1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/vdev_impl.h> 29 #include <sys/zio.h> 30 #include <sys/fs/zfs.h> 31 32 /* 33 * Virtual device vector for mirroring. 34 */ 35 36 typedef struct mirror_child { 37 vdev_t *mc_vd; 38 uint64_t mc_offset; 39 int mc_error; 40 uint8_t mc_tried; 41 uint8_t mc_skipped; 42 uint8_t mc_speculative; 43 } mirror_child_t; 44 45 typedef struct mirror_map { 46 int mm_children; 47 int mm_replacing; 48 int mm_preferred; 49 int mm_root; 50 mirror_child_t mm_child[1]; 51 } mirror_map_t; 52 53 int vdev_mirror_shift = 21; 54 55 static void 56 vdev_mirror_map_free(zio_t *zio) 57 { 58 mirror_map_t *mm = zio->io_vsd; 59 60 kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children])); 61 } 62 63 static mirror_map_t * 64 vdev_mirror_map_alloc(zio_t *zio) 65 { 66 mirror_map_t *mm = NULL; 67 mirror_child_t *mc; 68 vdev_t *vd = zio->io_vd; 69 int c, d; 70 71 if (vd == NULL) { 72 dva_t *dva = zio->io_bp->blk_dva; 73 spa_t *spa = zio->io_spa; 74 75 c = BP_GET_NDVAS(zio->io_bp); 76 77 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 78 mm->mm_children = c; 79 mm->mm_replacing = B_FALSE; 80 mm->mm_preferred = spa_get_random(c); 81 mm->mm_root = B_TRUE; 82 83 /* 84 * Check the other, lower-index DVAs to see if they're on 85 * the same vdev as the child we picked. If they are, use 86 * them since they are likely to have been allocated from 87 * the primary metaslab in use at the time, and hence are 88 * more likely to have locality with single-copy data. 89 */ 90 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) { 91 if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c])) 92 mm->mm_preferred = d; 93 } 94 95 for (c = 0; c < mm->mm_children; c++) { 96 mc = &mm->mm_child[c]; 97 98 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); 99 mc->mc_offset = DVA_GET_OFFSET(&dva[c]); 100 } 101 } else { 102 c = vd->vdev_children; 103 104 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 105 mm->mm_children = c; 106 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops || 107 vd->vdev_ops == &vdev_spare_ops); 108 mm->mm_preferred = mm->mm_replacing ? 0 : 109 (zio->io_offset >> vdev_mirror_shift) % c; 110 mm->mm_root = B_FALSE; 111 112 for (c = 0; c < mm->mm_children; c++) { 113 mc = &mm->mm_child[c]; 114 mc->mc_vd = vd->vdev_child[c]; 115 mc->mc_offset = zio->io_offset; 116 } 117 } 118 119 zio->io_vsd = mm; 120 zio->io_vsd_free = vdev_mirror_map_free; 121 return (mm); 122 } 123 124 static int 125 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *ashift) 126 { 127 vdev_t *cvd; 128 uint64_t c; 129 int numerrors = 0; 130 int ret, lasterror = 0; 131 132 if (vd->vdev_children == 0) { 133 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 134 return (EINVAL); 135 } 136 137 for (c = 0; c < vd->vdev_children; c++) { 138 cvd = vd->vdev_child[c]; 139 140 if ((ret = vdev_open(cvd)) != 0) { 141 lasterror = ret; 142 numerrors++; 143 continue; 144 } 145 146 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 147 *ashift = MAX(*ashift, cvd->vdev_ashift); 148 } 149 150 if (numerrors == vd->vdev_children) { 151 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 152 return (lasterror); 153 } 154 155 return (0); 156 } 157 158 static void 159 vdev_mirror_close(vdev_t *vd) 160 { 161 uint64_t c; 162 163 for (c = 0; c < vd->vdev_children; c++) 164 vdev_close(vd->vdev_child[c]); 165 } 166 167 static void 168 vdev_mirror_child_done(zio_t *zio) 169 { 170 mirror_child_t *mc = zio->io_private; 171 172 mc->mc_error = zio->io_error; 173 mc->mc_tried = 1; 174 mc->mc_skipped = 0; 175 } 176 177 static void 178 vdev_mirror_scrub_done(zio_t *zio) 179 { 180 mirror_child_t *mc = zio->io_private; 181 182 if (zio->io_error == 0) { 183 zio_t *pio; 184 185 mutex_enter(&zio->io_lock); 186 while ((pio = zio_walk_parents(zio)) != NULL) { 187 mutex_enter(&pio->io_lock); 188 ASSERT3U(zio->io_size, >=, pio->io_size); 189 bcopy(zio->io_data, pio->io_data, pio->io_size); 190 mutex_exit(&pio->io_lock); 191 } 192 mutex_exit(&zio->io_lock); 193 } 194 195 zio_buf_free(zio->io_data, zio->io_size); 196 197 mc->mc_error = zio->io_error; 198 mc->mc_tried = 1; 199 mc->mc_skipped = 0; 200 } 201 202 /* 203 * Try to find a child whose DTL doesn't contain the block we want to read. 204 * If we can't, try the read on any vdev we haven't already tried. 205 */ 206 static int 207 vdev_mirror_child_select(zio_t *zio) 208 { 209 mirror_map_t *mm = zio->io_vsd; 210 mirror_child_t *mc; 211 uint64_t txg = zio->io_txg; 212 int i, c; 213 214 ASSERT(zio->io_bp == NULL || zio->io_bp->blk_birth == txg); 215 216 /* 217 * Try to find a child whose DTL doesn't contain the block to read. 218 * If a child is known to be completely inaccessible (indicated by 219 * vdev_readable() returning B_FALSE), don't even try. 220 */ 221 for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) { 222 if (c >= mm->mm_children) 223 c = 0; 224 mc = &mm->mm_child[c]; 225 if (mc->mc_tried || mc->mc_skipped) 226 continue; 227 if (!vdev_readable(mc->mc_vd)) { 228 mc->mc_error = ENXIO; 229 mc->mc_tried = 1; /* don't even try */ 230 mc->mc_skipped = 1; 231 continue; 232 } 233 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) 234 return (c); 235 mc->mc_error = ESTALE; 236 mc->mc_skipped = 1; 237 mc->mc_speculative = 1; 238 } 239 240 /* 241 * Every device is either missing or has this txg in its DTL. 242 * Look for any child we haven't already tried before giving up. 243 */ 244 for (c = 0; c < mm->mm_children; c++) 245 if (!mm->mm_child[c].mc_tried) 246 return (c); 247 248 /* 249 * Every child failed. There's no place left to look. 250 */ 251 return (-1); 252 } 253 254 static int 255 vdev_mirror_io_start(zio_t *zio) 256 { 257 mirror_map_t *mm; 258 mirror_child_t *mc; 259 int c, children; 260 261 mm = vdev_mirror_map_alloc(zio); 262 263 if (zio->io_type == ZIO_TYPE_READ) { 264 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) { 265 /* 266 * For scrubbing reads we need to allocate a read 267 * buffer for each child and issue reads to all 268 * children. If any child succeeds, it will copy its 269 * data into zio->io_data in vdev_mirror_scrub_done. 270 */ 271 for (c = 0; c < mm->mm_children; c++) { 272 mc = &mm->mm_child[c]; 273 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 274 mc->mc_vd, mc->mc_offset, 275 zio_buf_alloc(zio->io_size), zio->io_size, 276 zio->io_type, zio->io_priority, 0, 277 vdev_mirror_scrub_done, mc)); 278 } 279 return (ZIO_PIPELINE_CONTINUE); 280 } 281 /* 282 * For normal reads just pick one child. 283 */ 284 c = vdev_mirror_child_select(zio); 285 children = (c >= 0); 286 } else { 287 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 288 289 /* 290 * Writes go to all children. 291 */ 292 c = 0; 293 children = mm->mm_children; 294 } 295 296 while (children--) { 297 mc = &mm->mm_child[c]; 298 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 299 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 300 zio->io_type, zio->io_priority, 0, 301 vdev_mirror_child_done, mc)); 302 c++; 303 } 304 305 return (ZIO_PIPELINE_CONTINUE); 306 } 307 308 static int 309 vdev_mirror_worst_error(mirror_map_t *mm) 310 { 311 int error[2] = { 0, 0 }; 312 313 for (int c = 0; c < mm->mm_children; c++) { 314 mirror_child_t *mc = &mm->mm_child[c]; 315 int s = mc->mc_speculative; 316 error[s] = zio_worst_error(error[s], mc->mc_error); 317 } 318 319 return (error[0] ? error[0] : error[1]); 320 } 321 322 static void 323 vdev_mirror_io_done(zio_t *zio) 324 { 325 mirror_map_t *mm = zio->io_vsd; 326 mirror_child_t *mc; 327 int c; 328 int good_copies = 0; 329 int unexpected_errors = 0; 330 331 for (c = 0; c < mm->mm_children; c++) { 332 mc = &mm->mm_child[c]; 333 334 if (mc->mc_error) { 335 if (!mc->mc_skipped) 336 unexpected_errors++; 337 } else if (mc->mc_tried) { 338 good_copies++; 339 } 340 } 341 342 if (zio->io_type == ZIO_TYPE_WRITE) { 343 /* 344 * XXX -- for now, treat partial writes as success. 345 * 346 * Now that we support write reallocation, it would be better 347 * to treat partial failure as real failure unless there are 348 * no non-degraded top-level vdevs left, and not update DTLs 349 * if we intend to reallocate. 350 */ 351 /* XXPOLICY */ 352 if (good_copies != mm->mm_children) { 353 /* 354 * Always require at least one good copy. 355 * 356 * For ditto blocks (io_vd == NULL), require 357 * all copies to be good. 358 * 359 * XXX -- for replacing vdevs, there's no great answer. 360 * If the old device is really dead, we may not even 361 * be able to access it -- so we only want to 362 * require good writes to the new device. But if 363 * the new device turns out to be flaky, we want 364 * to be able to detach it -- which requires all 365 * writes to the old device to have succeeded. 366 */ 367 if (good_copies == 0 || zio->io_vd == NULL) 368 zio->io_error = vdev_mirror_worst_error(mm); 369 } 370 return; 371 } 372 373 ASSERT(zio->io_type == ZIO_TYPE_READ); 374 375 /* 376 * If we don't have a good copy yet, keep trying other children. 377 */ 378 /* XXPOLICY */ 379 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { 380 ASSERT(c >= 0 && c < mm->mm_children); 381 mc = &mm->mm_child[c]; 382 zio_vdev_io_redone(zio); 383 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 384 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 385 ZIO_TYPE_READ, zio->io_priority, 0, 386 vdev_mirror_child_done, mc)); 387 return; 388 } 389 390 /* XXPOLICY */ 391 if (good_copies == 0) { 392 zio->io_error = vdev_mirror_worst_error(mm); 393 ASSERT(zio->io_error != 0); 394 } 395 396 if (good_copies && spa_writeable(zio->io_spa) && 397 (unexpected_errors || 398 (zio->io_flags & ZIO_FLAG_RESILVER) || 399 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) { 400 /* 401 * Use the good data we have in hand to repair damaged children. 402 */ 403 for (c = 0; c < mm->mm_children; c++) { 404 /* 405 * Don't rewrite known good children. 406 * Not only is it unnecessary, it could 407 * actually be harmful: if the system lost 408 * power while rewriting the only good copy, 409 * there would be no good copies left! 410 */ 411 mc = &mm->mm_child[c]; 412 413 if (mc->mc_error == 0) { 414 if (mc->mc_tried) 415 continue; 416 if (!(zio->io_flags & ZIO_FLAG_SCRUB) && 417 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, 418 zio->io_txg, 1)) 419 continue; 420 mc->mc_error = ESTALE; 421 } 422 423 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 424 mc->mc_vd, mc->mc_offset, 425 zio->io_data, zio->io_size, 426 ZIO_TYPE_WRITE, zio->io_priority, 427 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 428 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 429 } 430 } 431 } 432 433 static void 434 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) 435 { 436 if (faulted == vd->vdev_children) 437 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 438 VDEV_AUX_NO_REPLICAS); 439 else if (degraded + faulted != 0) 440 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 441 else 442 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 443 } 444 445 vdev_ops_t vdev_mirror_ops = { 446 vdev_mirror_open, 447 vdev_mirror_close, 448 vdev_default_asize, 449 vdev_mirror_io_start, 450 vdev_mirror_io_done, 451 vdev_mirror_state_change, 452 VDEV_TYPE_MIRROR, /* name of this vdev type */ 453 B_FALSE /* not a leaf vdev */ 454 }; 455 456 vdev_ops_t vdev_replacing_ops = { 457 vdev_mirror_open, 458 vdev_mirror_close, 459 vdev_default_asize, 460 vdev_mirror_io_start, 461 vdev_mirror_io_done, 462 vdev_mirror_state_change, 463 VDEV_TYPE_REPLACING, /* name of this vdev type */ 464 B_FALSE /* not a leaf vdev */ 465 }; 466 467 vdev_ops_t vdev_spare_ops = { 468 vdev_mirror_open, 469 vdev_mirror_close, 470 vdev_default_asize, 471 vdev_mirror_io_start, 472 vdev_mirror_io_done, 473 vdev_mirror_state_change, 474 VDEV_TYPE_SPARE, /* name of this vdev type */ 475 B_FALSE /* not a leaf vdev */ 476 }; 477