xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_queue.c (revision b1e2e3fb17324e9ddf43db264a0c64da7756d9e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/avl.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/abd.h>
39 
40 /*
41  * ZFS I/O Scheduler
42  * ---------------
43  *
44  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
45  * I/O scheduler determines when and in what order those operations are
46  * issued.  The I/O scheduler divides operations into five I/O classes
47  * prioritized in the following order: sync read, sync write, async read,
48  * async write, and scrub/resilver.  Each queue defines the minimum and
49  * maximum number of concurrent operations that may be issued to the device.
50  * In addition, the device has an aggregate maximum. Note that the sum of the
51  * per-queue minimums must not exceed the aggregate maximum, and if the
52  * aggregate maximum is equal to or greater than the sum of the per-queue
53  * maximums, the per-queue minimum has no effect.
54  *
55  * For many physical devices, throughput increases with the number of
56  * concurrent operations, but latency typically suffers. Further, physical
57  * devices typically have a limit at which more concurrent operations have no
58  * effect on throughput or can actually cause it to decrease.
59  *
60  * The scheduler selects the next operation to issue by first looking for an
61  * I/O class whose minimum has not been satisfied. Once all are satisfied and
62  * the aggregate maximum has not been hit, the scheduler looks for classes
63  * whose maximum has not been satisfied. Iteration through the I/O classes is
64  * done in the order specified above. No further operations are issued if the
65  * aggregate maximum number of concurrent operations has been hit or if there
66  * are no operations queued for an I/O class that has not hit its maximum.
67  * Every time an i/o is queued or an operation completes, the I/O scheduler
68  * looks for new operations to issue.
69  *
70  * All I/O classes have a fixed maximum number of outstanding operations
71  * except for the async write class. Asynchronous writes represent the data
72  * that is committed to stable storage during the syncing stage for
73  * transaction groups (see txg.c). Transaction groups enter the syncing state
74  * periodically so the number of queued async writes will quickly burst up and
75  * then bleed down to zero. Rather than servicing them as quickly as possible,
76  * the I/O scheduler changes the maximum number of active async write i/os
77  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
78  * both throughput and latency typically increase with the number of
79  * concurrent operations issued to physical devices, reducing the burstiness
80  * in the number of concurrent operations also stabilizes the response time of
81  * operations from other -- and in particular synchronous -- queues. In broad
82  * strokes, the I/O scheduler will issue more concurrent operations from the
83  * async write queue as there's more dirty data in the pool.
84  *
85  * Async Writes
86  *
87  * The number of concurrent operations issued for the async write I/O class
88  * follows a piece-wise linear function defined by a few adjustable points.
89  *
90  *        |                   o---------| <-- zfs_vdev_async_write_max_active
91  *   ^    |                  /^         |
92  *   |    |                 / |         |
93  * active |                /  |         |
94  *  I/O   |               /   |         |
95  * count  |              /    |         |
96  *        |             /     |         |
97  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
98  *       0|____________^______|_________|
99  *        0%           |      |       100% of zfs_dirty_data_max
100  *                     |      |
101  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
102  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
103  *
104  * Until the amount of dirty data exceeds a minimum percentage of the dirty
105  * data allowed in the pool, the I/O scheduler will limit the number of
106  * concurrent operations to the minimum. As that threshold is crossed, the
107  * number of concurrent operations issued increases linearly to the maximum at
108  * the specified maximum percentage of the dirty data allowed in the pool.
109  *
110  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
111  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
112  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
113  * maximum percentage, this indicates that the rate of incoming data is
114  * greater than the rate that the backend storage can handle. In this case, we
115  * must further throttle incoming writes (see dmu_tx_delay() for details).
116  */
117 
118 /*
119  * The maximum number of i/os active to each device.  Ideally, this will be >=
120  * the sum of each queue's max_active.  It must be at least the sum of each
121  * queue's min_active.
122  */
123 uint32_t zfs_vdev_max_active = 1000;
124 
125 /*
126  * Per-queue limits on the number of i/os active to each device.  If the
127  * sum of the queue's max_active is < zfs_vdev_max_active, then the
128  * min_active comes into play.  We will send min_active from each queue,
129  * and then select from queues in the order defined by zio_priority_t.
130  *
131  * In general, smaller max_active's will lead to lower latency of synchronous
132  * operations.  Larger max_active's may lead to higher overall throughput,
133  * depending on underlying storage.
134  *
135  * The ratio of the queues' max_actives determines the balance of performance
136  * between reads, writes, and scrubs.  E.g., increasing
137  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
138  * more quickly, but reads and writes to have higher latency and lower
139  * throughput.
140  */
141 uint32_t zfs_vdev_sync_read_min_active = 10;
142 uint32_t zfs_vdev_sync_read_max_active = 10;
143 uint32_t zfs_vdev_sync_write_min_active = 10;
144 uint32_t zfs_vdev_sync_write_max_active = 10;
145 uint32_t zfs_vdev_async_read_min_active = 1;
146 uint32_t zfs_vdev_async_read_max_active = 3;
147 uint32_t zfs_vdev_async_write_min_active = 1;
148 uint32_t zfs_vdev_async_write_max_active = 10;
149 uint32_t zfs_vdev_scrub_min_active = 1;
150 uint32_t zfs_vdev_scrub_max_active = 2;
151 uint32_t zfs_vdev_removal_min_active = 1;
152 uint32_t zfs_vdev_removal_max_active = 2;
153 uint32_t zfs_vdev_initializing_min_active = 1;
154 uint32_t zfs_vdev_initializing_max_active = 1;
155 
156 /*
157  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
158  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
159  * zfs_vdev_async_write_active_max_dirty_percent, use
160  * zfs_vdev_async_write_max_active. The value is linearly interpolated
161  * between min and max.
162  */
163 int zfs_vdev_async_write_active_min_dirty_percent = 30;
164 int zfs_vdev_async_write_active_max_dirty_percent = 60;
165 
166 /*
167  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
168  * For read I/Os, we also aggregate across small adjacency gaps; for writes
169  * we include spans of optional I/Os to aid aggregation at the disk even when
170  * they aren't able to help us aggregate at this level.
171  */
172 int zfs_vdev_aggregation_limit = 1 << 20;
173 int zfs_vdev_read_gap_limit = 32 << 10;
174 int zfs_vdev_write_gap_limit = 4 << 10;
175 
176 /*
177  * Define the queue depth percentage for each top-level. This percentage is
178  * used in conjunction with zfs_vdev_async_max_active to determine how many
179  * allocations a specific top-level vdev should handle. Once the queue depth
180  * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
181  * then allocator will stop allocating blocks on that top-level device.
182  * The default kernel setting is 1000% which will yield 100 allocations per
183  * device. For userland testing, the default setting is 300% which equates
184  * to 30 allocations per device.
185  */
186 #ifdef _KERNEL
187 int zfs_vdev_queue_depth_pct = 1000;
188 #else
189 int zfs_vdev_queue_depth_pct = 300;
190 #endif
191 
192 /*
193  * When performing allocations for a given metaslab, we want to make sure that
194  * there are enough IOs to aggregate together to improve throughput. We want to
195  * ensure that there are at least 128k worth of IOs that can be aggregated, and
196  * we assume that the average allocation size is 4k, so we need the queue depth
197  * to be 32 per allocator to get good aggregation of sequential writes.
198  */
199 int zfs_vdev_def_queue_depth = 32;
200 
201 
202 int
203 vdev_queue_offset_compare(const void *x1, const void *x2)
204 {
205 	const zio_t *z1 = (const zio_t *)x1;
206 	const zio_t *z2 = (const zio_t *)x2;
207 
208 	int cmp = AVL_CMP(z1->io_offset, z2->io_offset);
209 
210 	if (likely(cmp))
211 		return (cmp);
212 
213 	return (AVL_PCMP(z1, z2));
214 }
215 
216 static inline avl_tree_t *
217 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
218 {
219 	return (&vq->vq_class[p].vqc_queued_tree);
220 }
221 
222 static inline avl_tree_t *
223 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
224 {
225 	ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
226 	if (t == ZIO_TYPE_READ)
227 		return (&vq->vq_read_offset_tree);
228 	else
229 		return (&vq->vq_write_offset_tree);
230 }
231 
232 int
233 vdev_queue_timestamp_compare(const void *x1, const void *x2)
234 {
235 	const zio_t *z1 = (const zio_t *)x1;
236 	const zio_t *z2 = (const zio_t *)x2;
237 
238 	int cmp = AVL_CMP(z1->io_timestamp, z2->io_timestamp);
239 
240 	if (likely(cmp))
241 		return (cmp);
242 
243 	return (AVL_PCMP(z1, z2));
244 }
245 
246 void
247 vdev_queue_init(vdev_t *vd)
248 {
249 	vdev_queue_t *vq = &vd->vdev_queue;
250 
251 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
252 	vq->vq_vdev = vd;
253 
254 	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
255 	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
256 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
257 	    vdev_queue_offset_compare, sizeof (zio_t),
258 	    offsetof(struct zio, io_offset_node));
259 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
260 	    vdev_queue_offset_compare, sizeof (zio_t),
261 	    offsetof(struct zio, io_offset_node));
262 
263 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
264 		int (*compfn) (const void *, const void *);
265 
266 		/*
267 		 * The synchronous i/o queues are dispatched in FIFO rather
268 		 * than LBA order.  This provides more consistent latency for
269 		 * these i/os.
270 		 */
271 		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
272 			compfn = vdev_queue_timestamp_compare;
273 		else
274 			compfn = vdev_queue_offset_compare;
275 
276 		avl_create(vdev_queue_class_tree(vq, p), compfn,
277 		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
278 	}
279 
280 	vq->vq_last_offset = 0;
281 }
282 
283 void
284 vdev_queue_fini(vdev_t *vd)
285 {
286 	vdev_queue_t *vq = &vd->vdev_queue;
287 
288 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
289 		avl_destroy(vdev_queue_class_tree(vq, p));
290 	avl_destroy(&vq->vq_active_tree);
291 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
292 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
293 
294 	mutex_destroy(&vq->vq_lock);
295 }
296 
297 static void
298 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
299 {
300 	spa_t *spa = zio->io_spa;
301 
302 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
303 	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
304 	avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
305 
306 	mutex_enter(&spa->spa_iokstat_lock);
307 	spa->spa_queue_stats[zio->io_priority].spa_queued++;
308 	if (spa->spa_iokstat != NULL)
309 		kstat_waitq_enter(spa->spa_iokstat->ks_data);
310 	mutex_exit(&spa->spa_iokstat_lock);
311 }
312 
313 static void
314 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
315 {
316 	spa_t *spa = zio->io_spa;
317 
318 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
319 	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
320 	avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
321 
322 	mutex_enter(&spa->spa_iokstat_lock);
323 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
324 	spa->spa_queue_stats[zio->io_priority].spa_queued--;
325 	if (spa->spa_iokstat != NULL)
326 		kstat_waitq_exit(spa->spa_iokstat->ks_data);
327 	mutex_exit(&spa->spa_iokstat_lock);
328 }
329 
330 static void
331 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
332 {
333 	spa_t *spa = zio->io_spa;
334 	ASSERT(MUTEX_HELD(&vq->vq_lock));
335 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
336 	vq->vq_class[zio->io_priority].vqc_active++;
337 	avl_add(&vq->vq_active_tree, zio);
338 
339 	mutex_enter(&spa->spa_iokstat_lock);
340 	spa->spa_queue_stats[zio->io_priority].spa_active++;
341 	if (spa->spa_iokstat != NULL)
342 		kstat_runq_enter(spa->spa_iokstat->ks_data);
343 	mutex_exit(&spa->spa_iokstat_lock);
344 }
345 
346 static void
347 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
348 {
349 	spa_t *spa = zio->io_spa;
350 	ASSERT(MUTEX_HELD(&vq->vq_lock));
351 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
352 	vq->vq_class[zio->io_priority].vqc_active--;
353 	avl_remove(&vq->vq_active_tree, zio);
354 
355 	mutex_enter(&spa->spa_iokstat_lock);
356 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
357 	spa->spa_queue_stats[zio->io_priority].spa_active--;
358 	if (spa->spa_iokstat != NULL) {
359 		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
360 
361 		kstat_runq_exit(spa->spa_iokstat->ks_data);
362 		if (zio->io_type == ZIO_TYPE_READ) {
363 			ksio->reads++;
364 			ksio->nread += zio->io_size;
365 		} else if (zio->io_type == ZIO_TYPE_WRITE) {
366 			ksio->writes++;
367 			ksio->nwritten += zio->io_size;
368 		}
369 	}
370 	mutex_exit(&spa->spa_iokstat_lock);
371 }
372 
373 static void
374 vdev_queue_agg_io_done(zio_t *aio)
375 {
376 	if (aio->io_type == ZIO_TYPE_READ) {
377 		zio_t *pio;
378 		zio_link_t *zl = NULL;
379 		while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
380 			abd_copy_off(pio->io_abd, aio->io_abd,
381 			    0, pio->io_offset - aio->io_offset, pio->io_size);
382 		}
383 	}
384 
385 	abd_free(aio->io_abd);
386 }
387 
388 static int
389 vdev_queue_class_min_active(zio_priority_t p)
390 {
391 	switch (p) {
392 	case ZIO_PRIORITY_SYNC_READ:
393 		return (zfs_vdev_sync_read_min_active);
394 	case ZIO_PRIORITY_SYNC_WRITE:
395 		return (zfs_vdev_sync_write_min_active);
396 	case ZIO_PRIORITY_ASYNC_READ:
397 		return (zfs_vdev_async_read_min_active);
398 	case ZIO_PRIORITY_ASYNC_WRITE:
399 		return (zfs_vdev_async_write_min_active);
400 	case ZIO_PRIORITY_SCRUB:
401 		return (zfs_vdev_scrub_min_active);
402 	case ZIO_PRIORITY_REMOVAL:
403 		return (zfs_vdev_removal_min_active);
404 	case ZIO_PRIORITY_INITIALIZING:
405 		return (zfs_vdev_initializing_min_active);
406 	default:
407 		panic("invalid priority %u", p);
408 		return (0);
409 	}
410 }
411 
412 static int
413 vdev_queue_max_async_writes(spa_t *spa)
414 {
415 	int writes;
416 	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
417 	uint64_t min_bytes = zfs_dirty_data_max *
418 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
419 	uint64_t max_bytes = zfs_dirty_data_max *
420 	    zfs_vdev_async_write_active_max_dirty_percent / 100;
421 
422 	/*
423 	 * Sync tasks correspond to interactive user actions. To reduce the
424 	 * execution time of those actions we push data out as fast as possible.
425 	 */
426 	if (spa_has_pending_synctask(spa)) {
427 		return (zfs_vdev_async_write_max_active);
428 	}
429 
430 	if (dirty < min_bytes)
431 		return (zfs_vdev_async_write_min_active);
432 	if (dirty > max_bytes)
433 		return (zfs_vdev_async_write_max_active);
434 
435 	/*
436 	 * linear interpolation:
437 	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
438 	 * move right by min_bytes
439 	 * move up by min_writes
440 	 */
441 	writes = (dirty - min_bytes) *
442 	    (zfs_vdev_async_write_max_active -
443 	    zfs_vdev_async_write_min_active) /
444 	    (max_bytes - min_bytes) +
445 	    zfs_vdev_async_write_min_active;
446 	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
447 	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
448 	return (writes);
449 }
450 
451 static int
452 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
453 {
454 	switch (p) {
455 	case ZIO_PRIORITY_SYNC_READ:
456 		return (zfs_vdev_sync_read_max_active);
457 	case ZIO_PRIORITY_SYNC_WRITE:
458 		return (zfs_vdev_sync_write_max_active);
459 	case ZIO_PRIORITY_ASYNC_READ:
460 		return (zfs_vdev_async_read_max_active);
461 	case ZIO_PRIORITY_ASYNC_WRITE:
462 		return (vdev_queue_max_async_writes(spa));
463 	case ZIO_PRIORITY_SCRUB:
464 		return (zfs_vdev_scrub_max_active);
465 	case ZIO_PRIORITY_REMOVAL:
466 		return (zfs_vdev_removal_max_active);
467 	case ZIO_PRIORITY_INITIALIZING:
468 		return (zfs_vdev_initializing_max_active);
469 	default:
470 		panic("invalid priority %u", p);
471 		return (0);
472 	}
473 }
474 
475 /*
476  * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
477  * there is no eligible class.
478  */
479 static zio_priority_t
480 vdev_queue_class_to_issue(vdev_queue_t *vq)
481 {
482 	spa_t *spa = vq->vq_vdev->vdev_spa;
483 	zio_priority_t p;
484 
485 	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
486 		return (ZIO_PRIORITY_NUM_QUEUEABLE);
487 
488 	/* find a queue that has not reached its minimum # outstanding i/os */
489 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
490 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
491 		    vq->vq_class[p].vqc_active <
492 		    vdev_queue_class_min_active(p))
493 			return (p);
494 	}
495 
496 	/*
497 	 * If we haven't found a queue, look for one that hasn't reached its
498 	 * maximum # outstanding i/os.
499 	 */
500 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
501 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
502 		    vq->vq_class[p].vqc_active <
503 		    vdev_queue_class_max_active(spa, p))
504 			return (p);
505 	}
506 
507 	/* No eligible queued i/os */
508 	return (ZIO_PRIORITY_NUM_QUEUEABLE);
509 }
510 
511 /*
512  * Compute the range spanned by two i/os, which is the endpoint of the last
513  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
514  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
515  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
516  */
517 #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
518 #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
519 
520 static zio_t *
521 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
522 {
523 	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
524 	zio_link_t *zl = NULL;
525 	uint64_t maxgap = 0;
526 	uint64_t size;
527 	boolean_t stretch = B_FALSE;
528 	avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
529 	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
530 
531 	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
532 		return (NULL);
533 
534 	first = last = zio;
535 
536 	if (zio->io_type == ZIO_TYPE_READ)
537 		maxgap = zfs_vdev_read_gap_limit;
538 
539 	/*
540 	 * We can aggregate I/Os that are sufficiently adjacent and of
541 	 * the same flavor, as expressed by the AGG_INHERIT flags.
542 	 * The latter requirement is necessary so that certain
543 	 * attributes of the I/O, such as whether it's a normal I/O
544 	 * or a scrub/resilver, can be preserved in the aggregate.
545 	 * We can include optional I/Os, but don't allow them
546 	 * to begin a range as they add no benefit in that situation.
547 	 */
548 
549 	/*
550 	 * We keep track of the last non-optional I/O.
551 	 */
552 	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
553 
554 	/*
555 	 * Walk backwards through sufficiently contiguous I/Os
556 	 * recording the last non-optional I/O.
557 	 */
558 	while ((dio = AVL_PREV(t, first)) != NULL &&
559 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
560 	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
561 	    IO_GAP(dio, first) <= maxgap &&
562 	    dio->io_type == zio->io_type) {
563 		first = dio;
564 		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
565 			mandatory = first;
566 	}
567 
568 	/*
569 	 * Skip any initial optional I/Os.
570 	 */
571 	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
572 		first = AVL_NEXT(t, first);
573 		ASSERT(first != NULL);
574 	}
575 
576 	/*
577 	 * Walk forward through sufficiently contiguous I/Os.
578 	 * The aggregation limit does not apply to optional i/os, so that
579 	 * we can issue contiguous writes even if they are larger than the
580 	 * aggregation limit.
581 	 */
582 	while ((dio = AVL_NEXT(t, last)) != NULL &&
583 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
584 	    (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit ||
585 	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
586 	    IO_GAP(last, dio) <= maxgap &&
587 	    dio->io_type == zio->io_type) {
588 		last = dio;
589 		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
590 			mandatory = last;
591 	}
592 
593 	/*
594 	 * Now that we've established the range of the I/O aggregation
595 	 * we must decide what to do with trailing optional I/Os.
596 	 * For reads, there's nothing to do. While we are unable to
597 	 * aggregate further, it's possible that a trailing optional
598 	 * I/O would allow the underlying device to aggregate with
599 	 * subsequent I/Os. We must therefore determine if the next
600 	 * non-optional I/O is close enough to make aggregation
601 	 * worthwhile.
602 	 */
603 	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
604 		zio_t *nio = last;
605 		while ((dio = AVL_NEXT(t, nio)) != NULL &&
606 		    IO_GAP(nio, dio) == 0 &&
607 		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
608 			nio = dio;
609 			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
610 				stretch = B_TRUE;
611 				break;
612 			}
613 		}
614 	}
615 
616 	if (stretch) {
617 		/*
618 		 * We are going to include an optional io in our aggregated
619 		 * span, thus closing the write gap.  Only mandatory i/os can
620 		 * start aggregated spans, so make sure that the next i/o
621 		 * after our span is mandatory.
622 		 */
623 		dio = AVL_NEXT(t, last);
624 		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
625 	} else {
626 		/* do not include the optional i/o */
627 		while (last != mandatory && last != first) {
628 			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
629 			last = AVL_PREV(t, last);
630 			ASSERT(last != NULL);
631 		}
632 	}
633 
634 	if (first == last)
635 		return (NULL);
636 
637 	size = IO_SPAN(first, last);
638 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
639 
640 	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
641 	    abd_alloc_for_io(size, B_TRUE), size, first->io_type,
642 	    zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
643 	    vdev_queue_agg_io_done, NULL);
644 	aio->io_timestamp = first->io_timestamp;
645 
646 	nio = first;
647 	do {
648 		dio = nio;
649 		nio = AVL_NEXT(t, dio);
650 		ASSERT3U(dio->io_type, ==, aio->io_type);
651 
652 		if (dio->io_flags & ZIO_FLAG_NODATA) {
653 			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
654 			abd_zero_off(aio->io_abd,
655 			    dio->io_offset - aio->io_offset, dio->io_size);
656 		} else if (dio->io_type == ZIO_TYPE_WRITE) {
657 			abd_copy_off(aio->io_abd, dio->io_abd,
658 			    dio->io_offset - aio->io_offset, 0, dio->io_size);
659 		}
660 
661 		zio_add_child(dio, aio);
662 		vdev_queue_io_remove(vq, dio);
663 	} while (dio != last);
664 
665 	/*
666 	 * We need to drop the vdev queue's lock to avoid a deadlock that we
667 	 * could encounter since this I/O will complete immediately.
668 	 */
669 	mutex_exit(&vq->vq_lock);
670 	while ((dio = zio_walk_parents(aio, &zl)) != NULL) {
671 		zio_vdev_io_bypass(dio);
672 		zio_execute(dio);
673 	}
674 	mutex_enter(&vq->vq_lock);
675 
676 	return (aio);
677 }
678 
679 static zio_t *
680 vdev_queue_io_to_issue(vdev_queue_t *vq)
681 {
682 	zio_t *zio, *aio;
683 	zio_priority_t p;
684 	avl_index_t idx;
685 	avl_tree_t *tree;
686 	zio_t search;
687 
688 again:
689 	ASSERT(MUTEX_HELD(&vq->vq_lock));
690 
691 	p = vdev_queue_class_to_issue(vq);
692 
693 	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
694 		/* No eligible queued i/os */
695 		return (NULL);
696 	}
697 
698 	/*
699 	 * For LBA-ordered queues (async / scrub / initializing), issue the
700 	 * i/o which follows the most recently issued i/o in LBA (offset) order.
701 	 *
702 	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
703 	 */
704 	tree = vdev_queue_class_tree(vq, p);
705 	search.io_timestamp = 0;
706 	search.io_offset = vq->vq_last_offset - 1;
707 	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
708 	zio = avl_nearest(tree, idx, AVL_AFTER);
709 	if (zio == NULL)
710 		zio = avl_first(tree);
711 	ASSERT3U(zio->io_priority, ==, p);
712 
713 	aio = vdev_queue_aggregate(vq, zio);
714 	if (aio != NULL)
715 		zio = aio;
716 	else
717 		vdev_queue_io_remove(vq, zio);
718 
719 	/*
720 	 * If the I/O is or was optional and therefore has no data, we need to
721 	 * simply discard it. We need to drop the vdev queue's lock to avoid a
722 	 * deadlock that we could encounter since this I/O will complete
723 	 * immediately.
724 	 */
725 	if (zio->io_flags & ZIO_FLAG_NODATA) {
726 		mutex_exit(&vq->vq_lock);
727 		zio_vdev_io_bypass(zio);
728 		zio_execute(zio);
729 		mutex_enter(&vq->vq_lock);
730 		goto again;
731 	}
732 
733 	vdev_queue_pending_add(vq, zio);
734 	vq->vq_last_offset = zio->io_offset + zio->io_size;
735 
736 	return (zio);
737 }
738 
739 zio_t *
740 vdev_queue_io(zio_t *zio)
741 {
742 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
743 	zio_t *nio;
744 
745 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
746 		return (zio);
747 
748 	/*
749 	 * Children i/os inherent their parent's priority, which might
750 	 * not match the child's i/o type.  Fix it up here.
751 	 */
752 	if (zio->io_type == ZIO_TYPE_READ) {
753 		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
754 		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
755 		    zio->io_priority != ZIO_PRIORITY_SCRUB &&
756 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
757 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING)
758 			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
759 	} else {
760 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
761 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
762 		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
763 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
764 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING)
765 			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
766 	}
767 
768 	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
769 
770 	mutex_enter(&vq->vq_lock);
771 	zio->io_timestamp = gethrtime();
772 	vdev_queue_io_add(vq, zio);
773 	nio = vdev_queue_io_to_issue(vq);
774 	mutex_exit(&vq->vq_lock);
775 
776 	if (nio == NULL)
777 		return (NULL);
778 
779 	if (nio->io_done == vdev_queue_agg_io_done) {
780 		zio_nowait(nio);
781 		return (NULL);
782 	}
783 
784 	return (nio);
785 }
786 
787 void
788 vdev_queue_io_done(zio_t *zio)
789 {
790 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
791 	zio_t *nio;
792 
793 	mutex_enter(&vq->vq_lock);
794 
795 	vdev_queue_pending_remove(vq, zio);
796 
797 	vq->vq_io_complete_ts = gethrtime();
798 
799 	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
800 		mutex_exit(&vq->vq_lock);
801 		if (nio->io_done == vdev_queue_agg_io_done) {
802 			zio_nowait(nio);
803 		} else {
804 			zio_vdev_io_reissue(nio);
805 			zio_execute(nio);
806 		}
807 		mutex_enter(&vq->vq_lock);
808 	}
809 
810 	mutex_exit(&vq->vq_lock);
811 }
812 
813 void
814 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
815 {
816 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
817 	avl_tree_t *tree;
818 
819 	/*
820 	 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
821 	 * code to issue IOs without adding them to the vdev queue. In this
822 	 * case, the zio is already going to be issued as quickly as possible
823 	 * and so it doesn't need any reprioitization to help.
824 	 */
825 	if (zio->io_priority == ZIO_PRIORITY_NOW)
826 		return;
827 
828 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
829 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
830 
831 	if (zio->io_type == ZIO_TYPE_READ) {
832 		if (priority != ZIO_PRIORITY_SYNC_READ &&
833 		    priority != ZIO_PRIORITY_ASYNC_READ &&
834 		    priority != ZIO_PRIORITY_SCRUB)
835 			priority = ZIO_PRIORITY_ASYNC_READ;
836 	} else {
837 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
838 		if (priority != ZIO_PRIORITY_SYNC_WRITE &&
839 		    priority != ZIO_PRIORITY_ASYNC_WRITE)
840 			priority = ZIO_PRIORITY_ASYNC_WRITE;
841 	}
842 
843 	mutex_enter(&vq->vq_lock);
844 
845 	/*
846 	 * If the zio is in none of the queues we can simply change
847 	 * the priority. If the zio is waiting to be submitted we must
848 	 * remove it from the queue and re-insert it with the new priority.
849 	 * Otherwise, the zio is currently active and we cannot change its
850 	 * priority.
851 	 */
852 	tree = vdev_queue_class_tree(vq, zio->io_priority);
853 	if (avl_find(tree, zio, NULL) == zio) {
854 		spa_t *spa = zio->io_spa;
855 		zio_priority_t oldpri = zio->io_priority;
856 
857 		avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
858 		zio->io_priority = priority;
859 		avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
860 
861 		mutex_enter(&spa->spa_iokstat_lock);
862 		ASSERT3U(spa->spa_queue_stats[oldpri].spa_queued, >, 0);
863 		spa->spa_queue_stats[oldpri].spa_queued--;
864 		spa->spa_queue_stats[zio->io_priority].spa_queued++;
865 		mutex_exit(&spa->spa_iokstat_lock);
866 	} else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) {
867 		zio->io_priority = priority;
868 	}
869 
870 	mutex_exit(&vq->vq_lock);
871 }
872 
873 /*
874  * As these two methods are only used for load calculations we're not
875  * concerned if we get an incorrect value on 32bit platforms due to lack of
876  * vq_lock mutex use here, instead we prefer to keep it lock free for
877  * performance.
878  */
879 int
880 vdev_queue_length(vdev_t *vd)
881 {
882 	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
883 }
884 
885 uint64_t
886 vdev_queue_last_offset(vdev_t *vd)
887 {
888 	return (vd->vdev_queue.vq_last_offset);
889 }
890