xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_queue.c (revision a0fb1590788f4dcbcee3fabaeb082ab7d1ad4203)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/avl.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/metaslab_impl.h>
38 
39 /*
40  * ZFS I/O Scheduler
41  * ---------------
42  *
43  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
44  * I/O scheduler determines when and in what order those operations are
45  * issued.  The I/O scheduler divides operations into five I/O classes
46  * prioritized in the following order: sync read, sync write, async read,
47  * async write, and scrub/resilver.  Each queue defines the minimum and
48  * maximum number of concurrent operations that may be issued to the device.
49  * In addition, the device has an aggregate maximum. Note that the sum of the
50  * per-queue minimums must not exceed the aggregate maximum, and if the
51  * aggregate maximum is equal to or greater than the sum of the per-queue
52  * maximums, the per-queue minimum has no effect.
53  *
54  * For many physical devices, throughput increases with the number of
55  * concurrent operations, but latency typically suffers. Further, physical
56  * devices typically have a limit at which more concurrent operations have no
57  * effect on throughput or can actually cause it to decrease.
58  *
59  * The scheduler selects the next operation to issue by first looking for an
60  * I/O class whose minimum has not been satisfied. Once all are satisfied and
61  * the aggregate maximum has not been hit, the scheduler looks for classes
62  * whose maximum has not been satisfied. Iteration through the I/O classes is
63  * done in the order specified above. No further operations are issued if the
64  * aggregate maximum number of concurrent operations has been hit or if there
65  * are no operations queued for an I/O class that has not hit its maximum.
66  * Every time an i/o is queued or an operation completes, the I/O scheduler
67  * looks for new operations to issue.
68  *
69  * All I/O classes have a fixed maximum number of outstanding operations
70  * except for the async write class. Asynchronous writes represent the data
71  * that is committed to stable storage during the syncing stage for
72  * transaction groups (see txg.c). Transaction groups enter the syncing state
73  * periodically so the number of queued async writes will quickly burst up and
74  * then bleed down to zero. Rather than servicing them as quickly as possible,
75  * the I/O scheduler changes the maximum number of active async write i/os
76  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
77  * both throughput and latency typically increase with the number of
78  * concurrent operations issued to physical devices, reducing the burstiness
79  * in the number of concurrent operations also stabilizes the response time of
80  * operations from other -- and in particular synchronous -- queues. In broad
81  * strokes, the I/O scheduler will issue more concurrent operations from the
82  * async write queue as there's more dirty data in the pool.
83  *
84  * Async Writes
85  *
86  * The number of concurrent operations issued for the async write I/O class
87  * follows a piece-wise linear function defined by a few adjustable points.
88  *
89  *        |                   o---------| <-- zfs_vdev_async_write_max_active
90  *   ^    |                  /^         |
91  *   |    |                 / |         |
92  * active |                /  |         |
93  *  I/O   |               /   |         |
94  * count  |              /    |         |
95  *        |             /     |         |
96  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
97  *       0|____________^______|_________|
98  *        0%           |      |       100% of zfs_dirty_data_max
99  *                     |      |
100  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
101  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
102  *
103  * Until the amount of dirty data exceeds a minimum percentage of the dirty
104  * data allowed in the pool, the I/O scheduler will limit the number of
105  * concurrent operations to the minimum. As that threshold is crossed, the
106  * number of concurrent operations issued increases linearly to the maximum at
107  * the specified maximum percentage of the dirty data allowed in the pool.
108  *
109  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
110  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
111  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
112  * maximum percentage, this indicates that the rate of incoming data is
113  * greater than the rate that the backend storage can handle. In this case, we
114  * must further throttle incoming writes (see dmu_tx_delay() for details).
115  */
116 
117 /*
118  * The maximum number of i/os active to each device.  Ideally, this will be >=
119  * the sum of each queue's max_active.  It must be at least the sum of each
120  * queue's min_active.
121  */
122 uint32_t zfs_vdev_max_active = 1000;
123 
124 /*
125  * Per-queue limits on the number of i/os active to each device.  If the
126  * sum of the queue's max_active is < zfs_vdev_max_active, then the
127  * min_active comes into play.  We will send min_active from each queue,
128  * and then select from queues in the order defined by zio_priority_t.
129  *
130  * In general, smaller max_active's will lead to lower latency of synchronous
131  * operations.  Larger max_active's may lead to higher overall throughput,
132  * depending on underlying storage.
133  *
134  * The ratio of the queues' max_actives determines the balance of performance
135  * between reads, writes, and scrubs.  E.g., increasing
136  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
137  * more quickly, but reads and writes to have higher latency and lower
138  * throughput.
139  */
140 uint32_t zfs_vdev_sync_read_min_active = 10;
141 uint32_t zfs_vdev_sync_read_max_active = 10;
142 uint32_t zfs_vdev_sync_write_min_active = 10;
143 uint32_t zfs_vdev_sync_write_max_active = 10;
144 uint32_t zfs_vdev_async_read_min_active = 1;
145 uint32_t zfs_vdev_async_read_max_active = 3;
146 uint32_t zfs_vdev_async_write_min_active = 1;
147 uint32_t zfs_vdev_async_write_max_active = 10;
148 uint32_t zfs_vdev_scrub_min_active = 1;
149 uint32_t zfs_vdev_scrub_max_active = 2;
150 
151 /*
152  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
153  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
154  * zfs_vdev_async_write_active_max_dirty_percent, use
155  * zfs_vdev_async_write_max_active. The value is linearly interpolated
156  * between min and max.
157  */
158 int zfs_vdev_async_write_active_min_dirty_percent = 30;
159 int zfs_vdev_async_write_active_max_dirty_percent = 60;
160 
161 /*
162  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
163  * For read I/Os, we also aggregate across small adjacency gaps; for writes
164  * we include spans of optional I/Os to aid aggregation at the disk even when
165  * they aren't able to help us aggregate at this level.
166  */
167 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
168 int zfs_vdev_read_gap_limit = 32 << 10;
169 int zfs_vdev_write_gap_limit = 4 << 10;
170 
171 /*
172  * Define the queue depth percentage for each top-level. This percentage is
173  * used in conjunction with zfs_vdev_async_max_active to determine how many
174  * allocations a specific top-level vdev should handle. Once the queue depth
175  * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
176  * then allocator will stop allocating blocks on that top-level device.
177  * The default kernel setting is 1000% which will yield 100 allocations per
178  * device. For userland testing, the default setting is 300% which equates
179  * to 30 allocations per device.
180  */
181 #ifdef _KERNEL
182 int zfs_vdev_queue_depth_pct = 1000;
183 #else
184 int zfs_vdev_queue_depth_pct = 300;
185 #endif
186 
187 
188 int
189 vdev_queue_offset_compare(const void *x1, const void *x2)
190 {
191 	const zio_t *z1 = x1;
192 	const zio_t *z2 = x2;
193 
194 	if (z1->io_offset < z2->io_offset)
195 		return (-1);
196 	if (z1->io_offset > z2->io_offset)
197 		return (1);
198 
199 	if (z1 < z2)
200 		return (-1);
201 	if (z1 > z2)
202 		return (1);
203 
204 	return (0);
205 }
206 
207 static inline avl_tree_t *
208 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
209 {
210 	return (&vq->vq_class[p].vqc_queued_tree);
211 }
212 
213 static inline avl_tree_t *
214 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
215 {
216 	ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
217 	if (t == ZIO_TYPE_READ)
218 		return (&vq->vq_read_offset_tree);
219 	else
220 		return (&vq->vq_write_offset_tree);
221 }
222 
223 int
224 vdev_queue_timestamp_compare(const void *x1, const void *x2)
225 {
226 	const zio_t *z1 = x1;
227 	const zio_t *z2 = x2;
228 
229 	if (z1->io_timestamp < z2->io_timestamp)
230 		return (-1);
231 	if (z1->io_timestamp > z2->io_timestamp)
232 		return (1);
233 
234 	if (z1 < z2)
235 		return (-1);
236 	if (z1 > z2)
237 		return (1);
238 
239 	return (0);
240 }
241 
242 void
243 vdev_queue_init(vdev_t *vd)
244 {
245 	vdev_queue_t *vq = &vd->vdev_queue;
246 
247 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
248 	vq->vq_vdev = vd;
249 
250 	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
251 	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
252 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
253 	    vdev_queue_offset_compare, sizeof (zio_t),
254 	    offsetof(struct zio, io_offset_node));
255 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
256 	    vdev_queue_offset_compare, sizeof (zio_t),
257 	    offsetof(struct zio, io_offset_node));
258 
259 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
260 		int (*compfn) (const void *, const void *);
261 
262 		/*
263 		 * The synchronous i/o queues are dispatched in FIFO rather
264 		 * than LBA order.  This provides more consistent latency for
265 		 * these i/os.
266 		 */
267 		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
268 			compfn = vdev_queue_timestamp_compare;
269 		else
270 			compfn = vdev_queue_offset_compare;
271 
272 		avl_create(vdev_queue_class_tree(vq, p), compfn,
273 		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
274 	}
275 }
276 
277 void
278 vdev_queue_fini(vdev_t *vd)
279 {
280 	vdev_queue_t *vq = &vd->vdev_queue;
281 
282 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
283 		avl_destroy(vdev_queue_class_tree(vq, p));
284 	avl_destroy(&vq->vq_active_tree);
285 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
286 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
287 
288 	mutex_destroy(&vq->vq_lock);
289 }
290 
291 static void
292 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
293 {
294 	spa_t *spa = zio->io_spa;
295 
296 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
297 	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
298 	avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
299 
300 	mutex_enter(&spa->spa_iokstat_lock);
301 	spa->spa_queue_stats[zio->io_priority].spa_queued++;
302 	if (spa->spa_iokstat != NULL)
303 		kstat_waitq_enter(spa->spa_iokstat->ks_data);
304 	mutex_exit(&spa->spa_iokstat_lock);
305 }
306 
307 static void
308 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
309 {
310 	spa_t *spa = zio->io_spa;
311 
312 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
313 	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
314 	avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
315 
316 	mutex_enter(&spa->spa_iokstat_lock);
317 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
318 	spa->spa_queue_stats[zio->io_priority].spa_queued--;
319 	if (spa->spa_iokstat != NULL)
320 		kstat_waitq_exit(spa->spa_iokstat->ks_data);
321 	mutex_exit(&spa->spa_iokstat_lock);
322 }
323 
324 static void
325 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
326 {
327 	spa_t *spa = zio->io_spa;
328 	ASSERT(MUTEX_HELD(&vq->vq_lock));
329 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
330 	vq->vq_class[zio->io_priority].vqc_active++;
331 	avl_add(&vq->vq_active_tree, zio);
332 
333 	mutex_enter(&spa->spa_iokstat_lock);
334 	spa->spa_queue_stats[zio->io_priority].spa_active++;
335 	if (spa->spa_iokstat != NULL)
336 		kstat_runq_enter(spa->spa_iokstat->ks_data);
337 	mutex_exit(&spa->spa_iokstat_lock);
338 }
339 
340 static void
341 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
342 {
343 	spa_t *spa = zio->io_spa;
344 	ASSERT(MUTEX_HELD(&vq->vq_lock));
345 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
346 	vq->vq_class[zio->io_priority].vqc_active--;
347 	avl_remove(&vq->vq_active_tree, zio);
348 
349 	mutex_enter(&spa->spa_iokstat_lock);
350 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
351 	spa->spa_queue_stats[zio->io_priority].spa_active--;
352 	if (spa->spa_iokstat != NULL) {
353 		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
354 
355 		kstat_runq_exit(spa->spa_iokstat->ks_data);
356 		if (zio->io_type == ZIO_TYPE_READ) {
357 			ksio->reads++;
358 			ksio->nread += zio->io_size;
359 		} else if (zio->io_type == ZIO_TYPE_WRITE) {
360 			ksio->writes++;
361 			ksio->nwritten += zio->io_size;
362 		}
363 	}
364 	mutex_exit(&spa->spa_iokstat_lock);
365 }
366 
367 static void
368 vdev_queue_agg_io_done(zio_t *aio)
369 {
370 	if (aio->io_type == ZIO_TYPE_READ) {
371 		zio_t *pio;
372 		zio_link_t *zl = NULL;
373 		while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
374 			bcopy((char *)aio->io_data + (pio->io_offset -
375 			    aio->io_offset), pio->io_data, pio->io_size);
376 		}
377 	}
378 
379 	zio_buf_free(aio->io_data, aio->io_size);
380 }
381 
382 static int
383 vdev_queue_class_min_active(zio_priority_t p)
384 {
385 	switch (p) {
386 	case ZIO_PRIORITY_SYNC_READ:
387 		return (zfs_vdev_sync_read_min_active);
388 	case ZIO_PRIORITY_SYNC_WRITE:
389 		return (zfs_vdev_sync_write_min_active);
390 	case ZIO_PRIORITY_ASYNC_READ:
391 		return (zfs_vdev_async_read_min_active);
392 	case ZIO_PRIORITY_ASYNC_WRITE:
393 		return (zfs_vdev_async_write_min_active);
394 	case ZIO_PRIORITY_SCRUB:
395 		return (zfs_vdev_scrub_min_active);
396 	default:
397 		panic("invalid priority %u", p);
398 		return (0);
399 	}
400 }
401 
402 static int
403 vdev_queue_max_async_writes(spa_t *spa)
404 {
405 	int writes;
406 	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
407 	uint64_t min_bytes = zfs_dirty_data_max *
408 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
409 	uint64_t max_bytes = zfs_dirty_data_max *
410 	    zfs_vdev_async_write_active_max_dirty_percent / 100;
411 
412 	/*
413 	 * Sync tasks correspond to interactive user actions. To reduce the
414 	 * execution time of those actions we push data out as fast as possible.
415 	 */
416 	if (spa_has_pending_synctask(spa)) {
417 		return (zfs_vdev_async_write_max_active);
418 	}
419 
420 	if (dirty < min_bytes)
421 		return (zfs_vdev_async_write_min_active);
422 	if (dirty > max_bytes)
423 		return (zfs_vdev_async_write_max_active);
424 
425 	/*
426 	 * linear interpolation:
427 	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
428 	 * move right by min_bytes
429 	 * move up by min_writes
430 	 */
431 	writes = (dirty - min_bytes) *
432 	    (zfs_vdev_async_write_max_active -
433 	    zfs_vdev_async_write_min_active) /
434 	    (max_bytes - min_bytes) +
435 	    zfs_vdev_async_write_min_active;
436 	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
437 	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
438 	return (writes);
439 }
440 
441 static int
442 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
443 {
444 	switch (p) {
445 	case ZIO_PRIORITY_SYNC_READ:
446 		return (zfs_vdev_sync_read_max_active);
447 	case ZIO_PRIORITY_SYNC_WRITE:
448 		return (zfs_vdev_sync_write_max_active);
449 	case ZIO_PRIORITY_ASYNC_READ:
450 		return (zfs_vdev_async_read_max_active);
451 	case ZIO_PRIORITY_ASYNC_WRITE:
452 		return (vdev_queue_max_async_writes(spa));
453 	case ZIO_PRIORITY_SCRUB:
454 		return (zfs_vdev_scrub_max_active);
455 	default:
456 		panic("invalid priority %u", p);
457 		return (0);
458 	}
459 }
460 
461 /*
462  * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
463  * there is no eligible class.
464  */
465 static zio_priority_t
466 vdev_queue_class_to_issue(vdev_queue_t *vq)
467 {
468 	spa_t *spa = vq->vq_vdev->vdev_spa;
469 	zio_priority_t p;
470 
471 	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
472 		return (ZIO_PRIORITY_NUM_QUEUEABLE);
473 
474 	/* find a queue that has not reached its minimum # outstanding i/os */
475 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
476 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
477 		    vq->vq_class[p].vqc_active <
478 		    vdev_queue_class_min_active(p))
479 			return (p);
480 	}
481 
482 	/*
483 	 * If we haven't found a queue, look for one that hasn't reached its
484 	 * maximum # outstanding i/os.
485 	 */
486 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
487 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
488 		    vq->vq_class[p].vqc_active <
489 		    vdev_queue_class_max_active(spa, p))
490 			return (p);
491 	}
492 
493 	/* No eligible queued i/os */
494 	return (ZIO_PRIORITY_NUM_QUEUEABLE);
495 }
496 
497 /*
498  * Compute the range spanned by two i/os, which is the endpoint of the last
499  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
500  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
501  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
502  */
503 #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
504 #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
505 
506 static zio_t *
507 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
508 {
509 	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
510 	uint64_t maxgap = 0;
511 	uint64_t size;
512 	boolean_t stretch = B_FALSE;
513 	avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
514 	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
515 
516 	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
517 		return (NULL);
518 
519 	first = last = zio;
520 
521 	if (zio->io_type == ZIO_TYPE_READ)
522 		maxgap = zfs_vdev_read_gap_limit;
523 
524 	/*
525 	 * We can aggregate I/Os that are sufficiently adjacent and of
526 	 * the same flavor, as expressed by the AGG_INHERIT flags.
527 	 * The latter requirement is necessary so that certain
528 	 * attributes of the I/O, such as whether it's a normal I/O
529 	 * or a scrub/resilver, can be preserved in the aggregate.
530 	 * We can include optional I/Os, but don't allow them
531 	 * to begin a range as they add no benefit in that situation.
532 	 */
533 
534 	/*
535 	 * We keep track of the last non-optional I/O.
536 	 */
537 	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
538 
539 	/*
540 	 * Walk backwards through sufficiently contiguous I/Os
541 	 * recording the last non-option I/O.
542 	 */
543 	while ((dio = AVL_PREV(t, first)) != NULL &&
544 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
545 	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
546 	    IO_GAP(dio, first) <= maxgap) {
547 		first = dio;
548 		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
549 			mandatory = first;
550 	}
551 
552 	/*
553 	 * Skip any initial optional I/Os.
554 	 */
555 	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
556 		first = AVL_NEXT(t, first);
557 		ASSERT(first != NULL);
558 	}
559 
560 	/*
561 	 * Walk forward through sufficiently contiguous I/Os.
562 	 */
563 	while ((dio = AVL_NEXT(t, last)) != NULL &&
564 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
565 	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
566 	    IO_GAP(last, dio) <= maxgap) {
567 		last = dio;
568 		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
569 			mandatory = last;
570 	}
571 
572 	/*
573 	 * Now that we've established the range of the I/O aggregation
574 	 * we must decide what to do with trailing optional I/Os.
575 	 * For reads, there's nothing to do. While we are unable to
576 	 * aggregate further, it's possible that a trailing optional
577 	 * I/O would allow the underlying device to aggregate with
578 	 * subsequent I/Os. We must therefore determine if the next
579 	 * non-optional I/O is close enough to make aggregation
580 	 * worthwhile.
581 	 */
582 	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
583 		zio_t *nio = last;
584 		while ((dio = AVL_NEXT(t, nio)) != NULL &&
585 		    IO_GAP(nio, dio) == 0 &&
586 		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
587 			nio = dio;
588 			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
589 				stretch = B_TRUE;
590 				break;
591 			}
592 		}
593 	}
594 
595 	if (stretch) {
596 		/* This may be a no-op. */
597 		dio = AVL_NEXT(t, last);
598 		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
599 	} else {
600 		while (last != mandatory && last != first) {
601 			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
602 			last = AVL_PREV(t, last);
603 			ASSERT(last != NULL);
604 		}
605 	}
606 
607 	if (first == last)
608 		return (NULL);
609 
610 	size = IO_SPAN(first, last);
611 	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
612 
613 	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
614 	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
615 	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
616 	    vdev_queue_agg_io_done, NULL);
617 	aio->io_timestamp = first->io_timestamp;
618 
619 	nio = first;
620 	do {
621 		dio = nio;
622 		nio = AVL_NEXT(t, dio);
623 		ASSERT3U(dio->io_type, ==, aio->io_type);
624 
625 		if (dio->io_flags & ZIO_FLAG_NODATA) {
626 			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
627 			bzero((char *)aio->io_data + (dio->io_offset -
628 			    aio->io_offset), dio->io_size);
629 		} else if (dio->io_type == ZIO_TYPE_WRITE) {
630 			bcopy(dio->io_data, (char *)aio->io_data +
631 			    (dio->io_offset - aio->io_offset),
632 			    dio->io_size);
633 		}
634 
635 		zio_add_child(dio, aio);
636 		vdev_queue_io_remove(vq, dio);
637 		zio_vdev_io_bypass(dio);
638 		zio_execute(dio);
639 	} while (dio != last);
640 
641 	return (aio);
642 }
643 
644 static zio_t *
645 vdev_queue_io_to_issue(vdev_queue_t *vq)
646 {
647 	zio_t *zio, *aio;
648 	zio_priority_t p;
649 	avl_index_t idx;
650 	avl_tree_t *tree;
651 	zio_t search;
652 
653 again:
654 	ASSERT(MUTEX_HELD(&vq->vq_lock));
655 
656 	p = vdev_queue_class_to_issue(vq);
657 
658 	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
659 		/* No eligible queued i/os */
660 		return (NULL);
661 	}
662 
663 	/*
664 	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
665 	 * the most recently issued i/o in LBA (offset) order.
666 	 *
667 	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
668 	 */
669 	tree = vdev_queue_class_tree(vq, p);
670 	search.io_timestamp = 0;
671 	search.io_offset = vq->vq_last_offset + 1;
672 	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
673 	zio = avl_nearest(tree, idx, AVL_AFTER);
674 	if (zio == NULL)
675 		zio = avl_first(tree);
676 	ASSERT3U(zio->io_priority, ==, p);
677 
678 	aio = vdev_queue_aggregate(vq, zio);
679 	if (aio != NULL)
680 		zio = aio;
681 	else
682 		vdev_queue_io_remove(vq, zio);
683 
684 	/*
685 	 * If the I/O is or was optional and therefore has no data, we need to
686 	 * simply discard it. We need to drop the vdev queue's lock to avoid a
687 	 * deadlock that we could encounter since this I/O will complete
688 	 * immediately.
689 	 */
690 	if (zio->io_flags & ZIO_FLAG_NODATA) {
691 		mutex_exit(&vq->vq_lock);
692 		zio_vdev_io_bypass(zio);
693 		zio_execute(zio);
694 		mutex_enter(&vq->vq_lock);
695 		goto again;
696 	}
697 
698 	vdev_queue_pending_add(vq, zio);
699 	vq->vq_last_offset = zio->io_offset;
700 
701 	return (zio);
702 }
703 
704 zio_t *
705 vdev_queue_io(zio_t *zio)
706 {
707 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
708 	zio_t *nio;
709 
710 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
711 		return (zio);
712 
713 	/*
714 	 * Children i/os inherent their parent's priority, which might
715 	 * not match the child's i/o type.  Fix it up here.
716 	 */
717 	if (zio->io_type == ZIO_TYPE_READ) {
718 		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
719 		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
720 		    zio->io_priority != ZIO_PRIORITY_SCRUB)
721 			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
722 	} else {
723 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
724 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
725 		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
726 			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
727 	}
728 
729 	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
730 
731 	mutex_enter(&vq->vq_lock);
732 	zio->io_timestamp = gethrtime();
733 	vdev_queue_io_add(vq, zio);
734 	nio = vdev_queue_io_to_issue(vq);
735 	mutex_exit(&vq->vq_lock);
736 
737 	if (nio == NULL)
738 		return (NULL);
739 
740 	if (nio->io_done == vdev_queue_agg_io_done) {
741 		zio_nowait(nio);
742 		return (NULL);
743 	}
744 
745 	return (nio);
746 }
747 
748 void
749 vdev_queue_io_done(zio_t *zio)
750 {
751 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
752 	zio_t *nio;
753 
754 	mutex_enter(&vq->vq_lock);
755 
756 	vdev_queue_pending_remove(vq, zio);
757 
758 	vq->vq_io_complete_ts = gethrtime();
759 
760 	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
761 		mutex_exit(&vq->vq_lock);
762 		if (nio->io_done == vdev_queue_agg_io_done) {
763 			zio_nowait(nio);
764 		} else {
765 			zio_vdev_io_reissue(nio);
766 			zio_execute(nio);
767 		}
768 		mutex_enter(&vq->vq_lock);
769 	}
770 
771 	mutex_exit(&vq->vq_lock);
772 }
773