1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/spa_impl.h> 34 #include <sys/zio.h> 35 #include <sys/avl.h> 36 #include <sys/dsl_pool.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/abd.h> 39 40 /* 41 * ZFS I/O Scheduler 42 * --------------- 43 * 44 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 45 * I/O scheduler determines when and in what order those operations are 46 * issued. The I/O scheduler divides operations into five I/O classes 47 * prioritized in the following order: sync read, sync write, async read, 48 * async write, and scrub/resilver. Each queue defines the minimum and 49 * maximum number of concurrent operations that may be issued to the device. 50 * In addition, the device has an aggregate maximum. Note that the sum of the 51 * per-queue minimums must not exceed the aggregate maximum, and if the 52 * aggregate maximum is equal to or greater than the sum of the per-queue 53 * maximums, the per-queue minimum has no effect. 54 * 55 * For many physical devices, throughput increases with the number of 56 * concurrent operations, but latency typically suffers. Further, physical 57 * devices typically have a limit at which more concurrent operations have no 58 * effect on throughput or can actually cause it to decrease. 59 * 60 * The scheduler selects the next operation to issue by first looking for an 61 * I/O class whose minimum has not been satisfied. Once all are satisfied and 62 * the aggregate maximum has not been hit, the scheduler looks for classes 63 * whose maximum has not been satisfied. Iteration through the I/O classes is 64 * done in the order specified above. No further operations are issued if the 65 * aggregate maximum number of concurrent operations has been hit or if there 66 * are no operations queued for an I/O class that has not hit its maximum. 67 * Every time an i/o is queued or an operation completes, the I/O scheduler 68 * looks for new operations to issue. 69 * 70 * All I/O classes have a fixed maximum number of outstanding operations 71 * except for the async write class. Asynchronous writes represent the data 72 * that is committed to stable storage during the syncing stage for 73 * transaction groups (see txg.c). Transaction groups enter the syncing state 74 * periodically so the number of queued async writes will quickly burst up and 75 * then bleed down to zero. Rather than servicing them as quickly as possible, 76 * the I/O scheduler changes the maximum number of active async write i/os 77 * according to the amount of dirty data in the pool (see dsl_pool.c). Since 78 * both throughput and latency typically increase with the number of 79 * concurrent operations issued to physical devices, reducing the burstiness 80 * in the number of concurrent operations also stabilizes the response time of 81 * operations from other -- and in particular synchronous -- queues. In broad 82 * strokes, the I/O scheduler will issue more concurrent operations from the 83 * async write queue as there's more dirty data in the pool. 84 * 85 * Async Writes 86 * 87 * The number of concurrent operations issued for the async write I/O class 88 * follows a piece-wise linear function defined by a few adjustable points. 89 * 90 * | o---------| <-- zfs_vdev_async_write_max_active 91 * ^ | /^ | 92 * | | / | | 93 * active | / | | 94 * I/O | / | | 95 * count | / | | 96 * | / | | 97 * |------------o | | <-- zfs_vdev_async_write_min_active 98 * 0|____________^______|_________| 99 * 0% | | 100% of zfs_dirty_data_max 100 * | | 101 * | `-- zfs_vdev_async_write_active_max_dirty_percent 102 * `--------- zfs_vdev_async_write_active_min_dirty_percent 103 * 104 * Until the amount of dirty data exceeds a minimum percentage of the dirty 105 * data allowed in the pool, the I/O scheduler will limit the number of 106 * concurrent operations to the minimum. As that threshold is crossed, the 107 * number of concurrent operations issued increases linearly to the maximum at 108 * the specified maximum percentage of the dirty data allowed in the pool. 109 * 110 * Ideally, the amount of dirty data on a busy pool will stay in the sloped 111 * part of the function between zfs_vdev_async_write_active_min_dirty_percent 112 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 113 * maximum percentage, this indicates that the rate of incoming data is 114 * greater than the rate that the backend storage can handle. In this case, we 115 * must further throttle incoming writes (see dmu_tx_delay() for details). 116 */ 117 118 /* 119 * The maximum number of i/os active to each device. Ideally, this will be >= 120 * the sum of each queue's max_active. It must be at least the sum of each 121 * queue's min_active. 122 */ 123 uint32_t zfs_vdev_max_active = 1000; 124 125 /* 126 * Per-queue limits on the number of i/os active to each device. If the 127 * sum of the queue's max_active is < zfs_vdev_max_active, then the 128 * min_active comes into play. We will send min_active from each queue, 129 * and then select from queues in the order defined by zio_priority_t. 130 * 131 * In general, smaller max_active's will lead to lower latency of synchronous 132 * operations. Larger max_active's may lead to higher overall throughput, 133 * depending on underlying storage. 134 * 135 * The ratio of the queues' max_actives determines the balance of performance 136 * between reads, writes, and scrubs. E.g., increasing 137 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 138 * more quickly, but reads and writes to have higher latency and lower 139 * throughput. 140 */ 141 uint32_t zfs_vdev_sync_read_min_active = 10; 142 uint32_t zfs_vdev_sync_read_max_active = 10; 143 uint32_t zfs_vdev_sync_write_min_active = 10; 144 uint32_t zfs_vdev_sync_write_max_active = 10; 145 uint32_t zfs_vdev_async_read_min_active = 1; 146 uint32_t zfs_vdev_async_read_max_active = 3; 147 uint32_t zfs_vdev_async_write_min_active = 1; 148 uint32_t zfs_vdev_async_write_max_active = 10; 149 uint32_t zfs_vdev_scrub_min_active = 1; 150 uint32_t zfs_vdev_scrub_max_active = 2; 151 uint32_t zfs_vdev_removal_min_active = 1; 152 uint32_t zfs_vdev_removal_max_active = 2; 153 154 /* 155 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 156 * dirty data, use zfs_vdev_async_write_min_active. When it has more than 157 * zfs_vdev_async_write_active_max_dirty_percent, use 158 * zfs_vdev_async_write_max_active. The value is linearly interpolated 159 * between min and max. 160 */ 161 int zfs_vdev_async_write_active_min_dirty_percent = 30; 162 int zfs_vdev_async_write_active_max_dirty_percent = 60; 163 164 /* 165 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 166 * For read I/Os, we also aggregate across small adjacency gaps; for writes 167 * we include spans of optional I/Os to aid aggregation at the disk even when 168 * they aren't able to help us aggregate at this level. 169 */ 170 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE; 171 int zfs_vdev_read_gap_limit = 32 << 10; 172 int zfs_vdev_write_gap_limit = 4 << 10; 173 174 /* 175 * Define the queue depth percentage for each top-level. This percentage is 176 * used in conjunction with zfs_vdev_async_max_active to determine how many 177 * allocations a specific top-level vdev should handle. Once the queue depth 178 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100 179 * then allocator will stop allocating blocks on that top-level device. 180 * The default kernel setting is 1000% which will yield 100 allocations per 181 * device. For userland testing, the default setting is 300% which equates 182 * to 30 allocations per device. 183 */ 184 #ifdef _KERNEL 185 int zfs_vdev_queue_depth_pct = 1000; 186 #else 187 int zfs_vdev_queue_depth_pct = 300; 188 #endif 189 190 191 int 192 vdev_queue_offset_compare(const void *x1, const void *x2) 193 { 194 const zio_t *z1 = x1; 195 const zio_t *z2 = x2; 196 197 if (z1->io_offset < z2->io_offset) 198 return (-1); 199 if (z1->io_offset > z2->io_offset) 200 return (1); 201 202 if (z1 < z2) 203 return (-1); 204 if (z1 > z2) 205 return (1); 206 207 return (0); 208 } 209 210 static inline avl_tree_t * 211 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p) 212 { 213 return (&vq->vq_class[p].vqc_queued_tree); 214 } 215 216 static inline avl_tree_t * 217 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t) 218 { 219 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE); 220 if (t == ZIO_TYPE_READ) 221 return (&vq->vq_read_offset_tree); 222 else 223 return (&vq->vq_write_offset_tree); 224 } 225 226 int 227 vdev_queue_timestamp_compare(const void *x1, const void *x2) 228 { 229 const zio_t *z1 = x1; 230 const zio_t *z2 = x2; 231 232 if (z1->io_timestamp < z2->io_timestamp) 233 return (-1); 234 if (z1->io_timestamp > z2->io_timestamp) 235 return (1); 236 237 if (z1 < z2) 238 return (-1); 239 if (z1 > z2) 240 return (1); 241 242 return (0); 243 } 244 245 void 246 vdev_queue_init(vdev_t *vd) 247 { 248 vdev_queue_t *vq = &vd->vdev_queue; 249 250 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 251 vq->vq_vdev = vd; 252 253 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 254 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 255 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ), 256 vdev_queue_offset_compare, sizeof (zio_t), 257 offsetof(struct zio, io_offset_node)); 258 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE), 259 vdev_queue_offset_compare, sizeof (zio_t), 260 offsetof(struct zio, io_offset_node)); 261 262 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 263 int (*compfn) (const void *, const void *); 264 265 /* 266 * The synchronous i/o queues are dispatched in FIFO rather 267 * than LBA order. This provides more consistent latency for 268 * these i/os. 269 */ 270 if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE) 271 compfn = vdev_queue_timestamp_compare; 272 else 273 compfn = vdev_queue_offset_compare; 274 275 avl_create(vdev_queue_class_tree(vq, p), compfn, 276 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 277 } 278 } 279 280 void 281 vdev_queue_fini(vdev_t *vd) 282 { 283 vdev_queue_t *vq = &vd->vdev_queue; 284 285 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 286 avl_destroy(vdev_queue_class_tree(vq, p)); 287 avl_destroy(&vq->vq_active_tree); 288 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ)); 289 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE)); 290 291 mutex_destroy(&vq->vq_lock); 292 } 293 294 static void 295 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 296 { 297 spa_t *spa = zio->io_spa; 298 299 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 300 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 301 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio); 302 303 mutex_enter(&spa->spa_iokstat_lock); 304 spa->spa_queue_stats[zio->io_priority].spa_queued++; 305 if (spa->spa_iokstat != NULL) 306 kstat_waitq_enter(spa->spa_iokstat->ks_data); 307 mutex_exit(&spa->spa_iokstat_lock); 308 } 309 310 static void 311 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 312 { 313 spa_t *spa = zio->io_spa; 314 315 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 316 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 317 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio); 318 319 mutex_enter(&spa->spa_iokstat_lock); 320 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0); 321 spa->spa_queue_stats[zio->io_priority].spa_queued--; 322 if (spa->spa_iokstat != NULL) 323 kstat_waitq_exit(spa->spa_iokstat->ks_data); 324 mutex_exit(&spa->spa_iokstat_lock); 325 } 326 327 static void 328 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 329 { 330 spa_t *spa = zio->io_spa; 331 ASSERT(MUTEX_HELD(&vq->vq_lock)); 332 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 333 vq->vq_class[zio->io_priority].vqc_active++; 334 avl_add(&vq->vq_active_tree, zio); 335 336 mutex_enter(&spa->spa_iokstat_lock); 337 spa->spa_queue_stats[zio->io_priority].spa_active++; 338 if (spa->spa_iokstat != NULL) 339 kstat_runq_enter(spa->spa_iokstat->ks_data); 340 mutex_exit(&spa->spa_iokstat_lock); 341 } 342 343 static void 344 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 345 { 346 spa_t *spa = zio->io_spa; 347 ASSERT(MUTEX_HELD(&vq->vq_lock)); 348 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 349 vq->vq_class[zio->io_priority].vqc_active--; 350 avl_remove(&vq->vq_active_tree, zio); 351 352 mutex_enter(&spa->spa_iokstat_lock); 353 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0); 354 spa->spa_queue_stats[zio->io_priority].spa_active--; 355 if (spa->spa_iokstat != NULL) { 356 kstat_io_t *ksio = spa->spa_iokstat->ks_data; 357 358 kstat_runq_exit(spa->spa_iokstat->ks_data); 359 if (zio->io_type == ZIO_TYPE_READ) { 360 ksio->reads++; 361 ksio->nread += zio->io_size; 362 } else if (zio->io_type == ZIO_TYPE_WRITE) { 363 ksio->writes++; 364 ksio->nwritten += zio->io_size; 365 } 366 } 367 mutex_exit(&spa->spa_iokstat_lock); 368 } 369 370 static void 371 vdev_queue_agg_io_done(zio_t *aio) 372 { 373 if (aio->io_type == ZIO_TYPE_READ) { 374 zio_t *pio; 375 zio_link_t *zl = NULL; 376 while ((pio = zio_walk_parents(aio, &zl)) != NULL) { 377 abd_copy_off(pio->io_abd, aio->io_abd, 378 0, pio->io_offset - aio->io_offset, pio->io_size); 379 } 380 } 381 382 abd_free(aio->io_abd); 383 } 384 385 static int 386 vdev_queue_class_min_active(zio_priority_t p) 387 { 388 switch (p) { 389 case ZIO_PRIORITY_SYNC_READ: 390 return (zfs_vdev_sync_read_min_active); 391 case ZIO_PRIORITY_SYNC_WRITE: 392 return (zfs_vdev_sync_write_min_active); 393 case ZIO_PRIORITY_ASYNC_READ: 394 return (zfs_vdev_async_read_min_active); 395 case ZIO_PRIORITY_ASYNC_WRITE: 396 return (zfs_vdev_async_write_min_active); 397 case ZIO_PRIORITY_SCRUB: 398 return (zfs_vdev_scrub_min_active); 399 case ZIO_PRIORITY_REMOVAL: 400 return (zfs_vdev_removal_min_active); 401 default: 402 panic("invalid priority %u", p); 403 return (0); 404 } 405 } 406 407 static int 408 vdev_queue_max_async_writes(spa_t *spa) 409 { 410 int writes; 411 uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total; 412 uint64_t min_bytes = zfs_dirty_data_max * 413 zfs_vdev_async_write_active_min_dirty_percent / 100; 414 uint64_t max_bytes = zfs_dirty_data_max * 415 zfs_vdev_async_write_active_max_dirty_percent / 100; 416 417 /* 418 * Sync tasks correspond to interactive user actions. To reduce the 419 * execution time of those actions we push data out as fast as possible. 420 */ 421 if (spa_has_pending_synctask(spa)) { 422 return (zfs_vdev_async_write_max_active); 423 } 424 425 if (dirty < min_bytes) 426 return (zfs_vdev_async_write_min_active); 427 if (dirty > max_bytes) 428 return (zfs_vdev_async_write_max_active); 429 430 /* 431 * linear interpolation: 432 * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 433 * move right by min_bytes 434 * move up by min_writes 435 */ 436 writes = (dirty - min_bytes) * 437 (zfs_vdev_async_write_max_active - 438 zfs_vdev_async_write_min_active) / 439 (max_bytes - min_bytes) + 440 zfs_vdev_async_write_min_active; 441 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 442 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 443 return (writes); 444 } 445 446 static int 447 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) 448 { 449 switch (p) { 450 case ZIO_PRIORITY_SYNC_READ: 451 return (zfs_vdev_sync_read_max_active); 452 case ZIO_PRIORITY_SYNC_WRITE: 453 return (zfs_vdev_sync_write_max_active); 454 case ZIO_PRIORITY_ASYNC_READ: 455 return (zfs_vdev_async_read_max_active); 456 case ZIO_PRIORITY_ASYNC_WRITE: 457 return (vdev_queue_max_async_writes(spa)); 458 case ZIO_PRIORITY_SCRUB: 459 return (zfs_vdev_scrub_max_active); 460 case ZIO_PRIORITY_REMOVAL: 461 return (zfs_vdev_removal_max_active); 462 default: 463 panic("invalid priority %u", p); 464 return (0); 465 } 466 } 467 468 /* 469 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 470 * there is no eligible class. 471 */ 472 static zio_priority_t 473 vdev_queue_class_to_issue(vdev_queue_t *vq) 474 { 475 spa_t *spa = vq->vq_vdev->vdev_spa; 476 zio_priority_t p; 477 478 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 479 return (ZIO_PRIORITY_NUM_QUEUEABLE); 480 481 /* find a queue that has not reached its minimum # outstanding i/os */ 482 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 483 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 484 vq->vq_class[p].vqc_active < 485 vdev_queue_class_min_active(p)) 486 return (p); 487 } 488 489 /* 490 * If we haven't found a queue, look for one that hasn't reached its 491 * maximum # outstanding i/os. 492 */ 493 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 494 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 495 vq->vq_class[p].vqc_active < 496 vdev_queue_class_max_active(spa, p)) 497 return (p); 498 } 499 500 /* No eligible queued i/os */ 501 return (ZIO_PRIORITY_NUM_QUEUEABLE); 502 } 503 504 /* 505 * Compute the range spanned by two i/os, which is the endpoint of the last 506 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 507 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 508 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 509 */ 510 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 511 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 512 513 static zio_t * 514 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 515 { 516 zio_t *first, *last, *aio, *dio, *mandatory, *nio; 517 uint64_t maxgap = 0; 518 uint64_t size; 519 boolean_t stretch = B_FALSE; 520 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); 521 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 522 523 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) 524 return (NULL); 525 526 first = last = zio; 527 528 if (zio->io_type == ZIO_TYPE_READ) 529 maxgap = zfs_vdev_read_gap_limit; 530 531 /* 532 * We can aggregate I/Os that are sufficiently adjacent and of 533 * the same flavor, as expressed by the AGG_INHERIT flags. 534 * The latter requirement is necessary so that certain 535 * attributes of the I/O, such as whether it's a normal I/O 536 * or a scrub/resilver, can be preserved in the aggregate. 537 * We can include optional I/Os, but don't allow them 538 * to begin a range as they add no benefit in that situation. 539 */ 540 541 /* 542 * We keep track of the last non-optional I/O. 543 */ 544 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 545 546 /* 547 * Walk backwards through sufficiently contiguous I/Os 548 * recording the last non-optional I/O. 549 */ 550 while ((dio = AVL_PREV(t, first)) != NULL && 551 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 552 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && 553 IO_GAP(dio, first) <= maxgap && 554 dio->io_type == zio->io_type) { 555 first = dio; 556 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 557 mandatory = first; 558 } 559 560 /* 561 * Skip any initial optional I/Os. 562 */ 563 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 564 first = AVL_NEXT(t, first); 565 ASSERT(first != NULL); 566 } 567 568 /* 569 * Walk forward through sufficiently contiguous I/Os. 570 * The aggregation limit does not apply to optional i/os, so that 571 * we can issue contiguous writes even if they are larger than the 572 * aggregation limit. 573 */ 574 while ((dio = AVL_NEXT(t, last)) != NULL && 575 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 576 (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit || 577 (dio->io_flags & ZIO_FLAG_OPTIONAL)) && 578 IO_GAP(last, dio) <= maxgap && 579 dio->io_type == zio->io_type) { 580 last = dio; 581 if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 582 mandatory = last; 583 } 584 585 /* 586 * Now that we've established the range of the I/O aggregation 587 * we must decide what to do with trailing optional I/Os. 588 * For reads, there's nothing to do. While we are unable to 589 * aggregate further, it's possible that a trailing optional 590 * I/O would allow the underlying device to aggregate with 591 * subsequent I/Os. We must therefore determine if the next 592 * non-optional I/O is close enough to make aggregation 593 * worthwhile. 594 */ 595 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 596 zio_t *nio = last; 597 while ((dio = AVL_NEXT(t, nio)) != NULL && 598 IO_GAP(nio, dio) == 0 && 599 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 600 nio = dio; 601 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 602 stretch = B_TRUE; 603 break; 604 } 605 } 606 } 607 608 if (stretch) { 609 /* 610 * We are going to include an optional io in our aggregated 611 * span, thus closing the write gap. Only mandatory i/os can 612 * start aggregated spans, so make sure that the next i/o 613 * after our span is mandatory. 614 */ 615 dio = AVL_NEXT(t, last); 616 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 617 } else { 618 /* do not include the optional i/o */ 619 while (last != mandatory && last != first) { 620 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 621 last = AVL_PREV(t, last); 622 ASSERT(last != NULL); 623 } 624 } 625 626 if (first == last) 627 return (NULL); 628 629 size = IO_SPAN(first, last); 630 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 631 632 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 633 abd_alloc_for_io(size, B_TRUE), size, first->io_type, 634 zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 635 vdev_queue_agg_io_done, NULL); 636 aio->io_timestamp = first->io_timestamp; 637 638 nio = first; 639 do { 640 dio = nio; 641 nio = AVL_NEXT(t, dio); 642 ASSERT3U(dio->io_type, ==, aio->io_type); 643 644 if (dio->io_flags & ZIO_FLAG_NODATA) { 645 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 646 abd_zero_off(aio->io_abd, 647 dio->io_offset - aio->io_offset, dio->io_size); 648 } else if (dio->io_type == ZIO_TYPE_WRITE) { 649 abd_copy_off(aio->io_abd, dio->io_abd, 650 dio->io_offset - aio->io_offset, 0, dio->io_size); 651 } 652 653 zio_add_child(dio, aio); 654 vdev_queue_io_remove(vq, dio); 655 zio_vdev_io_bypass(dio); 656 zio_execute(dio); 657 } while (dio != last); 658 659 return (aio); 660 } 661 662 static zio_t * 663 vdev_queue_io_to_issue(vdev_queue_t *vq) 664 { 665 zio_t *zio, *aio; 666 zio_priority_t p; 667 avl_index_t idx; 668 avl_tree_t *tree; 669 zio_t search; 670 671 again: 672 ASSERT(MUTEX_HELD(&vq->vq_lock)); 673 674 p = vdev_queue_class_to_issue(vq); 675 676 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 677 /* No eligible queued i/os */ 678 return (NULL); 679 } 680 681 /* 682 * For LBA-ordered queues (async / scrub), issue the i/o which follows 683 * the most recently issued i/o in LBA (offset) order. 684 * 685 * For FIFO queues (sync), issue the i/o with the lowest timestamp. 686 */ 687 tree = vdev_queue_class_tree(vq, p); 688 search.io_timestamp = 0; 689 search.io_offset = vq->vq_last_offset + 1; 690 VERIFY3P(avl_find(tree, &search, &idx), ==, NULL); 691 zio = avl_nearest(tree, idx, AVL_AFTER); 692 if (zio == NULL) 693 zio = avl_first(tree); 694 ASSERT3U(zio->io_priority, ==, p); 695 696 aio = vdev_queue_aggregate(vq, zio); 697 if (aio != NULL) 698 zio = aio; 699 else 700 vdev_queue_io_remove(vq, zio); 701 702 /* 703 * If the I/O is or was optional and therefore has no data, we need to 704 * simply discard it. We need to drop the vdev queue's lock to avoid a 705 * deadlock that we could encounter since this I/O will complete 706 * immediately. 707 */ 708 if (zio->io_flags & ZIO_FLAG_NODATA) { 709 mutex_exit(&vq->vq_lock); 710 zio_vdev_io_bypass(zio); 711 zio_execute(zio); 712 mutex_enter(&vq->vq_lock); 713 goto again; 714 } 715 716 vdev_queue_pending_add(vq, zio); 717 vq->vq_last_offset = zio->io_offset; 718 719 return (zio); 720 } 721 722 zio_t * 723 vdev_queue_io(zio_t *zio) 724 { 725 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 726 zio_t *nio; 727 728 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 729 return (zio); 730 731 /* 732 * Children i/os inherent their parent's priority, which might 733 * not match the child's i/o type. Fix it up here. 734 */ 735 if (zio->io_type == ZIO_TYPE_READ) { 736 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 737 zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 738 zio->io_priority != ZIO_PRIORITY_SCRUB && 739 zio->io_priority != ZIO_PRIORITY_REMOVAL) 740 zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 741 } else { 742 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 743 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 744 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE && 745 zio->io_priority != ZIO_PRIORITY_REMOVAL) 746 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 747 } 748 749 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 750 751 mutex_enter(&vq->vq_lock); 752 zio->io_timestamp = gethrtime(); 753 vdev_queue_io_add(vq, zio); 754 nio = vdev_queue_io_to_issue(vq); 755 mutex_exit(&vq->vq_lock); 756 757 if (nio == NULL) 758 return (NULL); 759 760 if (nio->io_done == vdev_queue_agg_io_done) { 761 zio_nowait(nio); 762 return (NULL); 763 } 764 765 return (nio); 766 } 767 768 void 769 vdev_queue_io_done(zio_t *zio) 770 { 771 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 772 zio_t *nio; 773 774 mutex_enter(&vq->vq_lock); 775 776 vdev_queue_pending_remove(vq, zio); 777 778 vq->vq_io_complete_ts = gethrtime(); 779 780 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 781 mutex_exit(&vq->vq_lock); 782 if (nio->io_done == vdev_queue_agg_io_done) { 783 zio_nowait(nio); 784 } else { 785 zio_vdev_io_reissue(nio); 786 zio_execute(nio); 787 } 788 mutex_enter(&vq->vq_lock); 789 } 790 791 mutex_exit(&vq->vq_lock); 792 } 793