1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/spa_impl.h> 34 #include <sys/zio.h> 35 #include <sys/avl.h> 36 #include <sys/dsl_pool.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/abd.h> 39 40 /* 41 * ZFS I/O Scheduler 42 * --------------- 43 * 44 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 45 * I/O scheduler determines when and in what order those operations are 46 * issued. The I/O scheduler divides operations into five I/O classes 47 * prioritized in the following order: sync read, sync write, async read, 48 * async write, and scrub/resilver. Each queue defines the minimum and 49 * maximum number of concurrent operations that may be issued to the device. 50 * In addition, the device has an aggregate maximum. Note that the sum of the 51 * per-queue minimums must not exceed the aggregate maximum, and if the 52 * aggregate maximum is equal to or greater than the sum of the per-queue 53 * maximums, the per-queue minimum has no effect. 54 * 55 * For many physical devices, throughput increases with the number of 56 * concurrent operations, but latency typically suffers. Further, physical 57 * devices typically have a limit at which more concurrent operations have no 58 * effect on throughput or can actually cause it to decrease. 59 * 60 * The scheduler selects the next operation to issue by first looking for an 61 * I/O class whose minimum has not been satisfied. Once all are satisfied and 62 * the aggregate maximum has not been hit, the scheduler looks for classes 63 * whose maximum has not been satisfied. Iteration through the I/O classes is 64 * done in the order specified above. No further operations are issued if the 65 * aggregate maximum number of concurrent operations has been hit or if there 66 * are no operations queued for an I/O class that has not hit its maximum. 67 * Every time an i/o is queued or an operation completes, the I/O scheduler 68 * looks for new operations to issue. 69 * 70 * All I/O classes have a fixed maximum number of outstanding operations 71 * except for the async write class. Asynchronous writes represent the data 72 * that is committed to stable storage during the syncing stage for 73 * transaction groups (see txg.c). Transaction groups enter the syncing state 74 * periodically so the number of queued async writes will quickly burst up and 75 * then bleed down to zero. Rather than servicing them as quickly as possible, 76 * the I/O scheduler changes the maximum number of active async write i/os 77 * according to the amount of dirty data in the pool (see dsl_pool.c). Since 78 * both throughput and latency typically increase with the number of 79 * concurrent operations issued to physical devices, reducing the burstiness 80 * in the number of concurrent operations also stabilizes the response time of 81 * operations from other -- and in particular synchronous -- queues. In broad 82 * strokes, the I/O scheduler will issue more concurrent operations from the 83 * async write queue as there's more dirty data in the pool. 84 * 85 * Async Writes 86 * 87 * The number of concurrent operations issued for the async write I/O class 88 * follows a piece-wise linear function defined by a few adjustable points. 89 * 90 * | o---------| <-- zfs_vdev_async_write_max_active 91 * ^ | /^ | 92 * | | / | | 93 * active | / | | 94 * I/O | / | | 95 * count | / | | 96 * | / | | 97 * |------------o | | <-- zfs_vdev_async_write_min_active 98 * 0|____________^______|_________| 99 * 0% | | 100% of zfs_dirty_data_max 100 * | | 101 * | `-- zfs_vdev_async_write_active_max_dirty_percent 102 * `--------- zfs_vdev_async_write_active_min_dirty_percent 103 * 104 * Until the amount of dirty data exceeds a minimum percentage of the dirty 105 * data allowed in the pool, the I/O scheduler will limit the number of 106 * concurrent operations to the minimum. As that threshold is crossed, the 107 * number of concurrent operations issued increases linearly to the maximum at 108 * the specified maximum percentage of the dirty data allowed in the pool. 109 * 110 * Ideally, the amount of dirty data on a busy pool will stay in the sloped 111 * part of the function between zfs_vdev_async_write_active_min_dirty_percent 112 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 113 * maximum percentage, this indicates that the rate of incoming data is 114 * greater than the rate that the backend storage can handle. In this case, we 115 * must further throttle incoming writes (see dmu_tx_delay() for details). 116 */ 117 118 /* 119 * The maximum number of i/os active to each device. Ideally, this will be >= 120 * the sum of each queue's max_active. It must be at least the sum of each 121 * queue's min_active. 122 */ 123 uint32_t zfs_vdev_max_active = 1000; 124 125 /* 126 * Per-queue limits on the number of i/os active to each device. If the 127 * sum of the queue's max_active is < zfs_vdev_max_active, then the 128 * min_active comes into play. We will send min_active from each queue, 129 * and then select from queues in the order defined by zio_priority_t. 130 * 131 * In general, smaller max_active's will lead to lower latency of synchronous 132 * operations. Larger max_active's may lead to higher overall throughput, 133 * depending on underlying storage. 134 * 135 * The ratio of the queues' max_actives determines the balance of performance 136 * between reads, writes, and scrubs. E.g., increasing 137 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 138 * more quickly, but reads and writes to have higher latency and lower 139 * throughput. 140 */ 141 uint32_t zfs_vdev_sync_read_min_active = 10; 142 uint32_t zfs_vdev_sync_read_max_active = 10; 143 uint32_t zfs_vdev_sync_write_min_active = 10; 144 uint32_t zfs_vdev_sync_write_max_active = 10; 145 uint32_t zfs_vdev_async_read_min_active = 1; 146 uint32_t zfs_vdev_async_read_max_active = 3; 147 uint32_t zfs_vdev_async_write_min_active = 1; 148 uint32_t zfs_vdev_async_write_max_active = 10; 149 uint32_t zfs_vdev_scrub_min_active = 1; 150 uint32_t zfs_vdev_scrub_max_active = 2; 151 152 /* 153 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 154 * dirty data, use zfs_vdev_async_write_min_active. When it has more than 155 * zfs_vdev_async_write_active_max_dirty_percent, use 156 * zfs_vdev_async_write_max_active. The value is linearly interpolated 157 * between min and max. 158 */ 159 int zfs_vdev_async_write_active_min_dirty_percent = 30; 160 int zfs_vdev_async_write_active_max_dirty_percent = 60; 161 162 /* 163 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 164 * For read I/Os, we also aggregate across small adjacency gaps; for writes 165 * we include spans of optional I/Os to aid aggregation at the disk even when 166 * they aren't able to help us aggregate at this level. 167 */ 168 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE; 169 int zfs_vdev_read_gap_limit = 32 << 10; 170 int zfs_vdev_write_gap_limit = 4 << 10; 171 172 /* 173 * Define the queue depth percentage for each top-level. This percentage is 174 * used in conjunction with zfs_vdev_async_max_active to determine how many 175 * allocations a specific top-level vdev should handle. Once the queue depth 176 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100 177 * then allocator will stop allocating blocks on that top-level device. 178 * The default kernel setting is 1000% which will yield 100 allocations per 179 * device. For userland testing, the default setting is 300% which equates 180 * to 30 allocations per device. 181 */ 182 #ifdef _KERNEL 183 int zfs_vdev_queue_depth_pct = 1000; 184 #else 185 int zfs_vdev_queue_depth_pct = 300; 186 #endif 187 188 189 int 190 vdev_queue_offset_compare(const void *x1, const void *x2) 191 { 192 const zio_t *z1 = x1; 193 const zio_t *z2 = x2; 194 195 if (z1->io_offset < z2->io_offset) 196 return (-1); 197 if (z1->io_offset > z2->io_offset) 198 return (1); 199 200 if (z1 < z2) 201 return (-1); 202 if (z1 > z2) 203 return (1); 204 205 return (0); 206 } 207 208 static inline avl_tree_t * 209 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p) 210 { 211 return (&vq->vq_class[p].vqc_queued_tree); 212 } 213 214 static inline avl_tree_t * 215 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t) 216 { 217 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE); 218 if (t == ZIO_TYPE_READ) 219 return (&vq->vq_read_offset_tree); 220 else 221 return (&vq->vq_write_offset_tree); 222 } 223 224 int 225 vdev_queue_timestamp_compare(const void *x1, const void *x2) 226 { 227 const zio_t *z1 = x1; 228 const zio_t *z2 = x2; 229 230 if (z1->io_timestamp < z2->io_timestamp) 231 return (-1); 232 if (z1->io_timestamp > z2->io_timestamp) 233 return (1); 234 235 if (z1 < z2) 236 return (-1); 237 if (z1 > z2) 238 return (1); 239 240 return (0); 241 } 242 243 void 244 vdev_queue_init(vdev_t *vd) 245 { 246 vdev_queue_t *vq = &vd->vdev_queue; 247 248 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 249 vq->vq_vdev = vd; 250 251 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 252 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 253 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ), 254 vdev_queue_offset_compare, sizeof (zio_t), 255 offsetof(struct zio, io_offset_node)); 256 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE), 257 vdev_queue_offset_compare, sizeof (zio_t), 258 offsetof(struct zio, io_offset_node)); 259 260 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 261 int (*compfn) (const void *, const void *); 262 263 /* 264 * The synchronous i/o queues are dispatched in FIFO rather 265 * than LBA order. This provides more consistent latency for 266 * these i/os. 267 */ 268 if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE) 269 compfn = vdev_queue_timestamp_compare; 270 else 271 compfn = vdev_queue_offset_compare; 272 273 avl_create(vdev_queue_class_tree(vq, p), compfn, 274 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 275 } 276 } 277 278 void 279 vdev_queue_fini(vdev_t *vd) 280 { 281 vdev_queue_t *vq = &vd->vdev_queue; 282 283 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 284 avl_destroy(vdev_queue_class_tree(vq, p)); 285 avl_destroy(&vq->vq_active_tree); 286 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ)); 287 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE)); 288 289 mutex_destroy(&vq->vq_lock); 290 } 291 292 static void 293 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 294 { 295 spa_t *spa = zio->io_spa; 296 297 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 298 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 299 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio); 300 301 mutex_enter(&spa->spa_iokstat_lock); 302 spa->spa_queue_stats[zio->io_priority].spa_queued++; 303 if (spa->spa_iokstat != NULL) 304 kstat_waitq_enter(spa->spa_iokstat->ks_data); 305 mutex_exit(&spa->spa_iokstat_lock); 306 } 307 308 static void 309 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 310 { 311 spa_t *spa = zio->io_spa; 312 313 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 314 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 315 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio); 316 317 mutex_enter(&spa->spa_iokstat_lock); 318 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0); 319 spa->spa_queue_stats[zio->io_priority].spa_queued--; 320 if (spa->spa_iokstat != NULL) 321 kstat_waitq_exit(spa->spa_iokstat->ks_data); 322 mutex_exit(&spa->spa_iokstat_lock); 323 } 324 325 static void 326 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 327 { 328 spa_t *spa = zio->io_spa; 329 ASSERT(MUTEX_HELD(&vq->vq_lock)); 330 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 331 vq->vq_class[zio->io_priority].vqc_active++; 332 avl_add(&vq->vq_active_tree, zio); 333 334 mutex_enter(&spa->spa_iokstat_lock); 335 spa->spa_queue_stats[zio->io_priority].spa_active++; 336 if (spa->spa_iokstat != NULL) 337 kstat_runq_enter(spa->spa_iokstat->ks_data); 338 mutex_exit(&spa->spa_iokstat_lock); 339 } 340 341 static void 342 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 343 { 344 spa_t *spa = zio->io_spa; 345 ASSERT(MUTEX_HELD(&vq->vq_lock)); 346 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 347 vq->vq_class[zio->io_priority].vqc_active--; 348 avl_remove(&vq->vq_active_tree, zio); 349 350 mutex_enter(&spa->spa_iokstat_lock); 351 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0); 352 spa->spa_queue_stats[zio->io_priority].spa_active--; 353 if (spa->spa_iokstat != NULL) { 354 kstat_io_t *ksio = spa->spa_iokstat->ks_data; 355 356 kstat_runq_exit(spa->spa_iokstat->ks_data); 357 if (zio->io_type == ZIO_TYPE_READ) { 358 ksio->reads++; 359 ksio->nread += zio->io_size; 360 } else if (zio->io_type == ZIO_TYPE_WRITE) { 361 ksio->writes++; 362 ksio->nwritten += zio->io_size; 363 } 364 } 365 mutex_exit(&spa->spa_iokstat_lock); 366 } 367 368 static void 369 vdev_queue_agg_io_done(zio_t *aio) 370 { 371 if (aio->io_type == ZIO_TYPE_READ) { 372 zio_t *pio; 373 zio_link_t *zl = NULL; 374 while ((pio = zio_walk_parents(aio, &zl)) != NULL) { 375 abd_copy_off(pio->io_abd, aio->io_abd, 376 0, pio->io_offset - aio->io_offset, pio->io_size); 377 } 378 } 379 380 abd_free(aio->io_abd); 381 } 382 383 static int 384 vdev_queue_class_min_active(zio_priority_t p) 385 { 386 switch (p) { 387 case ZIO_PRIORITY_SYNC_READ: 388 return (zfs_vdev_sync_read_min_active); 389 case ZIO_PRIORITY_SYNC_WRITE: 390 return (zfs_vdev_sync_write_min_active); 391 case ZIO_PRIORITY_ASYNC_READ: 392 return (zfs_vdev_async_read_min_active); 393 case ZIO_PRIORITY_ASYNC_WRITE: 394 return (zfs_vdev_async_write_min_active); 395 case ZIO_PRIORITY_SCRUB: 396 return (zfs_vdev_scrub_min_active); 397 default: 398 panic("invalid priority %u", p); 399 return (0); 400 } 401 } 402 403 static int 404 vdev_queue_max_async_writes(spa_t *spa) 405 { 406 int writes; 407 uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total; 408 uint64_t min_bytes = zfs_dirty_data_max * 409 zfs_vdev_async_write_active_min_dirty_percent / 100; 410 uint64_t max_bytes = zfs_dirty_data_max * 411 zfs_vdev_async_write_active_max_dirty_percent / 100; 412 413 /* 414 * Sync tasks correspond to interactive user actions. To reduce the 415 * execution time of those actions we push data out as fast as possible. 416 */ 417 if (spa_has_pending_synctask(spa)) { 418 return (zfs_vdev_async_write_max_active); 419 } 420 421 if (dirty < min_bytes) 422 return (zfs_vdev_async_write_min_active); 423 if (dirty > max_bytes) 424 return (zfs_vdev_async_write_max_active); 425 426 /* 427 * linear interpolation: 428 * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 429 * move right by min_bytes 430 * move up by min_writes 431 */ 432 writes = (dirty - min_bytes) * 433 (zfs_vdev_async_write_max_active - 434 zfs_vdev_async_write_min_active) / 435 (max_bytes - min_bytes) + 436 zfs_vdev_async_write_min_active; 437 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 438 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 439 return (writes); 440 } 441 442 static int 443 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) 444 { 445 switch (p) { 446 case ZIO_PRIORITY_SYNC_READ: 447 return (zfs_vdev_sync_read_max_active); 448 case ZIO_PRIORITY_SYNC_WRITE: 449 return (zfs_vdev_sync_write_max_active); 450 case ZIO_PRIORITY_ASYNC_READ: 451 return (zfs_vdev_async_read_max_active); 452 case ZIO_PRIORITY_ASYNC_WRITE: 453 return (vdev_queue_max_async_writes(spa)); 454 case ZIO_PRIORITY_SCRUB: 455 return (zfs_vdev_scrub_max_active); 456 default: 457 panic("invalid priority %u", p); 458 return (0); 459 } 460 } 461 462 /* 463 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 464 * there is no eligible class. 465 */ 466 static zio_priority_t 467 vdev_queue_class_to_issue(vdev_queue_t *vq) 468 { 469 spa_t *spa = vq->vq_vdev->vdev_spa; 470 zio_priority_t p; 471 472 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 473 return (ZIO_PRIORITY_NUM_QUEUEABLE); 474 475 /* find a queue that has not reached its minimum # outstanding i/os */ 476 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 477 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 478 vq->vq_class[p].vqc_active < 479 vdev_queue_class_min_active(p)) 480 return (p); 481 } 482 483 /* 484 * If we haven't found a queue, look for one that hasn't reached its 485 * maximum # outstanding i/os. 486 */ 487 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 488 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 489 vq->vq_class[p].vqc_active < 490 vdev_queue_class_max_active(spa, p)) 491 return (p); 492 } 493 494 /* No eligible queued i/os */ 495 return (ZIO_PRIORITY_NUM_QUEUEABLE); 496 } 497 498 /* 499 * Compute the range spanned by two i/os, which is the endpoint of the last 500 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 501 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 502 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 503 */ 504 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 505 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 506 507 static zio_t * 508 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 509 { 510 zio_t *first, *last, *aio, *dio, *mandatory, *nio; 511 uint64_t maxgap = 0; 512 uint64_t size; 513 boolean_t stretch = B_FALSE; 514 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); 515 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 516 517 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) 518 return (NULL); 519 520 first = last = zio; 521 522 if (zio->io_type == ZIO_TYPE_READ) 523 maxgap = zfs_vdev_read_gap_limit; 524 525 /* 526 * We can aggregate I/Os that are sufficiently adjacent and of 527 * the same flavor, as expressed by the AGG_INHERIT flags. 528 * The latter requirement is necessary so that certain 529 * attributes of the I/O, such as whether it's a normal I/O 530 * or a scrub/resilver, can be preserved in the aggregate. 531 * We can include optional I/Os, but don't allow them 532 * to begin a range as they add no benefit in that situation. 533 */ 534 535 /* 536 * We keep track of the last non-optional I/O. 537 */ 538 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 539 540 /* 541 * Walk backwards through sufficiently contiguous I/Os 542 * recording the last non-optional I/O. 543 */ 544 while ((dio = AVL_PREV(t, first)) != NULL && 545 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 546 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && 547 IO_GAP(dio, first) <= maxgap) { 548 first = dio; 549 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 550 mandatory = first; 551 } 552 553 /* 554 * Skip any initial optional I/Os. 555 */ 556 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 557 first = AVL_NEXT(t, first); 558 ASSERT(first != NULL); 559 } 560 561 /* 562 * Walk forward through sufficiently contiguous I/Os. 563 * The aggregation limit does not apply to optional i/os, so that 564 * we can issue contiguous writes even if they are larger than the 565 * aggregation limit. 566 */ 567 while ((dio = AVL_NEXT(t, last)) != NULL && 568 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 569 (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit || 570 (dio->io_flags & ZIO_FLAG_OPTIONAL)) && 571 IO_GAP(last, dio) <= maxgap) { 572 last = dio; 573 if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 574 mandatory = last; 575 } 576 577 /* 578 * Now that we've established the range of the I/O aggregation 579 * we must decide what to do with trailing optional I/Os. 580 * For reads, there's nothing to do. While we are unable to 581 * aggregate further, it's possible that a trailing optional 582 * I/O would allow the underlying device to aggregate with 583 * subsequent I/Os. We must therefore determine if the next 584 * non-optional I/O is close enough to make aggregation 585 * worthwhile. 586 */ 587 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 588 zio_t *nio = last; 589 while ((dio = AVL_NEXT(t, nio)) != NULL && 590 IO_GAP(nio, dio) == 0 && 591 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 592 nio = dio; 593 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 594 stretch = B_TRUE; 595 break; 596 } 597 } 598 } 599 600 if (stretch) { 601 /* 602 * We are going to include an optional io in our aggregated 603 * span, thus closing the write gap. Only mandatory i/os can 604 * start aggregated spans, so make sure that the next i/o 605 * after our span is mandatory. 606 */ 607 dio = AVL_NEXT(t, last); 608 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 609 } else { 610 /* do not include the optional i/o */ 611 while (last != mandatory && last != first) { 612 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 613 last = AVL_PREV(t, last); 614 ASSERT(last != NULL); 615 } 616 } 617 618 if (first == last) 619 return (NULL); 620 621 size = IO_SPAN(first, last); 622 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 623 624 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 625 abd_alloc_for_io(size, B_TRUE), size, first->io_type, 626 zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 627 vdev_queue_agg_io_done, NULL); 628 aio->io_timestamp = first->io_timestamp; 629 630 nio = first; 631 do { 632 dio = nio; 633 nio = AVL_NEXT(t, dio); 634 ASSERT3U(dio->io_type, ==, aio->io_type); 635 636 if (dio->io_flags & ZIO_FLAG_NODATA) { 637 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 638 abd_zero_off(aio->io_abd, 639 dio->io_offset - aio->io_offset, dio->io_size); 640 } else if (dio->io_type == ZIO_TYPE_WRITE) { 641 abd_copy_off(aio->io_abd, dio->io_abd, 642 dio->io_offset - aio->io_offset, 0, dio->io_size); 643 } 644 645 zio_add_child(dio, aio); 646 vdev_queue_io_remove(vq, dio); 647 zio_vdev_io_bypass(dio); 648 zio_execute(dio); 649 } while (dio != last); 650 651 return (aio); 652 } 653 654 static zio_t * 655 vdev_queue_io_to_issue(vdev_queue_t *vq) 656 { 657 zio_t *zio, *aio; 658 zio_priority_t p; 659 avl_index_t idx; 660 avl_tree_t *tree; 661 zio_t search; 662 663 again: 664 ASSERT(MUTEX_HELD(&vq->vq_lock)); 665 666 p = vdev_queue_class_to_issue(vq); 667 668 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 669 /* No eligible queued i/os */ 670 return (NULL); 671 } 672 673 /* 674 * For LBA-ordered queues (async / scrub), issue the i/o which follows 675 * the most recently issued i/o in LBA (offset) order. 676 * 677 * For FIFO queues (sync), issue the i/o with the lowest timestamp. 678 */ 679 tree = vdev_queue_class_tree(vq, p); 680 search.io_timestamp = 0; 681 search.io_offset = vq->vq_last_offset + 1; 682 VERIFY3P(avl_find(tree, &search, &idx), ==, NULL); 683 zio = avl_nearest(tree, idx, AVL_AFTER); 684 if (zio == NULL) 685 zio = avl_first(tree); 686 ASSERT3U(zio->io_priority, ==, p); 687 688 aio = vdev_queue_aggregate(vq, zio); 689 if (aio != NULL) 690 zio = aio; 691 else 692 vdev_queue_io_remove(vq, zio); 693 694 /* 695 * If the I/O is or was optional and therefore has no data, we need to 696 * simply discard it. We need to drop the vdev queue's lock to avoid a 697 * deadlock that we could encounter since this I/O will complete 698 * immediately. 699 */ 700 if (zio->io_flags & ZIO_FLAG_NODATA) { 701 mutex_exit(&vq->vq_lock); 702 zio_vdev_io_bypass(zio); 703 zio_execute(zio); 704 mutex_enter(&vq->vq_lock); 705 goto again; 706 } 707 708 vdev_queue_pending_add(vq, zio); 709 vq->vq_last_offset = zio->io_offset; 710 711 return (zio); 712 } 713 714 zio_t * 715 vdev_queue_io(zio_t *zio) 716 { 717 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 718 zio_t *nio; 719 720 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 721 return (zio); 722 723 /* 724 * Children i/os inherent their parent's priority, which might 725 * not match the child's i/o type. Fix it up here. 726 */ 727 if (zio->io_type == ZIO_TYPE_READ) { 728 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 729 zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 730 zio->io_priority != ZIO_PRIORITY_SCRUB) 731 zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 732 } else { 733 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 734 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 735 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE) 736 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 737 } 738 739 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 740 741 mutex_enter(&vq->vq_lock); 742 zio->io_timestamp = gethrtime(); 743 vdev_queue_io_add(vq, zio); 744 nio = vdev_queue_io_to_issue(vq); 745 mutex_exit(&vq->vq_lock); 746 747 if (nio == NULL) 748 return (NULL); 749 750 if (nio->io_done == vdev_queue_agg_io_done) { 751 zio_nowait(nio); 752 return (NULL); 753 } 754 755 return (nio); 756 } 757 758 void 759 vdev_queue_io_done(zio_t *zio) 760 { 761 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 762 zio_t *nio; 763 764 mutex_enter(&vq->vq_lock); 765 766 vdev_queue_pending_remove(vq, zio); 767 768 vq->vq_io_complete_ts = gethrtime(); 769 770 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 771 mutex_exit(&vq->vq_lock); 772 if (nio->io_done == vdev_queue_agg_io_done) { 773 zio_nowait(nio); 774 } else { 775 zio_vdev_io_reissue(nio); 776 zio_execute(nio); 777 } 778 mutex_enter(&vq->vq_lock); 779 } 780 781 mutex_exit(&vq->vq_lock); 782 } 783