xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_queue.c (revision 6f459ff5b49a8482416f3eab8866c784121ecae3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/avl.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/abd.h>
39 
40 /*
41  * ZFS I/O Scheduler
42  * ---------------
43  *
44  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
45  * I/O scheduler determines when and in what order those operations are
46  * issued.  The I/O scheduler divides operations into five I/O classes
47  * prioritized in the following order: sync read, sync write, async read,
48  * async write, and scrub/resilver.  Each queue defines the minimum and
49  * maximum number of concurrent operations that may be issued to the device.
50  * In addition, the device has an aggregate maximum. Note that the sum of the
51  * per-queue minimums must not exceed the aggregate maximum, and if the
52  * aggregate maximum is equal to or greater than the sum of the per-queue
53  * maximums, the per-queue minimum has no effect.
54  *
55  * For many physical devices, throughput increases with the number of
56  * concurrent operations, but latency typically suffers. Further, physical
57  * devices typically have a limit at which more concurrent operations have no
58  * effect on throughput or can actually cause it to decrease.
59  *
60  * The scheduler selects the next operation to issue by first looking for an
61  * I/O class whose minimum has not been satisfied. Once all are satisfied and
62  * the aggregate maximum has not been hit, the scheduler looks for classes
63  * whose maximum has not been satisfied. Iteration through the I/O classes is
64  * done in the order specified above. No further operations are issued if the
65  * aggregate maximum number of concurrent operations has been hit or if there
66  * are no operations queued for an I/O class that has not hit its maximum.
67  * Every time an i/o is queued or an operation completes, the I/O scheduler
68  * looks for new operations to issue.
69  *
70  * All I/O classes have a fixed maximum number of outstanding operations
71  * except for the async write class. Asynchronous writes represent the data
72  * that is committed to stable storage during the syncing stage for
73  * transaction groups (see txg.c). Transaction groups enter the syncing state
74  * periodically so the number of queued async writes will quickly burst up and
75  * then bleed down to zero. Rather than servicing them as quickly as possible,
76  * the I/O scheduler changes the maximum number of active async write i/os
77  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
78  * both throughput and latency typically increase with the number of
79  * concurrent operations issued to physical devices, reducing the burstiness
80  * in the number of concurrent operations also stabilizes the response time of
81  * operations from other -- and in particular synchronous -- queues. In broad
82  * strokes, the I/O scheduler will issue more concurrent operations from the
83  * async write queue as there's more dirty data in the pool.
84  *
85  * Async Writes
86  *
87  * The number of concurrent operations issued for the async write I/O class
88  * follows a piece-wise linear function defined by a few adjustable points.
89  *
90  *        |                   o---------| <-- zfs_vdev_async_write_max_active
91  *   ^    |                  /^         |
92  *   |    |                 / |         |
93  * active |                /  |         |
94  *  I/O   |               /   |         |
95  * count  |              /    |         |
96  *        |             /     |         |
97  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
98  *       0|____________^______|_________|
99  *        0%           |      |       100% of zfs_dirty_data_max
100  *                     |      |
101  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
102  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
103  *
104  * Until the amount of dirty data exceeds a minimum percentage of the dirty
105  * data allowed in the pool, the I/O scheduler will limit the number of
106  * concurrent operations to the minimum. As that threshold is crossed, the
107  * number of concurrent operations issued increases linearly to the maximum at
108  * the specified maximum percentage of the dirty data allowed in the pool.
109  *
110  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
111  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
112  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
113  * maximum percentage, this indicates that the rate of incoming data is
114  * greater than the rate that the backend storage can handle. In this case, we
115  * must further throttle incoming writes (see dmu_tx_delay() for details).
116  */
117 
118 /*
119  * The maximum number of i/os active to each device.  Ideally, this will be >=
120  * the sum of each queue's max_active.  It must be at least the sum of each
121  * queue's min_active.
122  */
123 uint32_t zfs_vdev_max_active = 1000;
124 
125 /*
126  * Per-queue limits on the number of i/os active to each device.  If the
127  * sum of the queue's max_active is < zfs_vdev_max_active, then the
128  * min_active comes into play.  We will send min_active from each queue,
129  * and then select from queues in the order defined by zio_priority_t.
130  *
131  * In general, smaller max_active's will lead to lower latency of synchronous
132  * operations.  Larger max_active's may lead to higher overall throughput,
133  * depending on underlying storage.
134  *
135  * The ratio of the queues' max_actives determines the balance of performance
136  * between reads, writes, and scrubs.  E.g., increasing
137  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
138  * more quickly, but reads and writes to have higher latency and lower
139  * throughput.
140  */
141 uint32_t zfs_vdev_sync_read_min_active = 10;
142 uint32_t zfs_vdev_sync_read_max_active = 10;
143 uint32_t zfs_vdev_sync_write_min_active = 10;
144 uint32_t zfs_vdev_sync_write_max_active = 10;
145 uint32_t zfs_vdev_async_read_min_active = 1;
146 uint32_t zfs_vdev_async_read_max_active = 3;
147 uint32_t zfs_vdev_async_write_min_active = 1;
148 uint32_t zfs_vdev_async_write_max_active = 10;
149 uint32_t zfs_vdev_scrub_min_active = 1;
150 uint32_t zfs_vdev_scrub_max_active = 2;
151 uint32_t zfs_vdev_removal_min_active = 1;
152 uint32_t zfs_vdev_removal_max_active = 2;
153 
154 /*
155  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
156  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
157  * zfs_vdev_async_write_active_max_dirty_percent, use
158  * zfs_vdev_async_write_max_active. The value is linearly interpolated
159  * between min and max.
160  */
161 int zfs_vdev_async_write_active_min_dirty_percent = 30;
162 int zfs_vdev_async_write_active_max_dirty_percent = 60;
163 
164 /*
165  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
166  * For read I/Os, we also aggregate across small adjacency gaps; for writes
167  * we include spans of optional I/Os to aid aggregation at the disk even when
168  * they aren't able to help us aggregate at this level.
169  */
170 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
171 int zfs_vdev_read_gap_limit = 32 << 10;
172 int zfs_vdev_write_gap_limit = 4 << 10;
173 
174 /*
175  * Define the queue depth percentage for each top-level. This percentage is
176  * used in conjunction with zfs_vdev_async_max_active to determine how many
177  * allocations a specific top-level vdev should handle. Once the queue depth
178  * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
179  * then allocator will stop allocating blocks on that top-level device.
180  * The default kernel setting is 1000% which will yield 100 allocations per
181  * device. For userland testing, the default setting is 300% which equates
182  * to 30 allocations per device.
183  */
184 #ifdef _KERNEL
185 int zfs_vdev_queue_depth_pct = 1000;
186 #else
187 int zfs_vdev_queue_depth_pct = 300;
188 #endif
189 
190 
191 int
192 vdev_queue_offset_compare(const void *x1, const void *x2)
193 {
194 	const zio_t *z1 = x1;
195 	const zio_t *z2 = x2;
196 
197 	if (z1->io_offset < z2->io_offset)
198 		return (-1);
199 	if (z1->io_offset > z2->io_offset)
200 		return (1);
201 
202 	if (z1 < z2)
203 		return (-1);
204 	if (z1 > z2)
205 		return (1);
206 
207 	return (0);
208 }
209 
210 static inline avl_tree_t *
211 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
212 {
213 	return (&vq->vq_class[p].vqc_queued_tree);
214 }
215 
216 static inline avl_tree_t *
217 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
218 {
219 	ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
220 	if (t == ZIO_TYPE_READ)
221 		return (&vq->vq_read_offset_tree);
222 	else
223 		return (&vq->vq_write_offset_tree);
224 }
225 
226 int
227 vdev_queue_timestamp_compare(const void *x1, const void *x2)
228 {
229 	const zio_t *z1 = x1;
230 	const zio_t *z2 = x2;
231 
232 	if (z1->io_timestamp < z2->io_timestamp)
233 		return (-1);
234 	if (z1->io_timestamp > z2->io_timestamp)
235 		return (1);
236 
237 	if (z1 < z2)
238 		return (-1);
239 	if (z1 > z2)
240 		return (1);
241 
242 	return (0);
243 }
244 
245 void
246 vdev_queue_init(vdev_t *vd)
247 {
248 	vdev_queue_t *vq = &vd->vdev_queue;
249 
250 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
251 	vq->vq_vdev = vd;
252 
253 	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
254 	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
255 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
256 	    vdev_queue_offset_compare, sizeof (zio_t),
257 	    offsetof(struct zio, io_offset_node));
258 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
259 	    vdev_queue_offset_compare, sizeof (zio_t),
260 	    offsetof(struct zio, io_offset_node));
261 
262 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
263 		int (*compfn) (const void *, const void *);
264 
265 		/*
266 		 * The synchronous i/o queues are dispatched in FIFO rather
267 		 * than LBA order.  This provides more consistent latency for
268 		 * these i/os.
269 		 */
270 		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
271 			compfn = vdev_queue_timestamp_compare;
272 		else
273 			compfn = vdev_queue_offset_compare;
274 
275 		avl_create(vdev_queue_class_tree(vq, p), compfn,
276 		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
277 	}
278 }
279 
280 void
281 vdev_queue_fini(vdev_t *vd)
282 {
283 	vdev_queue_t *vq = &vd->vdev_queue;
284 
285 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
286 		avl_destroy(vdev_queue_class_tree(vq, p));
287 	avl_destroy(&vq->vq_active_tree);
288 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
289 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
290 
291 	mutex_destroy(&vq->vq_lock);
292 }
293 
294 static void
295 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
296 {
297 	spa_t *spa = zio->io_spa;
298 
299 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
300 	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
301 	avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
302 
303 	mutex_enter(&spa->spa_iokstat_lock);
304 	spa->spa_queue_stats[zio->io_priority].spa_queued++;
305 	if (spa->spa_iokstat != NULL)
306 		kstat_waitq_enter(spa->spa_iokstat->ks_data);
307 	mutex_exit(&spa->spa_iokstat_lock);
308 }
309 
310 static void
311 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
312 {
313 	spa_t *spa = zio->io_spa;
314 
315 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
316 	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
317 	avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
318 
319 	mutex_enter(&spa->spa_iokstat_lock);
320 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
321 	spa->spa_queue_stats[zio->io_priority].spa_queued--;
322 	if (spa->spa_iokstat != NULL)
323 		kstat_waitq_exit(spa->spa_iokstat->ks_data);
324 	mutex_exit(&spa->spa_iokstat_lock);
325 }
326 
327 static void
328 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
329 {
330 	spa_t *spa = zio->io_spa;
331 	ASSERT(MUTEX_HELD(&vq->vq_lock));
332 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
333 	vq->vq_class[zio->io_priority].vqc_active++;
334 	avl_add(&vq->vq_active_tree, zio);
335 
336 	mutex_enter(&spa->spa_iokstat_lock);
337 	spa->spa_queue_stats[zio->io_priority].spa_active++;
338 	if (spa->spa_iokstat != NULL)
339 		kstat_runq_enter(spa->spa_iokstat->ks_data);
340 	mutex_exit(&spa->spa_iokstat_lock);
341 }
342 
343 static void
344 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
345 {
346 	spa_t *spa = zio->io_spa;
347 	ASSERT(MUTEX_HELD(&vq->vq_lock));
348 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
349 	vq->vq_class[zio->io_priority].vqc_active--;
350 	avl_remove(&vq->vq_active_tree, zio);
351 
352 	mutex_enter(&spa->spa_iokstat_lock);
353 	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
354 	spa->spa_queue_stats[zio->io_priority].spa_active--;
355 	if (spa->spa_iokstat != NULL) {
356 		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
357 
358 		kstat_runq_exit(spa->spa_iokstat->ks_data);
359 		if (zio->io_type == ZIO_TYPE_READ) {
360 			ksio->reads++;
361 			ksio->nread += zio->io_size;
362 		} else if (zio->io_type == ZIO_TYPE_WRITE) {
363 			ksio->writes++;
364 			ksio->nwritten += zio->io_size;
365 		}
366 	}
367 	mutex_exit(&spa->spa_iokstat_lock);
368 }
369 
370 static void
371 vdev_queue_agg_io_done(zio_t *aio)
372 {
373 	if (aio->io_type == ZIO_TYPE_READ) {
374 		zio_t *pio;
375 		zio_link_t *zl = NULL;
376 		while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
377 			abd_copy_off(pio->io_abd, aio->io_abd,
378 			    0, pio->io_offset - aio->io_offset, pio->io_size);
379 		}
380 	}
381 
382 	abd_free(aio->io_abd);
383 }
384 
385 static int
386 vdev_queue_class_min_active(zio_priority_t p)
387 {
388 	switch (p) {
389 	case ZIO_PRIORITY_SYNC_READ:
390 		return (zfs_vdev_sync_read_min_active);
391 	case ZIO_PRIORITY_SYNC_WRITE:
392 		return (zfs_vdev_sync_write_min_active);
393 	case ZIO_PRIORITY_ASYNC_READ:
394 		return (zfs_vdev_async_read_min_active);
395 	case ZIO_PRIORITY_ASYNC_WRITE:
396 		return (zfs_vdev_async_write_min_active);
397 	case ZIO_PRIORITY_SCRUB:
398 		return (zfs_vdev_scrub_min_active);
399 	case ZIO_PRIORITY_REMOVAL:
400 		return (zfs_vdev_removal_min_active);
401 	default:
402 		panic("invalid priority %u", p);
403 		return (0);
404 	}
405 }
406 
407 static int
408 vdev_queue_max_async_writes(spa_t *spa)
409 {
410 	int writes;
411 	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
412 	uint64_t min_bytes = zfs_dirty_data_max *
413 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
414 	uint64_t max_bytes = zfs_dirty_data_max *
415 	    zfs_vdev_async_write_active_max_dirty_percent / 100;
416 
417 	/*
418 	 * Sync tasks correspond to interactive user actions. To reduce the
419 	 * execution time of those actions we push data out as fast as possible.
420 	 */
421 	if (spa_has_pending_synctask(spa)) {
422 		return (zfs_vdev_async_write_max_active);
423 	}
424 
425 	if (dirty < min_bytes)
426 		return (zfs_vdev_async_write_min_active);
427 	if (dirty > max_bytes)
428 		return (zfs_vdev_async_write_max_active);
429 
430 	/*
431 	 * linear interpolation:
432 	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
433 	 * move right by min_bytes
434 	 * move up by min_writes
435 	 */
436 	writes = (dirty - min_bytes) *
437 	    (zfs_vdev_async_write_max_active -
438 	    zfs_vdev_async_write_min_active) /
439 	    (max_bytes - min_bytes) +
440 	    zfs_vdev_async_write_min_active;
441 	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
442 	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
443 	return (writes);
444 }
445 
446 static int
447 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
448 {
449 	switch (p) {
450 	case ZIO_PRIORITY_SYNC_READ:
451 		return (zfs_vdev_sync_read_max_active);
452 	case ZIO_PRIORITY_SYNC_WRITE:
453 		return (zfs_vdev_sync_write_max_active);
454 	case ZIO_PRIORITY_ASYNC_READ:
455 		return (zfs_vdev_async_read_max_active);
456 	case ZIO_PRIORITY_ASYNC_WRITE:
457 		return (vdev_queue_max_async_writes(spa));
458 	case ZIO_PRIORITY_SCRUB:
459 		return (zfs_vdev_scrub_max_active);
460 	case ZIO_PRIORITY_REMOVAL:
461 		return (zfs_vdev_removal_max_active);
462 	default:
463 		panic("invalid priority %u", p);
464 		return (0);
465 	}
466 }
467 
468 /*
469  * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
470  * there is no eligible class.
471  */
472 static zio_priority_t
473 vdev_queue_class_to_issue(vdev_queue_t *vq)
474 {
475 	spa_t *spa = vq->vq_vdev->vdev_spa;
476 	zio_priority_t p;
477 
478 	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
479 		return (ZIO_PRIORITY_NUM_QUEUEABLE);
480 
481 	/* find a queue that has not reached its minimum # outstanding i/os */
482 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
483 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
484 		    vq->vq_class[p].vqc_active <
485 		    vdev_queue_class_min_active(p))
486 			return (p);
487 	}
488 
489 	/*
490 	 * If we haven't found a queue, look for one that hasn't reached its
491 	 * maximum # outstanding i/os.
492 	 */
493 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
494 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
495 		    vq->vq_class[p].vqc_active <
496 		    vdev_queue_class_max_active(spa, p))
497 			return (p);
498 	}
499 
500 	/* No eligible queued i/os */
501 	return (ZIO_PRIORITY_NUM_QUEUEABLE);
502 }
503 
504 /*
505  * Compute the range spanned by two i/os, which is the endpoint of the last
506  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
507  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
508  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
509  */
510 #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
511 #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
512 
513 static zio_t *
514 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
515 {
516 	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
517 	uint64_t maxgap = 0;
518 	uint64_t size;
519 	boolean_t stretch = B_FALSE;
520 	avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
521 	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
522 
523 	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
524 		return (NULL);
525 
526 	first = last = zio;
527 
528 	if (zio->io_type == ZIO_TYPE_READ)
529 		maxgap = zfs_vdev_read_gap_limit;
530 
531 	/*
532 	 * We can aggregate I/Os that are sufficiently adjacent and of
533 	 * the same flavor, as expressed by the AGG_INHERIT flags.
534 	 * The latter requirement is necessary so that certain
535 	 * attributes of the I/O, such as whether it's a normal I/O
536 	 * or a scrub/resilver, can be preserved in the aggregate.
537 	 * We can include optional I/Os, but don't allow them
538 	 * to begin a range as they add no benefit in that situation.
539 	 */
540 
541 	/*
542 	 * We keep track of the last non-optional I/O.
543 	 */
544 	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
545 
546 	/*
547 	 * Walk backwards through sufficiently contiguous I/Os
548 	 * recording the last non-optional I/O.
549 	 */
550 	while ((dio = AVL_PREV(t, first)) != NULL &&
551 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
552 	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
553 	    IO_GAP(dio, first) <= maxgap &&
554 	    dio->io_type == zio->io_type) {
555 		first = dio;
556 		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
557 			mandatory = first;
558 	}
559 
560 	/*
561 	 * Skip any initial optional I/Os.
562 	 */
563 	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
564 		first = AVL_NEXT(t, first);
565 		ASSERT(first != NULL);
566 	}
567 
568 	/*
569 	 * Walk forward through sufficiently contiguous I/Os.
570 	 * The aggregation limit does not apply to optional i/os, so that
571 	 * we can issue contiguous writes even if they are larger than the
572 	 * aggregation limit.
573 	 */
574 	while ((dio = AVL_NEXT(t, last)) != NULL &&
575 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
576 	    (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit ||
577 	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
578 	    IO_GAP(last, dio) <= maxgap &&
579 	    dio->io_type == zio->io_type) {
580 		last = dio;
581 		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
582 			mandatory = last;
583 	}
584 
585 	/*
586 	 * Now that we've established the range of the I/O aggregation
587 	 * we must decide what to do with trailing optional I/Os.
588 	 * For reads, there's nothing to do. While we are unable to
589 	 * aggregate further, it's possible that a trailing optional
590 	 * I/O would allow the underlying device to aggregate with
591 	 * subsequent I/Os. We must therefore determine if the next
592 	 * non-optional I/O is close enough to make aggregation
593 	 * worthwhile.
594 	 */
595 	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
596 		zio_t *nio = last;
597 		while ((dio = AVL_NEXT(t, nio)) != NULL &&
598 		    IO_GAP(nio, dio) == 0 &&
599 		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
600 			nio = dio;
601 			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
602 				stretch = B_TRUE;
603 				break;
604 			}
605 		}
606 	}
607 
608 	if (stretch) {
609 		/*
610 		 * We are going to include an optional io in our aggregated
611 		 * span, thus closing the write gap.  Only mandatory i/os can
612 		 * start aggregated spans, so make sure that the next i/o
613 		 * after our span is mandatory.
614 		 */
615 		dio = AVL_NEXT(t, last);
616 		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
617 	} else {
618 		/* do not include the optional i/o */
619 		while (last != mandatory && last != first) {
620 			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
621 			last = AVL_PREV(t, last);
622 			ASSERT(last != NULL);
623 		}
624 	}
625 
626 	if (first == last)
627 		return (NULL);
628 
629 	size = IO_SPAN(first, last);
630 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
631 
632 	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
633 	    abd_alloc_for_io(size, B_TRUE), size, first->io_type,
634 	    zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
635 	    vdev_queue_agg_io_done, NULL);
636 	aio->io_timestamp = first->io_timestamp;
637 
638 	nio = first;
639 	do {
640 		dio = nio;
641 		nio = AVL_NEXT(t, dio);
642 		ASSERT3U(dio->io_type, ==, aio->io_type);
643 
644 		if (dio->io_flags & ZIO_FLAG_NODATA) {
645 			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
646 			abd_zero_off(aio->io_abd,
647 			    dio->io_offset - aio->io_offset, dio->io_size);
648 		} else if (dio->io_type == ZIO_TYPE_WRITE) {
649 			abd_copy_off(aio->io_abd, dio->io_abd,
650 			    dio->io_offset - aio->io_offset, 0, dio->io_size);
651 		}
652 
653 		zio_add_child(dio, aio);
654 		vdev_queue_io_remove(vq, dio);
655 		zio_vdev_io_bypass(dio);
656 		zio_execute(dio);
657 	} while (dio != last);
658 
659 	return (aio);
660 }
661 
662 static zio_t *
663 vdev_queue_io_to_issue(vdev_queue_t *vq)
664 {
665 	zio_t *zio, *aio;
666 	zio_priority_t p;
667 	avl_index_t idx;
668 	avl_tree_t *tree;
669 	zio_t search;
670 
671 again:
672 	ASSERT(MUTEX_HELD(&vq->vq_lock));
673 
674 	p = vdev_queue_class_to_issue(vq);
675 
676 	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
677 		/* No eligible queued i/os */
678 		return (NULL);
679 	}
680 
681 	/*
682 	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
683 	 * the most recently issued i/o in LBA (offset) order.
684 	 *
685 	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
686 	 */
687 	tree = vdev_queue_class_tree(vq, p);
688 	search.io_timestamp = 0;
689 	search.io_offset = vq->vq_last_offset + 1;
690 	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
691 	zio = avl_nearest(tree, idx, AVL_AFTER);
692 	if (zio == NULL)
693 		zio = avl_first(tree);
694 	ASSERT3U(zio->io_priority, ==, p);
695 
696 	aio = vdev_queue_aggregate(vq, zio);
697 	if (aio != NULL)
698 		zio = aio;
699 	else
700 		vdev_queue_io_remove(vq, zio);
701 
702 	/*
703 	 * If the I/O is or was optional and therefore has no data, we need to
704 	 * simply discard it. We need to drop the vdev queue's lock to avoid a
705 	 * deadlock that we could encounter since this I/O will complete
706 	 * immediately.
707 	 */
708 	if (zio->io_flags & ZIO_FLAG_NODATA) {
709 		mutex_exit(&vq->vq_lock);
710 		zio_vdev_io_bypass(zio);
711 		zio_execute(zio);
712 		mutex_enter(&vq->vq_lock);
713 		goto again;
714 	}
715 
716 	vdev_queue_pending_add(vq, zio);
717 	vq->vq_last_offset = zio->io_offset;
718 
719 	return (zio);
720 }
721 
722 zio_t *
723 vdev_queue_io(zio_t *zio)
724 {
725 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
726 	zio_t *nio;
727 
728 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
729 		return (zio);
730 
731 	/*
732 	 * Children i/os inherent their parent's priority, which might
733 	 * not match the child's i/o type.  Fix it up here.
734 	 */
735 	if (zio->io_type == ZIO_TYPE_READ) {
736 		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
737 		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
738 		    zio->io_priority != ZIO_PRIORITY_SCRUB &&
739 		    zio->io_priority != ZIO_PRIORITY_REMOVAL)
740 			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
741 	} else {
742 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
743 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
744 		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
745 		    zio->io_priority != ZIO_PRIORITY_REMOVAL)
746 			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
747 	}
748 
749 	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
750 
751 	mutex_enter(&vq->vq_lock);
752 	zio->io_timestamp = gethrtime();
753 	vdev_queue_io_add(vq, zio);
754 	nio = vdev_queue_io_to_issue(vq);
755 	mutex_exit(&vq->vq_lock);
756 
757 	if (nio == NULL)
758 		return (NULL);
759 
760 	if (nio->io_done == vdev_queue_agg_io_done) {
761 		zio_nowait(nio);
762 		return (NULL);
763 	}
764 
765 	return (nio);
766 }
767 
768 void
769 vdev_queue_io_done(zio_t *zio)
770 {
771 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
772 	zio_t *nio;
773 
774 	mutex_enter(&vq->vq_lock);
775 
776 	vdev_queue_pending_remove(vq, zio);
777 
778 	vq->vq_io_complete_ts = gethrtime();
779 
780 	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
781 		mutex_exit(&vq->vq_lock);
782 		if (nio->io_done == vdev_queue_agg_io_done) {
783 			zio_nowait(nio);
784 		} else {
785 			zio_vdev_io_reissue(nio);
786 			zio_execute(nio);
787 		}
788 		mutex_enter(&vq->vq_lock);
789 	}
790 
791 	mutex_exit(&vq->vq_lock);
792 }
793