xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_queue.c (revision a8c23f9d905fadb090654516236f546ef3f0a1b2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/avl.h>
35 
36 /*
37  * These tunables are for performance analysis.
38  */
39 /*
40  * zfs_vdev_max_pending is the maximum number of i/os concurrently
41  * pending to each device.  zfs_vdev_min_pending is the initial number
42  * of i/os pending to each device (before it starts ramping up to
43  * max_pending).
44  */
45 int zfs_vdev_max_pending = 10;
46 int zfs_vdev_min_pending = 4;
47 
48 /*
49  * The deadlines are grouped into buckets based on zfs_vdev_time_shift:
50  * deadline = pri + gethrtime() >> time_shift)
51  */
52 int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */
53 
54 /* exponential I/O issue ramp-up rate */
55 int zfs_vdev_ramp_rate = 2;
56 
57 /*
58  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
59  * For read I/Os, we also aggregate across small adjacency gaps; for writes
60  * we include spans of optional I/Os to aid aggregation at the disk even when
61  * they aren't able to help us aggregate at this level.
62  */
63 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
64 int zfs_vdev_read_gap_limit = 32 << 10;
65 int zfs_vdev_write_gap_limit = 4 << 10;
66 
67 /*
68  * Virtual device vector for disk I/O scheduling.
69  */
70 int
71 vdev_queue_deadline_compare(const void *x1, const void *x2)
72 {
73 	const zio_t *z1 = x1;
74 	const zio_t *z2 = x2;
75 
76 	if (z1->io_deadline < z2->io_deadline)
77 		return (-1);
78 	if (z1->io_deadline > z2->io_deadline)
79 		return (1);
80 
81 	if (z1->io_offset < z2->io_offset)
82 		return (-1);
83 	if (z1->io_offset > z2->io_offset)
84 		return (1);
85 
86 	if (z1 < z2)
87 		return (-1);
88 	if (z1 > z2)
89 		return (1);
90 
91 	return (0);
92 }
93 
94 int
95 vdev_queue_offset_compare(const void *x1, const void *x2)
96 {
97 	const zio_t *z1 = x1;
98 	const zio_t *z2 = x2;
99 
100 	if (z1->io_offset < z2->io_offset)
101 		return (-1);
102 	if (z1->io_offset > z2->io_offset)
103 		return (1);
104 
105 	if (z1 < z2)
106 		return (-1);
107 	if (z1 > z2)
108 		return (1);
109 
110 	return (0);
111 }
112 
113 void
114 vdev_queue_init(vdev_t *vd)
115 {
116 	vdev_queue_t *vq = &vd->vdev_queue;
117 
118 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
119 
120 	avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
121 	    sizeof (zio_t), offsetof(struct zio, io_deadline_node));
122 
123 	avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
124 	    sizeof (zio_t), offsetof(struct zio, io_offset_node));
125 
126 	avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
127 	    sizeof (zio_t), offsetof(struct zio, io_offset_node));
128 
129 	avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
130 	    sizeof (zio_t), offsetof(struct zio, io_offset_node));
131 }
132 
133 void
134 vdev_queue_fini(vdev_t *vd)
135 {
136 	vdev_queue_t *vq = &vd->vdev_queue;
137 
138 	avl_destroy(&vq->vq_deadline_tree);
139 	avl_destroy(&vq->vq_read_tree);
140 	avl_destroy(&vq->vq_write_tree);
141 	avl_destroy(&vq->vq_pending_tree);
142 
143 	mutex_destroy(&vq->vq_lock);
144 }
145 
146 static void
147 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
148 {
149 	spa_t *spa = zio->io_spa;
150 	avl_add(&vq->vq_deadline_tree, zio);
151 	avl_add(zio->io_vdev_tree, zio);
152 
153 	if (spa->spa_iokstat != NULL) {
154 		mutex_enter(&spa->spa_iokstat_lock);
155 		kstat_waitq_enter(spa->spa_iokstat->ks_data);
156 		mutex_exit(&spa->spa_iokstat_lock);
157 	}
158 }
159 
160 static void
161 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
162 {
163 	spa_t *spa = zio->io_spa;
164 	avl_remove(&vq->vq_deadline_tree, zio);
165 	avl_remove(zio->io_vdev_tree, zio);
166 
167 	if (spa->spa_iokstat != NULL) {
168 		mutex_enter(&spa->spa_iokstat_lock);
169 		kstat_waitq_exit(spa->spa_iokstat->ks_data);
170 		mutex_exit(&spa->spa_iokstat_lock);
171 	}
172 }
173 
174 static void
175 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
176 {
177 	spa_t *spa = zio->io_spa;
178 	avl_add(&vq->vq_pending_tree, zio);
179 	if (spa->spa_iokstat != NULL) {
180 		mutex_enter(&spa->spa_iokstat_lock);
181 		kstat_runq_enter(spa->spa_iokstat->ks_data);
182 		mutex_exit(&spa->spa_iokstat_lock);
183 	}
184 }
185 
186 static void
187 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
188 {
189 	spa_t *spa = zio->io_spa;
190 	avl_remove(&vq->vq_pending_tree, zio);
191 	if (spa->spa_iokstat != NULL) {
192 		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
193 
194 		mutex_enter(&spa->spa_iokstat_lock);
195 		kstat_runq_exit(spa->spa_iokstat->ks_data);
196 		if (zio->io_type == ZIO_TYPE_READ) {
197 			ksio->reads++;
198 			ksio->nread += zio->io_size;
199 		} else if (zio->io_type == ZIO_TYPE_WRITE) {
200 			ksio->writes++;
201 			ksio->nwritten += zio->io_size;
202 		}
203 		mutex_exit(&spa->spa_iokstat_lock);
204 	}
205 }
206 
207 static void
208 vdev_queue_agg_io_done(zio_t *aio)
209 {
210 	zio_t *pio;
211 
212 	while ((pio = zio_walk_parents(aio)) != NULL)
213 		if (aio->io_type == ZIO_TYPE_READ)
214 			bcopy((char *)aio->io_data + (pio->io_offset -
215 			    aio->io_offset), pio->io_data, pio->io_size);
216 
217 	zio_buf_free(aio->io_data, aio->io_size);
218 }
219 
220 /*
221  * Compute the range spanned by two i/os, which is the endpoint of the last
222  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
223  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
224  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
225  */
226 #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
227 #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
228 
229 static zio_t *
230 vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
231 {
232 	zio_t *fio, *lio, *aio, *dio, *nio, *mio;
233 	avl_tree_t *t;
234 	int flags;
235 	uint64_t maxspan = zfs_vdev_aggregation_limit;
236 	uint64_t maxgap;
237 	int stretch;
238 
239 again:
240 	ASSERT(MUTEX_HELD(&vq->vq_lock));
241 
242 	if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
243 	    avl_numnodes(&vq->vq_deadline_tree) == 0)
244 		return (NULL);
245 
246 	fio = lio = avl_first(&vq->vq_deadline_tree);
247 
248 	t = fio->io_vdev_tree;
249 	flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
250 	maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
251 
252 	if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
253 		/*
254 		 * We can aggregate I/Os that are sufficiently adjacent and of
255 		 * the same flavor, as expressed by the AGG_INHERIT flags.
256 		 * The latter requirement is necessary so that certain
257 		 * attributes of the I/O, such as whether it's a normal I/O
258 		 * or a scrub/resilver, can be preserved in the aggregate.
259 		 * We can include optional I/Os, but don't allow them
260 		 * to begin a range as they add no benefit in that situation.
261 		 */
262 
263 		/*
264 		 * We keep track of the last non-optional I/O.
265 		 */
266 		mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
267 
268 		/*
269 		 * Walk backwards through sufficiently contiguous I/Os
270 		 * recording the last non-option I/O.
271 		 */
272 		while ((dio = AVL_PREV(t, fio)) != NULL &&
273 		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
274 		    IO_SPAN(dio, lio) <= maxspan &&
275 		    IO_GAP(dio, fio) <= maxgap) {
276 			fio = dio;
277 			if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
278 				mio = fio;
279 		}
280 
281 		/*
282 		 * Skip any initial optional I/Os.
283 		 */
284 		while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
285 			fio = AVL_NEXT(t, fio);
286 			ASSERT(fio != NULL);
287 		}
288 
289 		/*
290 		 * Walk forward through sufficiently contiguous I/Os.
291 		 */
292 		while ((dio = AVL_NEXT(t, lio)) != NULL &&
293 		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
294 		    IO_SPAN(fio, dio) <= maxspan &&
295 		    IO_GAP(lio, dio) <= maxgap) {
296 			lio = dio;
297 			if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
298 				mio = lio;
299 		}
300 
301 		/*
302 		 * Now that we've established the range of the I/O aggregation
303 		 * we must decide what to do with trailing optional I/Os.
304 		 * For reads, there's nothing to do. While we are unable to
305 		 * aggregate further, it's possible that a trailing optional
306 		 * I/O would allow the underlying device to aggregate with
307 		 * subsequent I/Os. We must therefore determine if the next
308 		 * non-optional I/O is close enough to make aggregation
309 		 * worthwhile.
310 		 */
311 		stretch = B_FALSE;
312 		if (t != &vq->vq_read_tree && mio != NULL) {
313 			nio = lio;
314 			while ((dio = AVL_NEXT(t, nio)) != NULL &&
315 			    IO_GAP(nio, dio) == 0 &&
316 			    IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
317 				nio = dio;
318 				if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
319 					stretch = B_TRUE;
320 					break;
321 				}
322 			}
323 		}
324 
325 		if (stretch) {
326 			/* This may be a no-op. */
327 			VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
328 			dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
329 		} else {
330 			while (lio != mio && lio != fio) {
331 				ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
332 				lio = AVL_PREV(t, lio);
333 				ASSERT(lio != NULL);
334 			}
335 		}
336 	}
337 
338 	if (fio != lio) {
339 		uint64_t size = IO_SPAN(fio, lio);
340 		ASSERT(size <= zfs_vdev_aggregation_limit);
341 
342 		aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
343 		    zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG,
344 		    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
345 		    vdev_queue_agg_io_done, NULL);
346 		aio->io_timestamp = fio->io_timestamp;
347 
348 		nio = fio;
349 		do {
350 			dio = nio;
351 			nio = AVL_NEXT(t, dio);
352 			ASSERT(dio->io_type == aio->io_type);
353 			ASSERT(dio->io_vdev_tree == t);
354 
355 			if (dio->io_flags & ZIO_FLAG_NODATA) {
356 				ASSERT(dio->io_type == ZIO_TYPE_WRITE);
357 				bzero((char *)aio->io_data + (dio->io_offset -
358 				    aio->io_offset), dio->io_size);
359 			} else if (dio->io_type == ZIO_TYPE_WRITE) {
360 				bcopy(dio->io_data, (char *)aio->io_data +
361 				    (dio->io_offset - aio->io_offset),
362 				    dio->io_size);
363 			}
364 
365 			zio_add_child(dio, aio);
366 			vdev_queue_io_remove(vq, dio);
367 			zio_vdev_io_bypass(dio);
368 			zio_execute(dio);
369 		} while (dio != lio);
370 
371 		vdev_queue_pending_add(vq, aio);
372 
373 		return (aio);
374 	}
375 
376 	ASSERT(fio->io_vdev_tree == t);
377 	vdev_queue_io_remove(vq, fio);
378 
379 	/*
380 	 * If the I/O is or was optional and therefore has no data, we need to
381 	 * simply discard it. We need to drop the vdev queue's lock to avoid a
382 	 * deadlock that we could encounter since this I/O will complete
383 	 * immediately.
384 	 */
385 	if (fio->io_flags & ZIO_FLAG_NODATA) {
386 		mutex_exit(&vq->vq_lock);
387 		zio_vdev_io_bypass(fio);
388 		zio_execute(fio);
389 		mutex_enter(&vq->vq_lock);
390 		goto again;
391 	}
392 
393 	vdev_queue_pending_add(vq, fio);
394 
395 	return (fio);
396 }
397 
398 zio_t *
399 vdev_queue_io(zio_t *zio)
400 {
401 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
402 	zio_t *nio;
403 
404 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
405 
406 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
407 		return (zio);
408 
409 	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
410 
411 	if (zio->io_type == ZIO_TYPE_READ)
412 		zio->io_vdev_tree = &vq->vq_read_tree;
413 	else
414 		zio->io_vdev_tree = &vq->vq_write_tree;
415 
416 	mutex_enter(&vq->vq_lock);
417 
418 	zio->io_timestamp = gethrtime();
419 	zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) +
420 	    zio->io_priority;
421 
422 	vdev_queue_io_add(vq, zio);
423 
424 	nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
425 
426 	mutex_exit(&vq->vq_lock);
427 
428 	if (nio == NULL)
429 		return (NULL);
430 
431 	if (nio->io_done == vdev_queue_agg_io_done) {
432 		zio_nowait(nio);
433 		return (NULL);
434 	}
435 
436 	return (nio);
437 }
438 
439 void
440 vdev_queue_io_done(zio_t *zio)
441 {
442 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
443 
444 	if (zio_injection_enabled)
445 		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
446 
447 	mutex_enter(&vq->vq_lock);
448 
449 	vdev_queue_pending_remove(vq, zio);
450 
451 	vq->vq_io_complete_ts = gethrtime();
452 
453 	for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
454 		zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
455 		if (nio == NULL)
456 			break;
457 		mutex_exit(&vq->vq_lock);
458 		if (nio->io_done == vdev_queue_agg_io_done) {
459 			zio_nowait(nio);
460 		} else {
461 			zio_vdev_io_reissue(nio);
462 			zio_execute(nio);
463 		}
464 		mutex_enter(&vq->vq_lock);
465 	}
466 
467 	mutex_exit(&vq->vq_lock);
468 }
469