xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_queue.c (revision 867a2ce85cd3f659cb7bc187ba93a095fe1df597)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2019 Joyent, Inc.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zio.h>
36 #include <sys/avl.h>
37 #include <sys/dsl_pool.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/abd.h>
40 
41 /*
42  * ZFS I/O Scheduler
43  * ---------------
44  *
45  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
46  * I/O scheduler determines when and in what order those operations are
47  * issued.  The I/O scheduler divides operations into five I/O classes
48  * prioritized in the following order: sync read, sync write, async read,
49  * async write, and scrub/resilver.  Each queue defines the minimum and
50  * maximum number of concurrent operations that may be issued to the device.
51  * In addition, the device has an aggregate maximum. Note that the sum of the
52  * per-queue minimums must not exceed the aggregate maximum, and if the
53  * aggregate maximum is equal to or greater than the sum of the per-queue
54  * maximums, the per-queue minimum has no effect.
55  *
56  * For many physical devices, throughput increases with the number of
57  * concurrent operations, but latency typically suffers. Further, physical
58  * devices typically have a limit at which more concurrent operations have no
59  * effect on throughput or can actually cause it to decrease.
60  *
61  * The scheduler selects the next operation to issue by first looking for an
62  * I/O class whose minimum has not been satisfied. Once all are satisfied and
63  * the aggregate maximum has not been hit, the scheduler looks for classes
64  * whose maximum has not been satisfied. Iteration through the I/O classes is
65  * done in the order specified above. No further operations are issued if the
66  * aggregate maximum number of concurrent operations has been hit or if there
67  * are no operations queued for an I/O class that has not hit its maximum.
68  * Every time an i/o is queued or an operation completes, the I/O scheduler
69  * looks for new operations to issue.
70  *
71  * All I/O classes have a fixed maximum number of outstanding operations
72  * except for the async write class. Asynchronous writes represent the data
73  * that is committed to stable storage during the syncing stage for
74  * transaction groups (see txg.c). Transaction groups enter the syncing state
75  * periodically so the number of queued async writes will quickly burst up and
76  * then bleed down to zero. Rather than servicing them as quickly as possible,
77  * the I/O scheduler changes the maximum number of active async write i/os
78  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
79  * both throughput and latency typically increase with the number of
80  * concurrent operations issued to physical devices, reducing the burstiness
81  * in the number of concurrent operations also stabilizes the response time of
82  * operations from other -- and in particular synchronous -- queues. In broad
83  * strokes, the I/O scheduler will issue more concurrent operations from the
84  * async write queue as there's more dirty data in the pool.
85  *
86  * Async Writes
87  *
88  * The number of concurrent operations issued for the async write I/O class
89  * follows a piece-wise linear function defined by a few adjustable points.
90  *
91  *        |                   o---------| <-- zfs_vdev_async_write_max_active
92  *   ^    |                  /^         |
93  *   |    |                 / |         |
94  * active |                /  |         |
95  *  I/O   |               /   |         |
96  * count  |              /    |         |
97  *        |             /     |         |
98  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
99  *       0|____________^______|_________|
100  *        0%           |      |       100% of zfs_dirty_data_max
101  *                     |      |
102  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
103  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
104  *
105  * Until the amount of dirty data exceeds a minimum percentage of the dirty
106  * data allowed in the pool, the I/O scheduler will limit the number of
107  * concurrent operations to the minimum. As that threshold is crossed, the
108  * number of concurrent operations issued increases linearly to the maximum at
109  * the specified maximum percentage of the dirty data allowed in the pool.
110  *
111  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
112  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
113  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
114  * maximum percentage, this indicates that the rate of incoming data is
115  * greater than the rate that the backend storage can handle. In this case, we
116  * must further throttle incoming writes (see dmu_tx_delay() for details).
117  */
118 
119 /*
120  * The maximum number of i/os active to each device.  Ideally, this will be >=
121  * the sum of each queue's max_active.  It must be at least the sum of each
122  * queue's min_active.
123  */
124 uint32_t zfs_vdev_max_active = 1000;
125 
126 /*
127  * Per-queue limits on the number of i/os active to each device.  If the
128  * sum of the queue's max_active is < zfs_vdev_max_active, then the
129  * min_active comes into play.  We will send min_active from each queue,
130  * and then select from queues in the order defined by zio_priority_t.
131  *
132  * In general, smaller max_active's will lead to lower latency of synchronous
133  * operations.  Larger max_active's may lead to higher overall throughput,
134  * depending on underlying storage.
135  *
136  * The ratio of the queues' max_actives determines the balance of performance
137  * between reads, writes, and scrubs.  E.g., increasing
138  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
139  * more quickly, but reads and writes to have higher latency and lower
140  * throughput.
141  */
142 uint32_t zfs_vdev_sync_read_min_active = 10;
143 uint32_t zfs_vdev_sync_read_max_active = 10;
144 uint32_t zfs_vdev_sync_write_min_active = 10;
145 uint32_t zfs_vdev_sync_write_max_active = 10;
146 uint32_t zfs_vdev_async_read_min_active = 1;
147 uint32_t zfs_vdev_async_read_max_active = 3;
148 uint32_t zfs_vdev_async_write_min_active = 1;
149 uint32_t zfs_vdev_async_write_max_active = 10;
150 uint32_t zfs_vdev_scrub_min_active = 1;
151 uint32_t zfs_vdev_scrub_max_active = 2;
152 uint32_t zfs_vdev_removal_min_active = 1;
153 uint32_t zfs_vdev_removal_max_active = 2;
154 uint32_t zfs_vdev_initializing_min_active = 1;
155 uint32_t zfs_vdev_initializing_max_active = 1;
156 
157 /*
158  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
159  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
160  * zfs_vdev_async_write_active_max_dirty_percent, use
161  * zfs_vdev_async_write_max_active. The value is linearly interpolated
162  * between min and max.
163  */
164 int zfs_vdev_async_write_active_min_dirty_percent = 30;
165 int zfs_vdev_async_write_active_max_dirty_percent = 60;
166 
167 /*
168  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
169  * For read I/Os, we also aggregate across small adjacency gaps; for writes
170  * we include spans of optional I/Os to aid aggregation at the disk even when
171  * they aren't able to help us aggregate at this level.
172  */
173 int zfs_vdev_aggregation_limit = 1 << 20;
174 int zfs_vdev_read_gap_limit = 32 << 10;
175 int zfs_vdev_write_gap_limit = 4 << 10;
176 
177 /*
178  * Define the queue depth percentage for each top-level. This percentage is
179  * used in conjunction with zfs_vdev_async_max_active to determine how many
180  * allocations a specific top-level vdev should handle. Once the queue depth
181  * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
182  * then allocator will stop allocating blocks on that top-level device.
183  * The default kernel setting is 1000% which will yield 100 allocations per
184  * device. For userland testing, the default setting is 300% which equates
185  * to 30 allocations per device.
186  */
187 #ifdef _KERNEL
188 int zfs_vdev_queue_depth_pct = 1000;
189 #else
190 int zfs_vdev_queue_depth_pct = 300;
191 #endif
192 
193 /*
194  * When performing allocations for a given metaslab, we want to make sure that
195  * there are enough IOs to aggregate together to improve throughput. We want to
196  * ensure that there are at least 128k worth of IOs that can be aggregated, and
197  * we assume that the average allocation size is 4k, so we need the queue depth
198  * to be 32 per allocator to get good aggregation of sequential writes.
199  */
200 int zfs_vdev_def_queue_depth = 32;
201 
202 
203 int
204 vdev_queue_offset_compare(const void *x1, const void *x2)
205 {
206 	const zio_t *z1 = (const zio_t *)x1;
207 	const zio_t *z2 = (const zio_t *)x2;
208 
209 	int cmp = AVL_CMP(z1->io_offset, z2->io_offset);
210 
211 	if (likely(cmp))
212 		return (cmp);
213 
214 	return (AVL_PCMP(z1, z2));
215 }
216 
217 static inline avl_tree_t *
218 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
219 {
220 	return (&vq->vq_class[p].vqc_queued_tree);
221 }
222 
223 static inline avl_tree_t *
224 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
225 {
226 	ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
227 	if (t == ZIO_TYPE_READ)
228 		return (&vq->vq_read_offset_tree);
229 	else
230 		return (&vq->vq_write_offset_tree);
231 }
232 
233 int
234 vdev_queue_timestamp_compare(const void *x1, const void *x2)
235 {
236 	const zio_t *z1 = (const zio_t *)x1;
237 	const zio_t *z2 = (const zio_t *)x2;
238 
239 	int cmp = AVL_CMP(z1->io_timestamp, z2->io_timestamp);
240 
241 	if (likely(cmp))
242 		return (cmp);
243 
244 	return (AVL_PCMP(z1, z2));
245 }
246 
247 void
248 vdev_queue_init(vdev_t *vd)
249 {
250 	vdev_queue_t *vq = &vd->vdev_queue;
251 
252 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
253 	vq->vq_vdev = vd;
254 
255 	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
256 	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
257 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
258 	    vdev_queue_offset_compare, sizeof (zio_t),
259 	    offsetof(struct zio, io_offset_node));
260 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
261 	    vdev_queue_offset_compare, sizeof (zio_t),
262 	    offsetof(struct zio, io_offset_node));
263 
264 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
265 		int (*compfn) (const void *, const void *);
266 
267 		/*
268 		 * The synchronous i/o queues are dispatched in FIFO rather
269 		 * than LBA order.  This provides more consistent latency for
270 		 * these i/os.
271 		 */
272 		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
273 			compfn = vdev_queue_timestamp_compare;
274 		else
275 			compfn = vdev_queue_offset_compare;
276 
277 		avl_create(vdev_queue_class_tree(vq, p), compfn,
278 		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
279 	}
280 
281 	vq->vq_last_offset = 0;
282 }
283 
284 void
285 vdev_queue_fini(vdev_t *vd)
286 {
287 	vdev_queue_t *vq = &vd->vdev_queue;
288 
289 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
290 		avl_destroy(vdev_queue_class_tree(vq, p));
291 	avl_destroy(&vq->vq_active_tree);
292 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
293 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
294 
295 	mutex_destroy(&vq->vq_lock);
296 }
297 
298 static void
299 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
300 {
301 	spa_t *spa = zio->io_spa;
302 
303 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
304 	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
305 	avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
306 
307 	mutex_enter(&spa->spa_iokstat_lock);
308 	spa->spa_queue_stats[zio->io_priority].spa_queued++;
309 	if (spa->spa_iokstat != NULL)
310 		kstat_waitq_enter(spa->spa_iokstat->ks_data);
311 	mutex_exit(&spa->spa_iokstat_lock);
312 }
313 
314 static void
315 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
316 {
317 	spa_t *spa = zio->io_spa;
318 
319 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
320 	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
321 	avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
322 
323 	mutex_enter(&spa->spa_iokstat_lock);
324 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
325 	spa->spa_queue_stats[zio->io_priority].spa_queued--;
326 	if (spa->spa_iokstat != NULL)
327 		kstat_waitq_exit(spa->spa_iokstat->ks_data);
328 	mutex_exit(&spa->spa_iokstat_lock);
329 }
330 
331 static void
332 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
333 {
334 	spa_t *spa = zio->io_spa;
335 	ASSERT(MUTEX_HELD(&vq->vq_lock));
336 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
337 	vq->vq_class[zio->io_priority].vqc_active++;
338 	avl_add(&vq->vq_active_tree, zio);
339 
340 	mutex_enter(&spa->spa_iokstat_lock);
341 	spa->spa_queue_stats[zio->io_priority].spa_active++;
342 	if (spa->spa_iokstat != NULL)
343 		kstat_runq_enter(spa->spa_iokstat->ks_data);
344 	mutex_exit(&spa->spa_iokstat_lock);
345 }
346 
347 static void
348 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
349 {
350 	spa_t *spa = zio->io_spa;
351 	ASSERT(MUTEX_HELD(&vq->vq_lock));
352 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
353 	vq->vq_class[zio->io_priority].vqc_active--;
354 	avl_remove(&vq->vq_active_tree, zio);
355 
356 	mutex_enter(&spa->spa_iokstat_lock);
357 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
358 	spa->spa_queue_stats[zio->io_priority].spa_active--;
359 	if (spa->spa_iokstat != NULL) {
360 		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
361 
362 		kstat_runq_exit(spa->spa_iokstat->ks_data);
363 		if (zio->io_type == ZIO_TYPE_READ) {
364 			ksio->reads++;
365 			ksio->nread += zio->io_size;
366 		} else if (zio->io_type == ZIO_TYPE_WRITE) {
367 			ksio->writes++;
368 			ksio->nwritten += zio->io_size;
369 		}
370 	}
371 	mutex_exit(&spa->spa_iokstat_lock);
372 }
373 
374 static void
375 vdev_queue_agg_io_done(zio_t *aio)
376 {
377 	if (aio->io_type == ZIO_TYPE_READ) {
378 		zio_t *pio;
379 		zio_link_t *zl = NULL;
380 		while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
381 			abd_copy_off(pio->io_abd, aio->io_abd,
382 			    0, pio->io_offset - aio->io_offset, pio->io_size);
383 		}
384 	}
385 
386 	abd_free(aio->io_abd);
387 }
388 
389 static int
390 vdev_queue_class_min_active(zio_priority_t p)
391 {
392 	switch (p) {
393 	case ZIO_PRIORITY_SYNC_READ:
394 		return (zfs_vdev_sync_read_min_active);
395 	case ZIO_PRIORITY_SYNC_WRITE:
396 		return (zfs_vdev_sync_write_min_active);
397 	case ZIO_PRIORITY_ASYNC_READ:
398 		return (zfs_vdev_async_read_min_active);
399 	case ZIO_PRIORITY_ASYNC_WRITE:
400 		return (zfs_vdev_async_write_min_active);
401 	case ZIO_PRIORITY_SCRUB:
402 		return (zfs_vdev_scrub_min_active);
403 	case ZIO_PRIORITY_REMOVAL:
404 		return (zfs_vdev_removal_min_active);
405 	case ZIO_PRIORITY_INITIALIZING:
406 		return (zfs_vdev_initializing_min_active);
407 	default:
408 		panic("invalid priority %u", p);
409 	}
410 }
411 
412 static int
413 vdev_queue_max_async_writes(spa_t *spa)
414 {
415 	int writes;
416 	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
417 	uint64_t min_bytes = zfs_dirty_data_max *
418 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
419 	uint64_t max_bytes = zfs_dirty_data_max *
420 	    zfs_vdev_async_write_active_max_dirty_percent / 100;
421 
422 	/*
423 	 * Sync tasks correspond to interactive user actions. To reduce the
424 	 * execution time of those actions we push data out as fast as possible.
425 	 */
426 	if (spa_has_pending_synctask(spa)) {
427 		return (zfs_vdev_async_write_max_active);
428 	}
429 
430 	if (dirty < min_bytes)
431 		return (zfs_vdev_async_write_min_active);
432 	if (dirty > max_bytes)
433 		return (zfs_vdev_async_write_max_active);
434 
435 	/*
436 	 * linear interpolation:
437 	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
438 	 * move right by min_bytes
439 	 * move up by min_writes
440 	 */
441 	writes = (dirty - min_bytes) *
442 	    (zfs_vdev_async_write_max_active -
443 	    zfs_vdev_async_write_min_active) /
444 	    (max_bytes - min_bytes) +
445 	    zfs_vdev_async_write_min_active;
446 	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
447 	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
448 	return (writes);
449 }
450 
451 static int
452 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
453 {
454 	switch (p) {
455 	case ZIO_PRIORITY_SYNC_READ:
456 		return (zfs_vdev_sync_read_max_active);
457 	case ZIO_PRIORITY_SYNC_WRITE:
458 		return (zfs_vdev_sync_write_max_active);
459 	case ZIO_PRIORITY_ASYNC_READ:
460 		return (zfs_vdev_async_read_max_active);
461 	case ZIO_PRIORITY_ASYNC_WRITE:
462 		return (vdev_queue_max_async_writes(spa));
463 	case ZIO_PRIORITY_SCRUB:
464 		return (zfs_vdev_scrub_max_active);
465 	case ZIO_PRIORITY_REMOVAL:
466 		return (zfs_vdev_removal_max_active);
467 	case ZIO_PRIORITY_INITIALIZING:
468 		return (zfs_vdev_initializing_max_active);
469 	default:
470 		panic("invalid priority %u", p);
471 	}
472 }
473 
474 /*
475  * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
476  * there is no eligible class.
477  */
478 static zio_priority_t
479 vdev_queue_class_to_issue(vdev_queue_t *vq)
480 {
481 	spa_t *spa = vq->vq_vdev->vdev_spa;
482 	zio_priority_t p;
483 
484 	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
485 		return (ZIO_PRIORITY_NUM_QUEUEABLE);
486 
487 	/* find a queue that has not reached its minimum # outstanding i/os */
488 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
489 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
490 		    vq->vq_class[p].vqc_active <
491 		    vdev_queue_class_min_active(p))
492 			return (p);
493 	}
494 
495 	/*
496 	 * If we haven't found a queue, look for one that hasn't reached its
497 	 * maximum # outstanding i/os.
498 	 */
499 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
500 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
501 		    vq->vq_class[p].vqc_active <
502 		    vdev_queue_class_max_active(spa, p))
503 			return (p);
504 	}
505 
506 	/* No eligible queued i/os */
507 	return (ZIO_PRIORITY_NUM_QUEUEABLE);
508 }
509 
510 /*
511  * Compute the range spanned by two i/os, which is the endpoint of the last
512  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
513  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
514  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
515  */
516 #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
517 #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
518 
519 static zio_t *
520 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
521 {
522 	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
523 	zio_link_t *zl = NULL;
524 	uint64_t maxgap = 0;
525 	uint64_t size;
526 	boolean_t stretch = B_FALSE;
527 	avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
528 	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
529 
530 	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
531 		return (NULL);
532 
533 	first = last = zio;
534 
535 	if (zio->io_type == ZIO_TYPE_READ)
536 		maxgap = zfs_vdev_read_gap_limit;
537 
538 	/*
539 	 * We can aggregate I/Os that are sufficiently adjacent and of
540 	 * the same flavor, as expressed by the AGG_INHERIT flags.
541 	 * The latter requirement is necessary so that certain
542 	 * attributes of the I/O, such as whether it's a normal I/O
543 	 * or a scrub/resilver, can be preserved in the aggregate.
544 	 * We can include optional I/Os, but don't allow them
545 	 * to begin a range as they add no benefit in that situation.
546 	 */
547 
548 	/*
549 	 * We keep track of the last non-optional I/O.
550 	 */
551 	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
552 
553 	/*
554 	 * Walk backwards through sufficiently contiguous I/Os
555 	 * recording the last non-optional I/O.
556 	 */
557 	while ((dio = AVL_PREV(t, first)) != NULL &&
558 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
559 	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
560 	    IO_GAP(dio, first) <= maxgap &&
561 	    dio->io_type == zio->io_type) {
562 		first = dio;
563 		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
564 			mandatory = first;
565 	}
566 
567 	/*
568 	 * Skip any initial optional I/Os.
569 	 */
570 	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
571 		first = AVL_NEXT(t, first);
572 		ASSERT(first != NULL);
573 	}
574 
575 	/*
576 	 * Walk forward through sufficiently contiguous I/Os.
577 	 * The aggregation limit does not apply to optional i/os, so that
578 	 * we can issue contiguous writes even if they are larger than the
579 	 * aggregation limit.
580 	 */
581 	while ((dio = AVL_NEXT(t, last)) != NULL &&
582 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
583 	    (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit ||
584 	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
585 	    IO_GAP(last, dio) <= maxgap &&
586 	    dio->io_type == zio->io_type) {
587 		last = dio;
588 		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
589 			mandatory = last;
590 	}
591 
592 	/*
593 	 * Now that we've established the range of the I/O aggregation
594 	 * we must decide what to do with trailing optional I/Os.
595 	 * For reads, there's nothing to do. While we are unable to
596 	 * aggregate further, it's possible that a trailing optional
597 	 * I/O would allow the underlying device to aggregate with
598 	 * subsequent I/Os. We must therefore determine if the next
599 	 * non-optional I/O is close enough to make aggregation
600 	 * worthwhile.
601 	 */
602 	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
603 		zio_t *nio = last;
604 		while ((dio = AVL_NEXT(t, nio)) != NULL &&
605 		    IO_GAP(nio, dio) == 0 &&
606 		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
607 			nio = dio;
608 			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
609 				stretch = B_TRUE;
610 				break;
611 			}
612 		}
613 	}
614 
615 	if (stretch) {
616 		/*
617 		 * We are going to include an optional io in our aggregated
618 		 * span, thus closing the write gap.  Only mandatory i/os can
619 		 * start aggregated spans, so make sure that the next i/o
620 		 * after our span is mandatory.
621 		 */
622 		dio = AVL_NEXT(t, last);
623 		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
624 	} else {
625 		/* do not include the optional i/o */
626 		while (last != mandatory && last != first) {
627 			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
628 			last = AVL_PREV(t, last);
629 			ASSERT(last != NULL);
630 		}
631 	}
632 
633 	if (first == last)
634 		return (NULL);
635 
636 	size = IO_SPAN(first, last);
637 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
638 
639 	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
640 	    abd_alloc_for_io(size, B_TRUE), size, first->io_type,
641 	    zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
642 	    vdev_queue_agg_io_done, NULL);
643 	aio->io_timestamp = first->io_timestamp;
644 
645 	nio = first;
646 	do {
647 		dio = nio;
648 		nio = AVL_NEXT(t, dio);
649 		ASSERT3U(dio->io_type, ==, aio->io_type);
650 
651 		if (dio->io_flags & ZIO_FLAG_NODATA) {
652 			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
653 			abd_zero_off(aio->io_abd,
654 			    dio->io_offset - aio->io_offset, dio->io_size);
655 		} else if (dio->io_type == ZIO_TYPE_WRITE) {
656 			abd_copy_off(aio->io_abd, dio->io_abd,
657 			    dio->io_offset - aio->io_offset, 0, dio->io_size);
658 		}
659 
660 		zio_add_child(dio, aio);
661 		vdev_queue_io_remove(vq, dio);
662 	} while (dio != last);
663 
664 	/*
665 	 * We need to drop the vdev queue's lock to avoid a deadlock that we
666 	 * could encounter since this I/O will complete immediately.
667 	 */
668 	mutex_exit(&vq->vq_lock);
669 	while ((dio = zio_walk_parents(aio, &zl)) != NULL) {
670 		zio_vdev_io_bypass(dio);
671 		zio_execute(dio);
672 	}
673 	mutex_enter(&vq->vq_lock);
674 
675 	return (aio);
676 }
677 
678 static zio_t *
679 vdev_queue_io_to_issue(vdev_queue_t *vq)
680 {
681 	zio_t *zio, *aio;
682 	zio_priority_t p;
683 	avl_index_t idx;
684 	avl_tree_t *tree;
685 	zio_t search;
686 
687 again:
688 	ASSERT(MUTEX_HELD(&vq->vq_lock));
689 
690 	p = vdev_queue_class_to_issue(vq);
691 
692 	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
693 		/* No eligible queued i/os */
694 		return (NULL);
695 	}
696 
697 	/*
698 	 * For LBA-ordered queues (async / scrub / initializing), issue the
699 	 * i/o which follows the most recently issued i/o in LBA (offset) order.
700 	 *
701 	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
702 	 */
703 	tree = vdev_queue_class_tree(vq, p);
704 	search.io_timestamp = 0;
705 	search.io_offset = vq->vq_last_offset - 1;
706 	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
707 	zio = avl_nearest(tree, idx, AVL_AFTER);
708 	if (zio == NULL)
709 		zio = avl_first(tree);
710 	ASSERT3U(zio->io_priority, ==, p);
711 
712 	aio = vdev_queue_aggregate(vq, zio);
713 	if (aio != NULL)
714 		zio = aio;
715 	else
716 		vdev_queue_io_remove(vq, zio);
717 
718 	/*
719 	 * If the I/O is or was optional and therefore has no data, we need to
720 	 * simply discard it. We need to drop the vdev queue's lock to avoid a
721 	 * deadlock that we could encounter since this I/O will complete
722 	 * immediately.
723 	 */
724 	if (zio->io_flags & ZIO_FLAG_NODATA) {
725 		mutex_exit(&vq->vq_lock);
726 		zio_vdev_io_bypass(zio);
727 		zio_execute(zio);
728 		mutex_enter(&vq->vq_lock);
729 		goto again;
730 	}
731 
732 	vdev_queue_pending_add(vq, zio);
733 	vq->vq_last_offset = zio->io_offset + zio->io_size;
734 
735 	return (zio);
736 }
737 
738 zio_t *
739 vdev_queue_io(zio_t *zio)
740 {
741 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
742 	zio_t *nio;
743 
744 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
745 		return (zio);
746 
747 	/*
748 	 * Children i/os inherent their parent's priority, which might
749 	 * not match the child's i/o type.  Fix it up here.
750 	 */
751 	if (zio->io_type == ZIO_TYPE_READ) {
752 		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
753 		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
754 		    zio->io_priority != ZIO_PRIORITY_SCRUB &&
755 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
756 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING)
757 			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
758 	} else {
759 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
760 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
761 		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
762 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
763 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING)
764 			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
765 	}
766 
767 	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
768 
769 	mutex_enter(&vq->vq_lock);
770 	zio->io_timestamp = gethrtime();
771 	vdev_queue_io_add(vq, zio);
772 	nio = vdev_queue_io_to_issue(vq);
773 	mutex_exit(&vq->vq_lock);
774 
775 	if (nio == NULL)
776 		return (NULL);
777 
778 	if (nio->io_done == vdev_queue_agg_io_done) {
779 		zio_nowait(nio);
780 		return (NULL);
781 	}
782 
783 	return (nio);
784 }
785 
786 void
787 vdev_queue_io_done(zio_t *zio)
788 {
789 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
790 	zio_t *nio;
791 
792 	mutex_enter(&vq->vq_lock);
793 
794 	vdev_queue_pending_remove(vq, zio);
795 
796 	vq->vq_io_complete_ts = gethrtime();
797 
798 	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
799 		mutex_exit(&vq->vq_lock);
800 		if (nio->io_done == vdev_queue_agg_io_done) {
801 			zio_nowait(nio);
802 		} else {
803 			zio_vdev_io_reissue(nio);
804 			zio_execute(nio);
805 		}
806 		mutex_enter(&vq->vq_lock);
807 	}
808 
809 	mutex_exit(&vq->vq_lock);
810 }
811 
812 void
813 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
814 {
815 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
816 	avl_tree_t *tree;
817 
818 	/*
819 	 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
820 	 * code to issue IOs without adding them to the vdev queue. In this
821 	 * case, the zio is already going to be issued as quickly as possible
822 	 * and so it doesn't need any reprioitization to help.
823 	 */
824 	if (zio->io_priority == ZIO_PRIORITY_NOW)
825 		return;
826 
827 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
828 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
829 
830 	if (zio->io_type == ZIO_TYPE_READ) {
831 		if (priority != ZIO_PRIORITY_SYNC_READ &&
832 		    priority != ZIO_PRIORITY_ASYNC_READ &&
833 		    priority != ZIO_PRIORITY_SCRUB)
834 			priority = ZIO_PRIORITY_ASYNC_READ;
835 	} else {
836 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
837 		if (priority != ZIO_PRIORITY_SYNC_WRITE &&
838 		    priority != ZIO_PRIORITY_ASYNC_WRITE)
839 			priority = ZIO_PRIORITY_ASYNC_WRITE;
840 	}
841 
842 	mutex_enter(&vq->vq_lock);
843 
844 	/*
845 	 * If the zio is in none of the queues we can simply change
846 	 * the priority. If the zio is waiting to be submitted we must
847 	 * remove it from the queue and re-insert it with the new priority.
848 	 * Otherwise, the zio is currently active and we cannot change its
849 	 * priority.
850 	 */
851 	tree = vdev_queue_class_tree(vq, zio->io_priority);
852 	if (avl_find(tree, zio, NULL) == zio) {
853 		spa_t *spa = zio->io_spa;
854 		zio_priority_t oldpri = zio->io_priority;
855 
856 		avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
857 		zio->io_priority = priority;
858 		avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
859 
860 		mutex_enter(&spa->spa_iokstat_lock);
861 		ASSERT3U(spa->spa_queue_stats[oldpri].spa_queued, >, 0);
862 		spa->spa_queue_stats[oldpri].spa_queued--;
863 		spa->spa_queue_stats[zio->io_priority].spa_queued++;
864 		mutex_exit(&spa->spa_iokstat_lock);
865 	} else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) {
866 		zio->io_priority = priority;
867 	}
868 
869 	mutex_exit(&vq->vq_lock);
870 }
871 
872 /*
873  * As these two methods are only used for load calculations we're not
874  * concerned if we get an incorrect value on 32bit platforms due to lack of
875  * vq_lock mutex use here, instead we prefer to keep it lock free for
876  * performance.
877  */
878 int
879 vdev_queue_length(vdev_t *vd)
880 {
881 	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
882 }
883 
884 uint64_t
885 vdev_queue_last_offset(vdev_t *vd)
886 {
887 	return (vd->vdev_queue.vq_last_offset);
888 }
889