1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/vdev_impl.h> 29 #include <sys/zio.h> 30 #include <sys/fs/zfs.h> 31 32 /* 33 * Virtual device vector for mirroring. 34 */ 35 36 typedef struct mirror_child { 37 vdev_t *mc_vd; 38 uint64_t mc_offset; 39 int mc_error; 40 uint8_t mc_tried; 41 uint8_t mc_skipped; 42 uint8_t mc_speculative; 43 } mirror_child_t; 44 45 typedef struct mirror_map { 46 int mm_children; 47 int mm_replacing; 48 int mm_preferred; 49 int mm_root; 50 mirror_child_t mm_child[1]; 51 } mirror_map_t; 52 53 int vdev_mirror_shift = 21; 54 55 static void 56 vdev_mirror_map_free(zio_t *zio) 57 { 58 mirror_map_t *mm = zio->io_vsd; 59 60 kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children])); 61 } 62 63 static mirror_map_t * 64 vdev_mirror_map_alloc(zio_t *zio) 65 { 66 mirror_map_t *mm = NULL; 67 mirror_child_t *mc; 68 vdev_t *vd = zio->io_vd; 69 int c, d; 70 71 if (vd == NULL) { 72 dva_t *dva = zio->io_bp->blk_dva; 73 spa_t *spa = zio->io_spa; 74 75 c = BP_GET_NDVAS(zio->io_bp); 76 77 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 78 mm->mm_children = c; 79 mm->mm_replacing = B_FALSE; 80 mm->mm_preferred = spa_get_random(c); 81 mm->mm_root = B_TRUE; 82 83 /* 84 * Check the other, lower-index DVAs to see if they're on 85 * the same vdev as the child we picked. If they are, use 86 * them since they are likely to have been allocated from 87 * the primary metaslab in use at the time, and hence are 88 * more likely to have locality with single-copy data. 89 */ 90 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) { 91 if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c])) 92 mm->mm_preferred = d; 93 } 94 95 for (c = 0; c < mm->mm_children; c++) { 96 mc = &mm->mm_child[c]; 97 98 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); 99 mc->mc_offset = DVA_GET_OFFSET(&dva[c]); 100 } 101 } else { 102 c = vd->vdev_children; 103 104 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 105 mm->mm_children = c; 106 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops || 107 vd->vdev_ops == &vdev_spare_ops); 108 mm->mm_preferred = mm->mm_replacing ? 0 : 109 (zio->io_offset >> vdev_mirror_shift) % c; 110 mm->mm_root = B_FALSE; 111 112 for (c = 0; c < mm->mm_children; c++) { 113 mc = &mm->mm_child[c]; 114 mc->mc_vd = vd->vdev_child[c]; 115 mc->mc_offset = zio->io_offset; 116 } 117 } 118 119 zio->io_vsd = mm; 120 zio->io_vsd_free = vdev_mirror_map_free; 121 return (mm); 122 } 123 124 static int 125 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *ashift) 126 { 127 vdev_t *cvd; 128 uint64_t c; 129 int numerrors = 0; 130 int ret, lasterror = 0; 131 132 if (vd->vdev_children == 0) { 133 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 134 return (EINVAL); 135 } 136 137 for (c = 0; c < vd->vdev_children; c++) { 138 cvd = vd->vdev_child[c]; 139 140 if ((ret = vdev_open(cvd)) != 0) { 141 lasterror = ret; 142 numerrors++; 143 continue; 144 } 145 146 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 147 *ashift = MAX(*ashift, cvd->vdev_ashift); 148 } 149 150 if (numerrors == vd->vdev_children) { 151 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 152 return (lasterror); 153 } 154 155 return (0); 156 } 157 158 static void 159 vdev_mirror_close(vdev_t *vd) 160 { 161 uint64_t c; 162 163 for (c = 0; c < vd->vdev_children; c++) 164 vdev_close(vd->vdev_child[c]); 165 } 166 167 static void 168 vdev_mirror_child_done(zio_t *zio) 169 { 170 mirror_child_t *mc = zio->io_private; 171 172 mc->mc_error = zio->io_error; 173 mc->mc_tried = 1; 174 mc->mc_skipped = 0; 175 } 176 177 static void 178 vdev_mirror_scrub_done(zio_t *zio) 179 { 180 mirror_child_t *mc = zio->io_private; 181 182 if (zio->io_error == 0) { 183 zio_t *pio = zio->io_parent; 184 mutex_enter(&pio->io_lock); 185 ASSERT3U(zio->io_size, >=, pio->io_size); 186 bcopy(zio->io_data, pio->io_data, pio->io_size); 187 mutex_exit(&pio->io_lock); 188 } 189 190 zio_buf_free(zio->io_data, zio->io_size); 191 192 mc->mc_error = zio->io_error; 193 mc->mc_tried = 1; 194 mc->mc_skipped = 0; 195 } 196 197 /* 198 * Try to find a child whose DTL doesn't contain the block we want to read. 199 * If we can't, try the read on any vdev we haven't already tried. 200 */ 201 static int 202 vdev_mirror_child_select(zio_t *zio) 203 { 204 mirror_map_t *mm = zio->io_vsd; 205 mirror_child_t *mc; 206 uint64_t txg = zio->io_txg; 207 int i, c; 208 209 ASSERT(zio->io_bp == NULL || zio->io_bp->blk_birth == txg); 210 211 /* 212 * Try to find a child whose DTL doesn't contain the block to read. 213 * If a child is known to be completely inaccessible (indicated by 214 * vdev_readable() returning B_FALSE), don't even try. 215 */ 216 for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) { 217 if (c >= mm->mm_children) 218 c = 0; 219 mc = &mm->mm_child[c]; 220 if (mc->mc_tried || mc->mc_skipped) 221 continue; 222 if (!vdev_readable(mc->mc_vd)) { 223 mc->mc_error = ENXIO; 224 mc->mc_tried = 1; /* don't even try */ 225 mc->mc_skipped = 1; 226 continue; 227 } 228 if (!vdev_dtl_contains(&mc->mc_vd->vdev_dtl_map, txg, 1)) 229 return (c); 230 mc->mc_error = ESTALE; 231 mc->mc_skipped = 1; 232 mc->mc_speculative = 1; 233 } 234 235 /* 236 * Every device is either missing or has this txg in its DTL. 237 * Look for any child we haven't already tried before giving up. 238 */ 239 for (c = 0; c < mm->mm_children; c++) 240 if (!mm->mm_child[c].mc_tried) 241 return (c); 242 243 /* 244 * Every child failed. There's no place left to look. 245 */ 246 return (-1); 247 } 248 249 static int 250 vdev_mirror_io_start(zio_t *zio) 251 { 252 mirror_map_t *mm; 253 mirror_child_t *mc; 254 int c, children; 255 256 mm = vdev_mirror_map_alloc(zio); 257 258 if (zio->io_type == ZIO_TYPE_READ) { 259 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) { 260 /* 261 * For scrubbing reads we need to allocate a read 262 * buffer for each child and issue reads to all 263 * children. If any child succeeds, it will copy its 264 * data into zio->io_data in vdev_mirror_scrub_done. 265 */ 266 for (c = 0; c < mm->mm_children; c++) { 267 mc = &mm->mm_child[c]; 268 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 269 mc->mc_vd, mc->mc_offset, 270 zio_buf_alloc(zio->io_size), zio->io_size, 271 zio->io_type, zio->io_priority, 0, 272 vdev_mirror_scrub_done, mc)); 273 } 274 return (ZIO_PIPELINE_CONTINUE); 275 } 276 /* 277 * For normal reads just pick one child. 278 */ 279 c = vdev_mirror_child_select(zio); 280 children = (c >= 0); 281 } else { 282 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 283 284 /* 285 * If this is a resilvering I/O to a replacing vdev, 286 * only the last child should be written -- unless the 287 * first child happens to have a DTL entry here as well. 288 * All other writes go to all children. 289 */ 290 if ((zio->io_flags & ZIO_FLAG_RESILVER) && mm->mm_replacing && 291 !vdev_dtl_contains(&mm->mm_child[0].mc_vd->vdev_dtl_map, 292 zio->io_txg, 1)) { 293 c = mm->mm_children - 1; 294 children = 1; 295 } else { 296 c = 0; 297 children = mm->mm_children; 298 } 299 } 300 301 while (children--) { 302 mc = &mm->mm_child[c]; 303 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 304 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 305 zio->io_type, zio->io_priority, 0, 306 vdev_mirror_child_done, mc)); 307 c++; 308 } 309 310 return (ZIO_PIPELINE_CONTINUE); 311 } 312 313 static int 314 vdev_mirror_worst_error(mirror_map_t *mm) 315 { 316 int error[2] = { 0, 0 }; 317 318 for (int c = 0; c < mm->mm_children; c++) { 319 mirror_child_t *mc = &mm->mm_child[c]; 320 int s = mc->mc_speculative; 321 error[s] = zio_worst_error(error[s], mc->mc_error); 322 } 323 324 return (error[0] ? error[0] : error[1]); 325 } 326 327 static void 328 vdev_mirror_io_done(zio_t *zio) 329 { 330 mirror_map_t *mm = zio->io_vsd; 331 mirror_child_t *mc; 332 int c; 333 int good_copies = 0; 334 int unexpected_errors = 0; 335 336 for (c = 0; c < mm->mm_children; c++) { 337 mc = &mm->mm_child[c]; 338 339 if (mc->mc_error) { 340 if (!mc->mc_skipped) 341 unexpected_errors++; 342 } else if (mc->mc_tried) { 343 good_copies++; 344 } 345 } 346 347 if (zio->io_type == ZIO_TYPE_WRITE) { 348 /* 349 * XXX -- for now, treat partial writes as success. 350 * 351 * Now that we support write reallocation, it would be better 352 * to treat partial failure as real failure unless there are 353 * no non-degraded top-level vdevs left, and not update DTLs 354 * if we intend to reallocate. 355 */ 356 /* XXPOLICY */ 357 if (good_copies != mm->mm_children) { 358 /* 359 * Always require at least one good copy. 360 * 361 * For ditto blocks (io_vd == NULL), require 362 * all copies to be good. 363 * 364 * XXX -- for replacing vdevs, there's no great answer. 365 * If the old device is really dead, we may not even 366 * be able to access it -- so we only want to 367 * require good writes to the new device. But if 368 * the new device turns out to be flaky, we want 369 * to be able to detach it -- which requires all 370 * writes to the old device to have succeeded. 371 */ 372 if (good_copies == 0 || zio->io_vd == NULL) 373 zio->io_error = vdev_mirror_worst_error(mm); 374 } 375 return; 376 } 377 378 ASSERT(zio->io_type == ZIO_TYPE_READ); 379 380 /* 381 * If we don't have a good copy yet, keep trying other children. 382 */ 383 /* XXPOLICY */ 384 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { 385 ASSERT(c >= 0 && c < mm->mm_children); 386 mc = &mm->mm_child[c]; 387 zio_vdev_io_redone(zio); 388 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 389 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 390 ZIO_TYPE_READ, zio->io_priority, 0, 391 vdev_mirror_child_done, mc)); 392 return; 393 } 394 395 /* XXPOLICY */ 396 if (good_copies == 0) { 397 zio->io_error = vdev_mirror_worst_error(mm); 398 ASSERT(zio->io_error != 0); 399 } 400 401 if (good_copies && (spa_mode & FWRITE) && 402 (unexpected_errors || 403 (zio->io_flags & ZIO_FLAG_RESILVER) || 404 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) { 405 /* 406 * Use the good data we have in hand to repair damaged children. 407 */ 408 for (c = 0; c < mm->mm_children; c++) { 409 /* 410 * Don't rewrite known good children. 411 * Not only is it unnecessary, it could 412 * actually be harmful: if the system lost 413 * power while rewriting the only good copy, 414 * there would be no good copies left! 415 */ 416 mc = &mm->mm_child[c]; 417 418 if (mc->mc_error == 0) { 419 if (mc->mc_tried) 420 continue; 421 if (!(zio->io_flags & ZIO_FLAG_SCRUB) && 422 !vdev_dtl_contains(&mc->mc_vd->vdev_dtl_map, 423 zio->io_txg, 1)) 424 continue; 425 mc->mc_error = ESTALE; 426 } 427 428 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 429 mc->mc_vd, mc->mc_offset, 430 zio->io_data, zio->io_size, 431 ZIO_TYPE_WRITE, zio->io_priority, 432 ZIO_FLAG_IO_REPAIR, NULL, NULL)); 433 } 434 } 435 } 436 437 static void 438 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) 439 { 440 if (faulted == vd->vdev_children) 441 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 442 VDEV_AUX_NO_REPLICAS); 443 else if (degraded + faulted != 0) 444 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 445 else 446 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 447 } 448 449 vdev_ops_t vdev_mirror_ops = { 450 vdev_mirror_open, 451 vdev_mirror_close, 452 vdev_default_asize, 453 vdev_mirror_io_start, 454 vdev_mirror_io_done, 455 vdev_mirror_state_change, 456 VDEV_TYPE_MIRROR, /* name of this vdev type */ 457 B_FALSE /* not a leaf vdev */ 458 }; 459 460 vdev_ops_t vdev_replacing_ops = { 461 vdev_mirror_open, 462 vdev_mirror_close, 463 vdev_default_asize, 464 vdev_mirror_io_start, 465 vdev_mirror_io_done, 466 vdev_mirror_state_change, 467 VDEV_TYPE_REPLACING, /* name of this vdev type */ 468 B_FALSE /* not a leaf vdev */ 469 }; 470 471 vdev_ops_t vdev_spare_ops = { 472 vdev_mirror_open, 473 vdev_mirror_close, 474 vdev_default_asize, 475 vdev_mirror_io_start, 476 vdev_mirror_io_done, 477 vdev_mirror_state_change, 478 VDEV_TYPE_SPARE, /* name of this vdev type */ 479 B_FALSE /* not a leaf vdev */ 480 }; 481