1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2019 Joyent, Inc. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/spa_impl.h> 35 #include <sys/zio.h> 36 #include <sys/avl.h> 37 #include <sys/dsl_pool.h> 38 #include <sys/metaslab_impl.h> 39 #include <sys/abd.h> 40 41 /* 42 * ZFS I/O Scheduler 43 * --------------- 44 * 45 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 46 * I/O scheduler determines when and in what order those operations are 47 * issued. The I/O scheduler divides operations into five I/O classes 48 * prioritized in the following order: sync read, sync write, async read, 49 * async write, and scrub/resilver. Each queue defines the minimum and 50 * maximum number of concurrent operations that may be issued to the device. 51 * In addition, the device has an aggregate maximum. Note that the sum of the 52 * per-queue minimums must not exceed the aggregate maximum, and if the 53 * aggregate maximum is equal to or greater than the sum of the per-queue 54 * maximums, the per-queue minimum has no effect. 55 * 56 * For many physical devices, throughput increases with the number of 57 * concurrent operations, but latency typically suffers. Further, physical 58 * devices typically have a limit at which more concurrent operations have no 59 * effect on throughput or can actually cause it to decrease. 60 * 61 * The scheduler selects the next operation to issue by first looking for an 62 * I/O class whose minimum has not been satisfied. Once all are satisfied and 63 * the aggregate maximum has not been hit, the scheduler looks for classes 64 * whose maximum has not been satisfied. Iteration through the I/O classes is 65 * done in the order specified above. No further operations are issued if the 66 * aggregate maximum number of concurrent operations has been hit or if there 67 * are no operations queued for an I/O class that has not hit its maximum. 68 * Every time an i/o is queued or an operation completes, the I/O scheduler 69 * looks for new operations to issue. 70 * 71 * All I/O classes have a fixed maximum number of outstanding operations 72 * except for the async write class. Asynchronous writes represent the data 73 * that is committed to stable storage during the syncing stage for 74 * transaction groups (see txg.c). Transaction groups enter the syncing state 75 * periodically so the number of queued async writes will quickly burst up and 76 * then bleed down to zero. Rather than servicing them as quickly as possible, 77 * the I/O scheduler changes the maximum number of active async write i/os 78 * according to the amount of dirty data in the pool (see dsl_pool.c). Since 79 * both throughput and latency typically increase with the number of 80 * concurrent operations issued to physical devices, reducing the burstiness 81 * in the number of concurrent operations also stabilizes the response time of 82 * operations from other -- and in particular synchronous -- queues. In broad 83 * strokes, the I/O scheduler will issue more concurrent operations from the 84 * async write queue as there's more dirty data in the pool. 85 * 86 * Async Writes 87 * 88 * The number of concurrent operations issued for the async write I/O class 89 * follows a piece-wise linear function defined by a few adjustable points. 90 * 91 * | o---------| <-- zfs_vdev_async_write_max_active 92 * ^ | /^ | 93 * | | / | | 94 * active | / | | 95 * I/O | / | | 96 * count | / | | 97 * | / | | 98 * |------------o | | <-- zfs_vdev_async_write_min_active 99 * 0|____________^______|_________| 100 * 0% | | 100% of zfs_dirty_data_max 101 * | | 102 * | `-- zfs_vdev_async_write_active_max_dirty_percent 103 * `--------- zfs_vdev_async_write_active_min_dirty_percent 104 * 105 * Until the amount of dirty data exceeds a minimum percentage of the dirty 106 * data allowed in the pool, the I/O scheduler will limit the number of 107 * concurrent operations to the minimum. As that threshold is crossed, the 108 * number of concurrent operations issued increases linearly to the maximum at 109 * the specified maximum percentage of the dirty data allowed in the pool. 110 * 111 * Ideally, the amount of dirty data on a busy pool will stay in the sloped 112 * part of the function between zfs_vdev_async_write_active_min_dirty_percent 113 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 114 * maximum percentage, this indicates that the rate of incoming data is 115 * greater than the rate that the backend storage can handle. In this case, we 116 * must further throttle incoming writes (see dmu_tx_delay() for details). 117 */ 118 119 /* 120 * The maximum number of i/os active to each device. Ideally, this will be >= 121 * the sum of each queue's max_active. It must be at least the sum of each 122 * queue's min_active. 123 */ 124 uint32_t zfs_vdev_max_active = 1000; 125 126 /* 127 * Per-queue limits on the number of i/os active to each device. If the 128 * sum of the queue's max_active is < zfs_vdev_max_active, then the 129 * min_active comes into play. We will send min_active from each queue, 130 * and then select from queues in the order defined by zio_priority_t. 131 * 132 * In general, smaller max_active's will lead to lower latency of synchronous 133 * operations. Larger max_active's may lead to higher overall throughput, 134 * depending on underlying storage. 135 * 136 * The ratio of the queues' max_actives determines the balance of performance 137 * between reads, writes, and scrubs. E.g., increasing 138 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 139 * more quickly, but reads and writes to have higher latency and lower 140 * throughput. 141 */ 142 uint32_t zfs_vdev_sync_read_min_active = 10; 143 uint32_t zfs_vdev_sync_read_max_active = 10; 144 uint32_t zfs_vdev_sync_write_min_active = 10; 145 uint32_t zfs_vdev_sync_write_max_active = 10; 146 uint32_t zfs_vdev_async_read_min_active = 1; 147 uint32_t zfs_vdev_async_read_max_active = 3; 148 uint32_t zfs_vdev_async_write_min_active = 1; 149 uint32_t zfs_vdev_async_write_max_active = 10; 150 uint32_t zfs_vdev_scrub_min_active = 1; 151 uint32_t zfs_vdev_scrub_max_active = 2; 152 uint32_t zfs_vdev_removal_min_active = 1; 153 uint32_t zfs_vdev_removal_max_active = 2; 154 uint32_t zfs_vdev_initializing_min_active = 1; 155 uint32_t zfs_vdev_initializing_max_active = 1; 156 uint32_t zfs_vdev_trim_min_active = 1; 157 uint32_t zfs_vdev_trim_max_active = 2; 158 159 /* 160 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 161 * dirty data, use zfs_vdev_async_write_min_active. When it has more than 162 * zfs_vdev_async_write_active_max_dirty_percent, use 163 * zfs_vdev_async_write_max_active. The value is linearly interpolated 164 * between min and max. 165 */ 166 int zfs_vdev_async_write_active_min_dirty_percent = 30; 167 int zfs_vdev_async_write_active_max_dirty_percent = 60; 168 169 /* 170 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 171 * For read I/Os, we also aggregate across small adjacency gaps; for writes 172 * we include spans of optional I/Os to aid aggregation at the disk even when 173 * they aren't able to help us aggregate at this level. 174 */ 175 int zfs_vdev_aggregation_limit = 1 << 20; 176 int zfs_vdev_read_gap_limit = 32 << 10; 177 int zfs_vdev_write_gap_limit = 4 << 10; 178 179 /* 180 * Define the queue depth percentage for each top-level. This percentage is 181 * used in conjunction with zfs_vdev_async_max_active to determine how many 182 * allocations a specific top-level vdev should handle. Once the queue depth 183 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100 184 * then allocator will stop allocating blocks on that top-level device. 185 * The default kernel setting is 1000% which will yield 100 allocations per 186 * device. For userland testing, the default setting is 300% which equates 187 * to 30 allocations per device. 188 */ 189 #ifdef _KERNEL 190 int zfs_vdev_queue_depth_pct = 1000; 191 #else 192 int zfs_vdev_queue_depth_pct = 300; 193 #endif 194 195 /* 196 * When performing allocations for a given metaslab, we want to make sure that 197 * there are enough IOs to aggregate together to improve throughput. We want to 198 * ensure that there are at least 128k worth of IOs that can be aggregated, and 199 * we assume that the average allocation size is 4k, so we need the queue depth 200 * to be 32 per allocator to get good aggregation of sequential writes. 201 */ 202 int zfs_vdev_def_queue_depth = 32; 203 204 /* 205 * Allow TRIM I/Os to be aggregated. This should normally not be needed since 206 * TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M) can be submitted 207 * by the TRIM code in zfs_trim.c. 208 */ 209 int zfs_vdev_aggregate_trim = 0; 210 211 int 212 vdev_queue_offset_compare(const void *x1, const void *x2) 213 { 214 const zio_t *z1 = (const zio_t *)x1; 215 const zio_t *z2 = (const zio_t *)x2; 216 217 int cmp = TREE_CMP(z1->io_offset, z2->io_offset); 218 219 if (likely(cmp)) 220 return (cmp); 221 222 return (TREE_PCMP(z1, z2)); 223 } 224 225 static inline avl_tree_t * 226 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p) 227 { 228 return (&vq->vq_class[p].vqc_queued_tree); 229 } 230 231 static inline avl_tree_t * 232 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t) 233 { 234 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE || t == ZIO_TYPE_TRIM); 235 if (t == ZIO_TYPE_READ) 236 return (&vq->vq_read_offset_tree); 237 else if (t == ZIO_TYPE_WRITE) 238 return (&vq->vq_write_offset_tree); 239 else 240 return (&vq->vq_trim_offset_tree); 241 } 242 243 int 244 vdev_queue_timestamp_compare(const void *x1, const void *x2) 245 { 246 const zio_t *z1 = (const zio_t *)x1; 247 const zio_t *z2 = (const zio_t *)x2; 248 249 int cmp = TREE_CMP(z1->io_timestamp, z2->io_timestamp); 250 251 if (likely(cmp)) 252 return (cmp); 253 254 return (TREE_PCMP(z1, z2)); 255 } 256 257 void 258 vdev_queue_init(vdev_t *vd) 259 { 260 vdev_queue_t *vq = &vd->vdev_queue; 261 262 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 263 vq->vq_vdev = vd; 264 265 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 266 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 267 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ), 268 vdev_queue_offset_compare, sizeof (zio_t), 269 offsetof(struct zio, io_offset_node)); 270 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE), 271 vdev_queue_offset_compare, sizeof (zio_t), 272 offsetof(struct zio, io_offset_node)); 273 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM), 274 vdev_queue_offset_compare, sizeof (zio_t), 275 offsetof(struct zio, io_offset_node)); 276 277 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 278 int (*compfn) (const void *, const void *); 279 280 /* 281 * The synchronous/trim i/o queues are dispatched in FIFO rather 282 * than LBA order. This provides more consistent latency for 283 * these i/os. 284 */ 285 if (p == ZIO_PRIORITY_SYNC_READ || 286 p == ZIO_PRIORITY_SYNC_WRITE || 287 p == ZIO_PRIORITY_TRIM) { 288 compfn = vdev_queue_timestamp_compare; 289 } else { 290 compfn = vdev_queue_offset_compare; 291 } 292 293 avl_create(vdev_queue_class_tree(vq, p), compfn, 294 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 295 } 296 297 vq->vq_last_offset = 0; 298 } 299 300 void 301 vdev_queue_fini(vdev_t *vd) 302 { 303 vdev_queue_t *vq = &vd->vdev_queue; 304 305 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 306 avl_destroy(vdev_queue_class_tree(vq, p)); 307 avl_destroy(&vq->vq_active_tree); 308 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ)); 309 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE)); 310 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM)); 311 312 mutex_destroy(&vq->vq_lock); 313 } 314 315 static void 316 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 317 { 318 spa_t *spa = zio->io_spa; 319 320 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 321 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 322 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio); 323 324 mutex_enter(&spa->spa_iokstat_lock); 325 spa->spa_queue_stats[zio->io_priority].spa_queued++; 326 if (spa->spa_iokstat != NULL) 327 kstat_waitq_enter(spa->spa_iokstat->ks_data); 328 mutex_exit(&spa->spa_iokstat_lock); 329 } 330 331 static void 332 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 333 { 334 spa_t *spa = zio->io_spa; 335 336 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 337 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 338 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio); 339 340 mutex_enter(&spa->spa_iokstat_lock); 341 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0); 342 spa->spa_queue_stats[zio->io_priority].spa_queued--; 343 if (spa->spa_iokstat != NULL) 344 kstat_waitq_exit(spa->spa_iokstat->ks_data); 345 mutex_exit(&spa->spa_iokstat_lock); 346 } 347 348 static void 349 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 350 { 351 spa_t *spa = zio->io_spa; 352 ASSERT(MUTEX_HELD(&vq->vq_lock)); 353 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 354 vq->vq_class[zio->io_priority].vqc_active++; 355 avl_add(&vq->vq_active_tree, zio); 356 357 mutex_enter(&spa->spa_iokstat_lock); 358 spa->spa_queue_stats[zio->io_priority].spa_active++; 359 if (spa->spa_iokstat != NULL) 360 kstat_runq_enter(spa->spa_iokstat->ks_data); 361 mutex_exit(&spa->spa_iokstat_lock); 362 } 363 364 static void 365 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 366 { 367 spa_t *spa = zio->io_spa; 368 ASSERT(MUTEX_HELD(&vq->vq_lock)); 369 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 370 vq->vq_class[zio->io_priority].vqc_active--; 371 avl_remove(&vq->vq_active_tree, zio); 372 373 mutex_enter(&spa->spa_iokstat_lock); 374 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0); 375 spa->spa_queue_stats[zio->io_priority].spa_active--; 376 if (spa->spa_iokstat != NULL) { 377 kstat_io_t *ksio = spa->spa_iokstat->ks_data; 378 379 kstat_runq_exit(spa->spa_iokstat->ks_data); 380 if (zio->io_type == ZIO_TYPE_READ) { 381 ksio->reads++; 382 ksio->nread += zio->io_size; 383 } else if (zio->io_type == ZIO_TYPE_WRITE) { 384 ksio->writes++; 385 ksio->nwritten += zio->io_size; 386 } 387 } 388 mutex_exit(&spa->spa_iokstat_lock); 389 } 390 391 static void 392 vdev_queue_agg_io_done(zio_t *aio) 393 { 394 if (aio->io_type == ZIO_TYPE_READ) { 395 zio_t *pio; 396 zio_link_t *zl = NULL; 397 while ((pio = zio_walk_parents(aio, &zl)) != NULL) { 398 abd_copy_off(pio->io_abd, aio->io_abd, 399 0, pio->io_offset - aio->io_offset, pio->io_size); 400 } 401 } 402 403 abd_free(aio->io_abd); 404 } 405 406 static int 407 vdev_queue_class_min_active(zio_priority_t p) 408 { 409 switch (p) { 410 case ZIO_PRIORITY_SYNC_READ: 411 return (zfs_vdev_sync_read_min_active); 412 case ZIO_PRIORITY_SYNC_WRITE: 413 return (zfs_vdev_sync_write_min_active); 414 case ZIO_PRIORITY_ASYNC_READ: 415 return (zfs_vdev_async_read_min_active); 416 case ZIO_PRIORITY_ASYNC_WRITE: 417 return (zfs_vdev_async_write_min_active); 418 case ZIO_PRIORITY_SCRUB: 419 return (zfs_vdev_scrub_min_active); 420 case ZIO_PRIORITY_REMOVAL: 421 return (zfs_vdev_removal_min_active); 422 case ZIO_PRIORITY_INITIALIZING: 423 return (zfs_vdev_initializing_min_active); 424 case ZIO_PRIORITY_TRIM: 425 return (zfs_vdev_trim_min_active); 426 default: 427 panic("invalid priority %u", p); 428 } 429 } 430 431 static int 432 vdev_queue_max_async_writes(spa_t *spa) 433 { 434 int writes; 435 uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total; 436 uint64_t min_bytes = zfs_dirty_data_max * 437 zfs_vdev_async_write_active_min_dirty_percent / 100; 438 uint64_t max_bytes = zfs_dirty_data_max * 439 zfs_vdev_async_write_active_max_dirty_percent / 100; 440 441 /* 442 * Sync tasks correspond to interactive user actions. To reduce the 443 * execution time of those actions we push data out as fast as possible. 444 */ 445 if (spa_has_pending_synctask(spa)) { 446 return (zfs_vdev_async_write_max_active); 447 } 448 449 if (dirty < min_bytes) 450 return (zfs_vdev_async_write_min_active); 451 if (dirty > max_bytes) 452 return (zfs_vdev_async_write_max_active); 453 454 /* 455 * linear interpolation: 456 * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 457 * move right by min_bytes 458 * move up by min_writes 459 */ 460 writes = (dirty - min_bytes) * 461 (zfs_vdev_async_write_max_active - 462 zfs_vdev_async_write_min_active) / 463 (max_bytes - min_bytes) + 464 zfs_vdev_async_write_min_active; 465 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 466 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 467 return (writes); 468 } 469 470 static int 471 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) 472 { 473 switch (p) { 474 case ZIO_PRIORITY_SYNC_READ: 475 return (zfs_vdev_sync_read_max_active); 476 case ZIO_PRIORITY_SYNC_WRITE: 477 return (zfs_vdev_sync_write_max_active); 478 case ZIO_PRIORITY_ASYNC_READ: 479 return (zfs_vdev_async_read_max_active); 480 case ZIO_PRIORITY_ASYNC_WRITE: 481 return (vdev_queue_max_async_writes(spa)); 482 case ZIO_PRIORITY_SCRUB: 483 return (zfs_vdev_scrub_max_active); 484 case ZIO_PRIORITY_REMOVAL: 485 return (zfs_vdev_removal_max_active); 486 case ZIO_PRIORITY_INITIALIZING: 487 return (zfs_vdev_initializing_max_active); 488 case ZIO_PRIORITY_TRIM: 489 return (zfs_vdev_trim_max_active); 490 default: 491 panic("invalid priority %u", p); 492 } 493 } 494 495 /* 496 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 497 * there is no eligible class. 498 */ 499 static zio_priority_t 500 vdev_queue_class_to_issue(vdev_queue_t *vq) 501 { 502 spa_t *spa = vq->vq_vdev->vdev_spa; 503 zio_priority_t p; 504 505 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 506 return (ZIO_PRIORITY_NUM_QUEUEABLE); 507 508 /* find a queue that has not reached its minimum # outstanding i/os */ 509 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 510 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 511 vq->vq_class[p].vqc_active < 512 vdev_queue_class_min_active(p)) 513 return (p); 514 } 515 516 /* 517 * If we haven't found a queue, look for one that hasn't reached its 518 * maximum # outstanding i/os. 519 */ 520 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 521 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 522 vq->vq_class[p].vqc_active < 523 vdev_queue_class_max_active(spa, p)) 524 return (p); 525 } 526 527 /* No eligible queued i/os */ 528 return (ZIO_PRIORITY_NUM_QUEUEABLE); 529 } 530 531 /* 532 * Compute the range spanned by two i/os, which is the endpoint of the last 533 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 534 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 535 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 536 */ 537 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 538 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 539 540 static zio_t * 541 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 542 { 543 zio_t *first, *last, *aio, *dio, *mandatory, *nio; 544 zio_link_t *zl = NULL; 545 uint64_t maxgap = 0; 546 uint64_t size; 547 boolean_t stretch = B_FALSE; 548 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); 549 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 550 551 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) 552 return (NULL); 553 554 /* 555 * While TRIM commands could be aggregated based on offset this 556 * behavior is disabled until it's determined to be beneficial. 557 */ 558 if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim) 559 return (NULL); 560 561 first = last = zio; 562 563 if (zio->io_type == ZIO_TYPE_READ) 564 maxgap = zfs_vdev_read_gap_limit; 565 566 /* 567 * We can aggregate I/Os that are sufficiently adjacent and of 568 * the same flavor, as expressed by the AGG_INHERIT flags. 569 * The latter requirement is necessary so that certain 570 * attributes of the I/O, such as whether it's a normal I/O 571 * or a scrub/resilver, can be preserved in the aggregate. 572 * We can include optional I/Os, but don't allow them 573 * to begin a range as they add no benefit in that situation. 574 */ 575 576 /* 577 * We keep track of the last non-optional I/O. 578 */ 579 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 580 581 /* 582 * Walk backwards through sufficiently contiguous I/Os 583 * recording the last non-optional I/O. 584 */ 585 while ((dio = AVL_PREV(t, first)) != NULL && 586 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 587 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && 588 IO_GAP(dio, first) <= maxgap && 589 dio->io_type == zio->io_type) { 590 first = dio; 591 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 592 mandatory = first; 593 } 594 595 /* 596 * Skip any initial optional I/Os. 597 */ 598 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 599 first = AVL_NEXT(t, first); 600 ASSERT(first != NULL); 601 } 602 603 /* 604 * Walk forward through sufficiently contiguous I/Os. 605 * The aggregation limit does not apply to optional i/os, so that 606 * we can issue contiguous writes even if they are larger than the 607 * aggregation limit. 608 */ 609 while ((dio = AVL_NEXT(t, last)) != NULL && 610 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 611 (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit || 612 (dio->io_flags & ZIO_FLAG_OPTIONAL)) && 613 IO_GAP(last, dio) <= maxgap && 614 dio->io_type == zio->io_type) { 615 last = dio; 616 if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 617 mandatory = last; 618 } 619 620 /* 621 * Now that we've established the range of the I/O aggregation 622 * we must decide what to do with trailing optional I/Os. 623 * For reads, there's nothing to do. While we are unable to 624 * aggregate further, it's possible that a trailing optional 625 * I/O would allow the underlying device to aggregate with 626 * subsequent I/Os. We must therefore determine if the next 627 * non-optional I/O is close enough to make aggregation 628 * worthwhile. 629 */ 630 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 631 zio_t *nio = last; 632 while ((dio = AVL_NEXT(t, nio)) != NULL && 633 IO_GAP(nio, dio) == 0 && 634 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 635 nio = dio; 636 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 637 stretch = B_TRUE; 638 break; 639 } 640 } 641 } 642 643 if (stretch) { 644 /* 645 * We are going to include an optional io in our aggregated 646 * span, thus closing the write gap. Only mandatory i/os can 647 * start aggregated spans, so make sure that the next i/o 648 * after our span is mandatory. 649 */ 650 dio = AVL_NEXT(t, last); 651 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 652 } else { 653 /* do not include the optional i/o */ 654 while (last != mandatory && last != first) { 655 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 656 last = AVL_PREV(t, last); 657 ASSERT(last != NULL); 658 } 659 } 660 661 if (first == last) 662 return (NULL); 663 664 size = IO_SPAN(first, last); 665 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 666 667 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 668 abd_alloc_for_io(size, B_TRUE), size, first->io_type, 669 zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 670 vdev_queue_agg_io_done, NULL); 671 aio->io_timestamp = first->io_timestamp; 672 673 nio = first; 674 do { 675 dio = nio; 676 nio = AVL_NEXT(t, dio); 677 ASSERT3U(dio->io_type, ==, aio->io_type); 678 679 if (dio->io_flags & ZIO_FLAG_NODATA) { 680 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 681 abd_zero_off(aio->io_abd, 682 dio->io_offset - aio->io_offset, dio->io_size); 683 } else if (dio->io_type == ZIO_TYPE_WRITE) { 684 abd_copy_off(aio->io_abd, dio->io_abd, 685 dio->io_offset - aio->io_offset, 0, dio->io_size); 686 } 687 688 zio_add_child(dio, aio); 689 vdev_queue_io_remove(vq, dio); 690 } while (dio != last); 691 692 /* 693 * We need to drop the vdev queue's lock to avoid a deadlock that we 694 * could encounter since this I/O will complete immediately. 695 */ 696 mutex_exit(&vq->vq_lock); 697 while ((dio = zio_walk_parents(aio, &zl)) != NULL) { 698 zio_vdev_io_bypass(dio); 699 zio_execute(dio); 700 } 701 mutex_enter(&vq->vq_lock); 702 703 return (aio); 704 } 705 706 static zio_t * 707 vdev_queue_io_to_issue(vdev_queue_t *vq) 708 { 709 zio_t *zio, *aio; 710 zio_priority_t p; 711 avl_index_t idx; 712 avl_tree_t *tree; 713 zio_t search; 714 715 again: 716 ASSERT(MUTEX_HELD(&vq->vq_lock)); 717 718 p = vdev_queue_class_to_issue(vq); 719 720 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 721 /* No eligible queued i/os */ 722 return (NULL); 723 } 724 725 /* 726 * For LBA-ordered queues (async / scrub / initializing), issue the 727 * i/o which follows the most recently issued i/o in LBA (offset) order. 728 * 729 * For FIFO queues (sync/trim), issue the i/o with the lowest timestamp. 730 */ 731 tree = vdev_queue_class_tree(vq, p); 732 search.io_timestamp = 0; 733 search.io_offset = vq->vq_last_offset - 1; 734 VERIFY3P(avl_find(tree, &search, &idx), ==, NULL); 735 zio = avl_nearest(tree, idx, AVL_AFTER); 736 if (zio == NULL) 737 zio = avl_first(tree); 738 ASSERT3U(zio->io_priority, ==, p); 739 740 aio = vdev_queue_aggregate(vq, zio); 741 if (aio != NULL) 742 zio = aio; 743 else 744 vdev_queue_io_remove(vq, zio); 745 746 /* 747 * If the I/O is or was optional and therefore has no data, we need to 748 * simply discard it. We need to drop the vdev queue's lock to avoid a 749 * deadlock that we could encounter since this I/O will complete 750 * immediately. 751 */ 752 if (zio->io_flags & ZIO_FLAG_NODATA) { 753 mutex_exit(&vq->vq_lock); 754 zio_vdev_io_bypass(zio); 755 zio_execute(zio); 756 mutex_enter(&vq->vq_lock); 757 goto again; 758 } 759 760 vdev_queue_pending_add(vq, zio); 761 vq->vq_last_offset = zio->io_offset + zio->io_size; 762 763 return (zio); 764 } 765 766 zio_t * 767 vdev_queue_io(zio_t *zio) 768 { 769 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 770 zio_t *nio; 771 772 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 773 return (zio); 774 775 /* 776 * Children i/os inherent their parent's priority, which might 777 * not match the child's i/o type. Fix it up here. 778 */ 779 if (zio->io_type == ZIO_TYPE_READ) { 780 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); 781 782 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 783 zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 784 zio->io_priority != ZIO_PRIORITY_SCRUB && 785 zio->io_priority != ZIO_PRIORITY_REMOVAL && 786 zio->io_priority != ZIO_PRIORITY_INITIALIZING) { 787 zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 788 } 789 } else if (zio->io_type == ZIO_TYPE_WRITE) { 790 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); 791 792 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 793 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE && 794 zio->io_priority != ZIO_PRIORITY_REMOVAL && 795 zio->io_priority != ZIO_PRIORITY_INITIALIZING) { 796 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 797 } 798 } else { 799 ASSERT(zio->io_type == ZIO_TYPE_TRIM); 800 ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM); 801 } 802 803 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 804 805 mutex_enter(&vq->vq_lock); 806 zio->io_timestamp = gethrtime(); 807 vdev_queue_io_add(vq, zio); 808 nio = vdev_queue_io_to_issue(vq); 809 mutex_exit(&vq->vq_lock); 810 811 if (nio == NULL) 812 return (NULL); 813 814 if (nio->io_done == vdev_queue_agg_io_done) { 815 zio_nowait(nio); 816 return (NULL); 817 } 818 819 return (nio); 820 } 821 822 void 823 vdev_queue_io_done(zio_t *zio) 824 { 825 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 826 zio_t *nio; 827 828 mutex_enter(&vq->vq_lock); 829 830 vdev_queue_pending_remove(vq, zio); 831 832 vq->vq_io_complete_ts = gethrtime(); 833 834 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 835 mutex_exit(&vq->vq_lock); 836 if (nio->io_done == vdev_queue_agg_io_done) { 837 zio_nowait(nio); 838 } else { 839 zio_vdev_io_reissue(nio); 840 zio_execute(nio); 841 } 842 mutex_enter(&vq->vq_lock); 843 } 844 845 mutex_exit(&vq->vq_lock); 846 } 847 848 void 849 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority) 850 { 851 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 852 avl_tree_t *tree; 853 854 /* 855 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio 856 * code to issue IOs without adding them to the vdev queue. In this 857 * case, the zio is already going to be issued as quickly as possible 858 * and so it doesn't need any reprioitization to help. 859 */ 860 if (zio->io_priority == ZIO_PRIORITY_NOW) 861 return; 862 863 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 864 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 865 866 if (zio->io_type == ZIO_TYPE_READ) { 867 if (priority != ZIO_PRIORITY_SYNC_READ && 868 priority != ZIO_PRIORITY_ASYNC_READ && 869 priority != ZIO_PRIORITY_SCRUB) 870 priority = ZIO_PRIORITY_ASYNC_READ; 871 } else { 872 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 873 if (priority != ZIO_PRIORITY_SYNC_WRITE && 874 priority != ZIO_PRIORITY_ASYNC_WRITE) 875 priority = ZIO_PRIORITY_ASYNC_WRITE; 876 } 877 878 mutex_enter(&vq->vq_lock); 879 880 /* 881 * If the zio is in none of the queues we can simply change 882 * the priority. If the zio is waiting to be submitted we must 883 * remove it from the queue and re-insert it with the new priority. 884 * Otherwise, the zio is currently active and we cannot change its 885 * priority. 886 */ 887 tree = vdev_queue_class_tree(vq, zio->io_priority); 888 if (avl_find(tree, zio, NULL) == zio) { 889 spa_t *spa = zio->io_spa; 890 zio_priority_t oldpri = zio->io_priority; 891 892 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 893 zio->io_priority = priority; 894 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 895 896 mutex_enter(&spa->spa_iokstat_lock); 897 ASSERT3U(spa->spa_queue_stats[oldpri].spa_queued, >, 0); 898 spa->spa_queue_stats[oldpri].spa_queued--; 899 spa->spa_queue_stats[zio->io_priority].spa_queued++; 900 mutex_exit(&spa->spa_iokstat_lock); 901 } else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) { 902 zio->io_priority = priority; 903 } 904 905 mutex_exit(&vq->vq_lock); 906 } 907 908 /* 909 * As these two methods are only used for load calculations we're not 910 * concerned if we get an incorrect value on 32bit platforms due to lack of 911 * vq_lock mutex use here, instead we prefer to keep it lock free for 912 * performance. 913 */ 914 int 915 vdev_queue_length(vdev_t *vd) 916 { 917 return (avl_numnodes(&vd->vdev_queue.vq_active_tree)); 918 } 919 920 uint64_t 921 vdev_queue_last_offset(vdev_t *vd) 922 { 923 return (vd->vdev_queue.vq_last_offset); 924 } 925