1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/zio.h> 34 #include <sys/fs/zfs.h> 35 36 /* 37 * Virtual device vector for mirroring. 38 */ 39 40 typedef struct mirror_child { 41 vdev_t *mc_vd; 42 uint64_t mc_offset; 43 int mc_error; 44 uint8_t mc_tried; 45 uint8_t mc_skipped; 46 uint8_t mc_speculative; 47 } mirror_child_t; 48 49 typedef struct mirror_map { 50 int mm_children; 51 int mm_replacing; 52 int mm_preferred; 53 int mm_root; 54 mirror_child_t mm_child[1]; 55 } mirror_map_t; 56 57 int vdev_mirror_shift = 21; 58 59 static void 60 vdev_mirror_map_free(zio_t *zio) 61 { 62 mirror_map_t *mm = zio->io_vsd; 63 64 kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children])); 65 } 66 67 static const zio_vsd_ops_t vdev_mirror_vsd_ops = { 68 vdev_mirror_map_free, 69 zio_vsd_default_cksum_report 70 }; 71 72 static mirror_map_t * 73 vdev_mirror_map_alloc(zio_t *zio) 74 { 75 mirror_map_t *mm = NULL; 76 mirror_child_t *mc; 77 vdev_t *vd = zio->io_vd; 78 int c, d; 79 80 if (vd == NULL) { 81 dva_t *dva = zio->io_bp->blk_dva; 82 spa_t *spa = zio->io_spa; 83 84 c = BP_GET_NDVAS(zio->io_bp); 85 86 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 87 mm->mm_children = c; 88 mm->mm_replacing = B_FALSE; 89 mm->mm_preferred = spa_get_random(c); 90 mm->mm_root = B_TRUE; 91 92 /* 93 * Check the other, lower-index DVAs to see if they're on 94 * the same vdev as the child we picked. If they are, use 95 * them since they are likely to have been allocated from 96 * the primary metaslab in use at the time, and hence are 97 * more likely to have locality with single-copy data. 98 */ 99 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) { 100 if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c])) 101 mm->mm_preferred = d; 102 } 103 104 for (c = 0; c < mm->mm_children; c++) { 105 mc = &mm->mm_child[c]; 106 107 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); 108 mc->mc_offset = DVA_GET_OFFSET(&dva[c]); 109 } 110 } else { 111 c = vd->vdev_children; 112 113 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 114 mm->mm_children = c; 115 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops || 116 vd->vdev_ops == &vdev_spare_ops); 117 mm->mm_preferred = mm->mm_replacing ? 0 : 118 (zio->io_offset >> vdev_mirror_shift) % c; 119 mm->mm_root = B_FALSE; 120 121 for (c = 0; c < mm->mm_children; c++) { 122 mc = &mm->mm_child[c]; 123 mc->mc_vd = vd->vdev_child[c]; 124 mc->mc_offset = zio->io_offset; 125 } 126 } 127 128 zio->io_vsd = mm; 129 zio->io_vsd_ops = &vdev_mirror_vsd_ops; 130 return (mm); 131 } 132 133 static int 134 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 135 uint64_t *ashift) 136 { 137 int numerrors = 0; 138 int lasterror = 0; 139 140 if (vd->vdev_children == 0) { 141 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 142 return (SET_ERROR(EINVAL)); 143 } 144 145 vdev_open_children(vd); 146 147 for (int c = 0; c < vd->vdev_children; c++) { 148 vdev_t *cvd = vd->vdev_child[c]; 149 150 if (cvd->vdev_open_error) { 151 lasterror = cvd->vdev_open_error; 152 numerrors++; 153 continue; 154 } 155 156 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 157 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; 158 *ashift = MAX(*ashift, cvd->vdev_ashift); 159 } 160 161 if (numerrors == vd->vdev_children) { 162 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 163 return (lasterror); 164 } 165 166 return (0); 167 } 168 169 static void 170 vdev_mirror_close(vdev_t *vd) 171 { 172 for (int c = 0; c < vd->vdev_children; c++) 173 vdev_close(vd->vdev_child[c]); 174 } 175 176 static void 177 vdev_mirror_child_done(zio_t *zio) 178 { 179 mirror_child_t *mc = zio->io_private; 180 181 mc->mc_error = zio->io_error; 182 mc->mc_tried = 1; 183 mc->mc_skipped = 0; 184 } 185 186 static void 187 vdev_mirror_scrub_done(zio_t *zio) 188 { 189 mirror_child_t *mc = zio->io_private; 190 191 if (zio->io_error == 0) { 192 zio_t *pio; 193 zio_link_t *zl = NULL; 194 195 mutex_enter(&zio->io_lock); 196 while ((pio = zio_walk_parents(zio, &zl)) != NULL) { 197 mutex_enter(&pio->io_lock); 198 ASSERT3U(zio->io_size, >=, pio->io_size); 199 bcopy(zio->io_data, pio->io_data, pio->io_size); 200 mutex_exit(&pio->io_lock); 201 } 202 mutex_exit(&zio->io_lock); 203 } 204 205 zio_buf_free(zio->io_data, zio->io_size); 206 207 mc->mc_error = zio->io_error; 208 mc->mc_tried = 1; 209 mc->mc_skipped = 0; 210 } 211 212 /* 213 * Try to find a child whose DTL doesn't contain the block we want to read. 214 * If we can't, try the read on any vdev we haven't already tried. 215 */ 216 static int 217 vdev_mirror_child_select(zio_t *zio) 218 { 219 mirror_map_t *mm = zio->io_vsd; 220 mirror_child_t *mc; 221 uint64_t txg = zio->io_txg; 222 int i, c; 223 224 ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg); 225 226 /* 227 * Try to find a child whose DTL doesn't contain the block to read. 228 * If a child is known to be completely inaccessible (indicated by 229 * vdev_readable() returning B_FALSE), don't even try. 230 */ 231 for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) { 232 if (c >= mm->mm_children) 233 c = 0; 234 mc = &mm->mm_child[c]; 235 if (mc->mc_tried || mc->mc_skipped) 236 continue; 237 if (!vdev_readable(mc->mc_vd)) { 238 mc->mc_error = SET_ERROR(ENXIO); 239 mc->mc_tried = 1; /* don't even try */ 240 mc->mc_skipped = 1; 241 continue; 242 } 243 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) 244 return (c); 245 mc->mc_error = SET_ERROR(ESTALE); 246 mc->mc_skipped = 1; 247 mc->mc_speculative = 1; 248 } 249 250 /* 251 * Every device is either missing or has this txg in its DTL. 252 * Look for any child we haven't already tried before giving up. 253 */ 254 for (c = 0; c < mm->mm_children; c++) 255 if (!mm->mm_child[c].mc_tried) 256 return (c); 257 258 /* 259 * Every child failed. There's no place left to look. 260 */ 261 return (-1); 262 } 263 264 static void 265 vdev_mirror_io_start(zio_t *zio) 266 { 267 mirror_map_t *mm; 268 mirror_child_t *mc; 269 int c, children; 270 271 mm = vdev_mirror_map_alloc(zio); 272 273 if (zio->io_type == ZIO_TYPE_READ) { 274 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) { 275 /* 276 * For scrubbing reads we need to allocate a read 277 * buffer for each child and issue reads to all 278 * children. If any child succeeds, it will copy its 279 * data into zio->io_data in vdev_mirror_scrub_done. 280 */ 281 for (c = 0; c < mm->mm_children; c++) { 282 mc = &mm->mm_child[c]; 283 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 284 mc->mc_vd, mc->mc_offset, 285 zio_buf_alloc(zio->io_size), zio->io_size, 286 zio->io_type, zio->io_priority, 0, 287 vdev_mirror_scrub_done, mc)); 288 } 289 zio_execute(zio); 290 return; 291 } 292 /* 293 * For normal reads just pick one child. 294 */ 295 c = vdev_mirror_child_select(zio); 296 children = (c >= 0); 297 } else { 298 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 299 300 /* 301 * Writes go to all children. 302 */ 303 c = 0; 304 children = mm->mm_children; 305 } 306 307 while (children--) { 308 mc = &mm->mm_child[c]; 309 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 310 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 311 zio->io_type, zio->io_priority, 0, 312 vdev_mirror_child_done, mc)); 313 c++; 314 } 315 316 zio_execute(zio); 317 } 318 319 static int 320 vdev_mirror_worst_error(mirror_map_t *mm) 321 { 322 int error[2] = { 0, 0 }; 323 324 for (int c = 0; c < mm->mm_children; c++) { 325 mirror_child_t *mc = &mm->mm_child[c]; 326 int s = mc->mc_speculative; 327 error[s] = zio_worst_error(error[s], mc->mc_error); 328 } 329 330 return (error[0] ? error[0] : error[1]); 331 } 332 333 static void 334 vdev_mirror_io_done(zio_t *zio) 335 { 336 mirror_map_t *mm = zio->io_vsd; 337 mirror_child_t *mc; 338 int c; 339 int good_copies = 0; 340 int unexpected_errors = 0; 341 342 for (c = 0; c < mm->mm_children; c++) { 343 mc = &mm->mm_child[c]; 344 345 if (mc->mc_error) { 346 if (!mc->mc_skipped) 347 unexpected_errors++; 348 } else if (mc->mc_tried) { 349 good_copies++; 350 } 351 } 352 353 if (zio->io_type == ZIO_TYPE_WRITE) { 354 /* 355 * XXX -- for now, treat partial writes as success. 356 * 357 * Now that we support write reallocation, it would be better 358 * to treat partial failure as real failure unless there are 359 * no non-degraded top-level vdevs left, and not update DTLs 360 * if we intend to reallocate. 361 */ 362 /* XXPOLICY */ 363 if (good_copies != mm->mm_children) { 364 /* 365 * Always require at least one good copy. 366 * 367 * For ditto blocks (io_vd == NULL), require 368 * all copies to be good. 369 * 370 * XXX -- for replacing vdevs, there's no great answer. 371 * If the old device is really dead, we may not even 372 * be able to access it -- so we only want to 373 * require good writes to the new device. But if 374 * the new device turns out to be flaky, we want 375 * to be able to detach it -- which requires all 376 * writes to the old device to have succeeded. 377 */ 378 if (good_copies == 0 || zio->io_vd == NULL) 379 zio->io_error = vdev_mirror_worst_error(mm); 380 } 381 return; 382 } 383 384 ASSERT(zio->io_type == ZIO_TYPE_READ); 385 386 /* 387 * If we don't have a good copy yet, keep trying other children. 388 */ 389 /* XXPOLICY */ 390 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { 391 ASSERT(c >= 0 && c < mm->mm_children); 392 mc = &mm->mm_child[c]; 393 zio_vdev_io_redone(zio); 394 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 395 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 396 ZIO_TYPE_READ, zio->io_priority, 0, 397 vdev_mirror_child_done, mc)); 398 return; 399 } 400 401 /* XXPOLICY */ 402 if (good_copies == 0) { 403 zio->io_error = vdev_mirror_worst_error(mm); 404 ASSERT(zio->io_error != 0); 405 } 406 407 if (good_copies && spa_writeable(zio->io_spa) && 408 (unexpected_errors || 409 (zio->io_flags & ZIO_FLAG_RESILVER) || 410 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) { 411 /* 412 * Use the good data we have in hand to repair damaged children. 413 */ 414 for (c = 0; c < mm->mm_children; c++) { 415 /* 416 * Don't rewrite known good children. 417 * Not only is it unnecessary, it could 418 * actually be harmful: if the system lost 419 * power while rewriting the only good copy, 420 * there would be no good copies left! 421 */ 422 mc = &mm->mm_child[c]; 423 424 if (mc->mc_error == 0) { 425 if (mc->mc_tried) 426 continue; 427 if (!(zio->io_flags & ZIO_FLAG_SCRUB) && 428 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, 429 zio->io_txg, 1)) 430 continue; 431 mc->mc_error = SET_ERROR(ESTALE); 432 } 433 434 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 435 mc->mc_vd, mc->mc_offset, 436 zio->io_data, zio->io_size, 437 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE, 438 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 439 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 440 } 441 } 442 } 443 444 static void 445 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) 446 { 447 if (faulted == vd->vdev_children) 448 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 449 VDEV_AUX_NO_REPLICAS); 450 else if (degraded + faulted != 0) 451 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 452 else 453 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 454 } 455 456 vdev_ops_t vdev_mirror_ops = { 457 vdev_mirror_open, 458 vdev_mirror_close, 459 vdev_default_asize, 460 vdev_mirror_io_start, 461 vdev_mirror_io_done, 462 vdev_mirror_state_change, 463 NULL, 464 NULL, 465 VDEV_TYPE_MIRROR, /* name of this vdev type */ 466 B_FALSE /* not a leaf vdev */ 467 }; 468 469 vdev_ops_t vdev_replacing_ops = { 470 vdev_mirror_open, 471 vdev_mirror_close, 472 vdev_default_asize, 473 vdev_mirror_io_start, 474 vdev_mirror_io_done, 475 vdev_mirror_state_change, 476 NULL, 477 NULL, 478 VDEV_TYPE_REPLACING, /* name of this vdev type */ 479 B_FALSE /* not a leaf vdev */ 480 }; 481 482 vdev_ops_t vdev_spare_ops = { 483 vdev_mirror_open, 484 vdev_mirror_close, 485 vdev_default_asize, 486 vdev_mirror_io_start, 487 vdev_mirror_io_done, 488 vdev_mirror_state_change, 489 NULL, 490 NULL, 491 VDEV_TYPE_SPARE, /* name of this vdev type */ 492 B_FALSE /* not a leaf vdev */ 493 }; 494