vq);
690 
691 	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
692 		/* No eligible queued i/os */
693 		return (NULL);
694 	}
695 
696 	/*
697 	 * For LBA-ordered queues (async / scrub / initializing), issue the
698 	 * i/o which follows the most recently issued i/o in LBA (offset) order.
699 	 *
700 	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
701 	 */
702 	tree = vdev_queue_class_tree(vq, p);
703 	search.io_timestamp = 0;
704 	search.io_offset = vq->vq_last_offset + 1;
705 	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
706 	zio = avl_nearest(tree, idx, AVL_AFTER);
707 	if (zio == NULL)
708 		zio = avl_first(tree);
709 	ASSERT3U(zio->io_priority, ==, p);
710 
711 	aio = vdev_queue_aggregate(vq, zio);
712 	if (aio != NULL)
713 		zio = aio;
714 	else
715 		vdev_queue_io_remove(vq, zio);
716 
717 	/*
718 	 * If the I/O is or was optional and therefore has no data, we need to
719 	 * simply discard it. We need to drop the vdev queue's lock to avoid a
720 	 * deadlock that we could encounter since this I/O will complete
721 	 * immediately.
722 	 */
723 	if (zio->io_flags & ZIO_FLAG_NODATA) {
724 		mutex_exit(&vq->vq_lock);
725 		zio_vdev_io_bypass(zio);
726 		zio_execute(zio);
727 		mutex_enter(&vq->vq_lock);
728 		goto again;
729 	}
730 
731 	vdev_queue_pending_add(vq, zio);
732 	vq->vq_last_offset = zio->io_offset;
733 
734 	return (zio);
735 }
736 
737 zio_t *
738 vdev_queue_io(zio_t *zio)
739 {
740 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
741 	zio_t *nio;
742 
743 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
744 		return (zio);
745 
746 	/*
747 	 * Children i/os inherent their parent's priority, which might
748 	 * not match the child's i/o type.  Fix it up here.
749 	 */
750 	if (zio->io_type == ZIO_TYPE_READ) {
751 		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
752 		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
753 		    zio->io_priority != ZIO_PRIORITY_SCRUB &&
754 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
755 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING)
756 			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
757 	} else {
758 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
759 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
760 		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
761 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
762 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING)
763 			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
764 	}
765 
766 	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
767 
768 	mutex_enter(&vq->vq_lock);
769 	zio->io_timestamp = gethrtime();
770 	vdev_queue_io_add(vq, zio);
771 	nio = vdev_queue_io_to_issue(vq);
772 	mutex_exit(&vq->vq_lock);
773 
774 	if (nio == NULL)
775 		return (NULL);
776 
777 	if (nio->io_done == vdev_queue_agg_io_done) {
778 		zio_nowait(nio);
779 		return (NULL);
780 	}
781 
782 	return (nio);
783 }
784 
785 void
786 vdev_queue_io_done(zio_t *zio)
787 {
788 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
789 	zio_t *nio;
790 
791 	mutex_enter(&vq->vq_lock);
792 
793 	vdev_queue_pending_remove(vq, zio);
794 
795 	vq->vq_io_complete_ts = gethrtime();
796 
797 	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
798 		mutex_exit(&vq->vq_lock);
799 		if (nio->io_done == vdev_queue_agg_io_done) {
800 			zio_nowait(nio);
801 		} else {
802 			zio_vdev_io_reissue(nio);
803 			zio_execute(nio);
804 		}
805 		mutex_enter(&vq->vq_lock);
806 	}
807 
808 	mutex_exit(&vq->vq_lock);
809 }
810