1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/vdev_impl.h> 29 #include <sys/zio.h> 30 #include <sys/fs/zfs.h> 31 32 /* 33 * Virtual device vector for mirroring. 34 */ 35 36 typedef struct mirror_child { 37 vdev_t *mc_vd; 38 uint64_t mc_offset; 39 int mc_error; 40 uint8_t mc_tried; 41 uint8_t mc_skipped; 42 uint8_t mc_speculative; 43 } mirror_child_t; 44 45 typedef struct mirror_map { 46 int mm_children; 47 int mm_replacing; 48 int mm_preferred; 49 int mm_root; 50 mirror_child_t mm_child[1]; 51 } mirror_map_t; 52 53 int vdev_mirror_shift = 21; 54 55 static void 56 vdev_mirror_map_free(zio_t *zio) 57 { 58 mirror_map_t *mm = zio->io_vsd; 59 60 kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children])); 61 } 62 63 static const zio_vsd_ops_t vdev_mirror_vsd_ops = { 64 vdev_mirror_map_free, 65 zio_vsd_default_cksum_report 66 }; 67 68 static mirror_map_t * 69 vdev_mirror_map_alloc(zio_t *zio) 70 { 71 mirror_map_t *mm = NULL; 72 mirror_child_t *mc; 73 vdev_t *vd = zio->io_vd; 74 int c, d; 75 76 if (vd == NULL) { 77 dva_t *dva = zio->io_bp->blk_dva; 78 spa_t *spa = zio->io_spa; 79 80 c = BP_GET_NDVAS(zio->io_bp); 81 82 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 83 mm->mm_children = c; 84 mm->mm_replacing = B_FALSE; 85 mm->mm_preferred = spa_get_random(c); 86 mm->mm_root = B_TRUE; 87 88 /* 89 * Check the other, lower-index DVAs to see if they're on 90 * the same vdev as the child we picked. If they are, use 91 * them since they are likely to have been allocated from 92 * the primary metaslab in use at the time, and hence are 93 * more likely to have locality with single-copy data. 94 */ 95 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) { 96 if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c])) 97 mm->mm_preferred = d; 98 } 99 100 for (c = 0; c < mm->mm_children; c++) { 101 mc = &mm->mm_child[c]; 102 103 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); 104 mc->mc_offset = DVA_GET_OFFSET(&dva[c]); 105 } 106 } else { 107 c = vd->vdev_children; 108 109 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 110 mm->mm_children = c; 111 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops || 112 vd->vdev_ops == &vdev_spare_ops); 113 mm->mm_preferred = mm->mm_replacing ? 0 : 114 (zio->io_offset >> vdev_mirror_shift) % c; 115 mm->mm_root = B_FALSE; 116 117 for (c = 0; c < mm->mm_children; c++) { 118 mc = &mm->mm_child[c]; 119 mc->mc_vd = vd->vdev_child[c]; 120 mc->mc_offset = zio->io_offset; 121 } 122 } 123 124 zio->io_vsd = mm; 125 zio->io_vsd_ops = &vdev_mirror_vsd_ops; 126 return (mm); 127 } 128 129 static int 130 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *ashift) 131 { 132 int numerrors = 0; 133 int lasterror = 0; 134 135 if (vd->vdev_children == 0) { 136 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 137 return (EINVAL); 138 } 139 140 vdev_open_children(vd); 141 142 for (int c = 0; c < vd->vdev_children; c++) { 143 vdev_t *cvd = vd->vdev_child[c]; 144 145 if (cvd->vdev_open_error) { 146 lasterror = cvd->vdev_open_error; 147 numerrors++; 148 continue; 149 } 150 151 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 152 *ashift = MAX(*ashift, cvd->vdev_ashift); 153 } 154 155 if (numerrors == vd->vdev_children) { 156 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 157 return (lasterror); 158 } 159 160 return (0); 161 } 162 163 static void 164 vdev_mirror_close(vdev_t *vd) 165 { 166 for (int c = 0; c < vd->vdev_children; c++) 167 vdev_close(vd->vdev_child[c]); 168 } 169 170 static void 171 vdev_mirror_child_done(zio_t *zio) 172 { 173 mirror_child_t *mc = zio->io_private; 174 175 mc->mc_error = zio->io_error; 176 mc->mc_tried = 1; 177 mc->mc_skipped = 0; 178 } 179 180 static void 181 vdev_mirror_scrub_done(zio_t *zio) 182 { 183 mirror_child_t *mc = zio->io_private; 184 185 if (zio->io_error == 0) { 186 zio_t *pio; 187 188 mutex_enter(&zio->io_lock); 189 while ((pio = zio_walk_parents(zio)) != NULL) { 190 mutex_enter(&pio->io_lock); 191 ASSERT3U(zio->io_size, >=, pio->io_size); 192 bcopy(zio->io_data, pio->io_data, pio->io_size); 193 mutex_exit(&pio->io_lock); 194 } 195 mutex_exit(&zio->io_lock); 196 } 197 198 zio_buf_free(zio->io_data, zio->io_size); 199 200 mc->mc_error = zio->io_error; 201 mc->mc_tried = 1; 202 mc->mc_skipped = 0; 203 } 204 205 /* 206 * Try to find a child whose DTL doesn't contain the block we want to read. 207 * If we can't, try the read on any vdev we haven't already tried. 208 */ 209 static int 210 vdev_mirror_child_select(zio_t *zio) 211 { 212 mirror_map_t *mm = zio->io_vsd; 213 mirror_child_t *mc; 214 uint64_t txg = zio->io_txg; 215 int i, c; 216 217 ASSERT(zio->io_bp == NULL || zio->io_bp->blk_birth == txg); 218 219 /* 220 * Try to find a child whose DTL doesn't contain the block to read. 221 * If a child is known to be completely inaccessible (indicated by 222 * vdev_readable() returning B_FALSE), don't even try. 223 */ 224 for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) { 225 if (c >= mm->mm_children) 226 c = 0; 227 mc = &mm->mm_child[c]; 228 if (mc->mc_tried || mc->mc_skipped) 229 continue; 230 if (!vdev_readable(mc->mc_vd)) { 231 mc->mc_error = ENXIO; 232 mc->mc_tried = 1; /* don't even try */ 233 mc->mc_skipped = 1; 234 continue; 235 } 236 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) 237 return (c); 238 mc->mc_error = ESTALE; 239 mc->mc_skipped = 1; 240 mc->mc_speculative = 1; 241 } 242 243 /* 244 * Every device is either missing or has this txg in its DTL. 245 * Look for any child we haven't already tried before giving up. 246 */ 247 for (c = 0; c < mm->mm_children; c++) 248 if (!mm->mm_child[c].mc_tried) 249 return (c); 250 251 /* 252 * Every child failed. There's no place left to look. 253 */ 254 return (-1); 255 } 256 257 static int 258 vdev_mirror_io_start(zio_t *zio) 259 { 260 mirror_map_t *mm; 261 mirror_child_t *mc; 262 int c, children; 263 264 mm = vdev_mirror_map_alloc(zio); 265 266 if (zio->io_type == ZIO_TYPE_READ) { 267 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) { 268 /* 269 * For scrubbing reads we need to allocate a read 270 * buffer for each child and issue reads to all 271 * children. If any child succeeds, it will copy its 272 * data into zio->io_data in vdev_mirror_scrub_done. 273 */ 274 for (c = 0; c < mm->mm_children; c++) { 275 mc = &mm->mm_child[c]; 276 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 277 mc->mc_vd, mc->mc_offset, 278 zio_buf_alloc(zio->io_size), zio->io_size, 279 zio->io_type, zio->io_priority, 0, 280 vdev_mirror_scrub_done, mc)); 281 } 282 return (ZIO_PIPELINE_CONTINUE); 283 } 284 /* 285 * For normal reads just pick one child. 286 */ 287 c = vdev_mirror_child_select(zio); 288 children = (c >= 0); 289 } else { 290 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 291 292 /* 293 * Writes go to all children. 294 */ 295 c = 0; 296 children = mm->mm_children; 297 } 298 299 while (children--) { 300 mc = &mm->mm_child[c]; 301 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 302 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 303 zio->io_type, zio->io_priority, 0, 304 vdev_mirror_child_done, mc)); 305 c++; 306 } 307 308 return (ZIO_PIPELINE_CONTINUE); 309 } 310 311 static int 312 vdev_mirror_worst_error(mirror_map_t *mm) 313 { 314 int error[2] = { 0, 0 }; 315 316 for (int c = 0; c < mm->mm_children; c++) { 317 mirror_child_t *mc = &mm->mm_child[c]; 318 int s = mc->mc_speculative; 319 error[s] = zio_worst_error(error[s], mc->mc_error); 320 } 321 322 return (error[0] ? error[0] : error[1]); 323 } 324 325 static void 326 vdev_mirror_io_done(zio_t *zio) 327 { 328 mirror_map_t *mm = zio->io_vsd; 329 mirror_child_t *mc; 330 int c; 331 int good_copies = 0; 332 int unexpected_errors = 0; 333 334 for (c = 0; c < mm->mm_children; c++) { 335 mc = &mm->mm_child[c]; 336 337 if (mc->mc_error) { 338 if (!mc->mc_skipped) 339 unexpected_errors++; 340 } else if (mc->mc_tried) { 341 good_copies++; 342 } 343 } 344 345 if (zio->io_type == ZIO_TYPE_WRITE) { 346 /* 347 * XXX -- for now, treat partial writes as success. 348 * 349 * Now that we support write reallocation, it would be better 350 * to treat partial failure as real failure unless there are 351 * no non-degraded top-level vdevs left, and not update DTLs 352 * if we intend to reallocate. 353 */ 354 /* XXPOLICY */ 355 if (good_copies != mm->mm_children) { 356 /* 357 * Always require at least one good copy. 358 * 359 * For ditto blocks (io_vd == NULL), require 360 * all copies to be good. 361 * 362 * XXX -- for replacing vdevs, there's no great answer. 363 * If the old device is really dead, we may not even 364 * be able to access it -- so we only want to 365 * require good writes to the new device. But if 366 * the new device turns out to be flaky, we want 367 * to be able to detach it -- which requires all 368 * writes to the old device to have succeeded. 369 */ 370 if (good_copies == 0 || zio->io_vd == NULL) 371 zio->io_error = vdev_mirror_worst_error(mm); 372 } 373 return; 374 } 375 376 ASSERT(zio->io_type == ZIO_TYPE_READ); 377 378 /* 379 * If we don't have a good copy yet, keep trying other children. 380 */ 381 /* XXPOLICY */ 382 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { 383 ASSERT(c >= 0 && c < mm->mm_children); 384 mc = &mm->mm_child[c]; 385 zio_vdev_io_redone(zio); 386 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 387 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 388 ZIO_TYPE_READ, zio->io_priority, 0, 389 vdev_mirror_child_done, mc)); 390 return; 391 } 392 393 /* XXPOLICY */ 394 if (good_copies == 0) { 395 zio->io_error = vdev_mirror_worst_error(mm); 396 ASSERT(zio->io_error != 0); 397 } 398 399 if (good_copies && spa_writeable(zio->io_spa) && 400 (unexpected_errors || 401 (zio->io_flags & ZIO_FLAG_RESILVER) || 402 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) { 403 /* 404 * Use the good data we have in hand to repair damaged children. 405 */ 406 for (c = 0; c < mm->mm_children; c++) { 407 /* 408 * Don't rewrite known good children. 409 * Not only is it unnecessary, it could 410 * actually be harmful: if the system lost 411 * power while rewriting the only good copy, 412 * there would be no good copies left! 413 */ 414 mc = &mm->mm_child[c]; 415 416 if (mc->mc_error == 0) { 417 if (mc->mc_tried) 418 continue; 419 if (!(zio->io_flags & ZIO_FLAG_SCRUB) && 420 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, 421 zio->io_txg, 1)) 422 continue; 423 mc->mc_error = ESTALE; 424 } 425 426 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 427 mc->mc_vd, mc->mc_offset, 428 zio->io_data, zio->io_size, 429 ZIO_TYPE_WRITE, zio->io_priority, 430 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 431 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 432 } 433 } 434 } 435 436 static void 437 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) 438 { 439 if (faulted == vd->vdev_children) 440 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 441 VDEV_AUX_NO_REPLICAS); 442 else if (degraded + faulted != 0) 443 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 444 else 445 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 446 } 447 448 vdev_ops_t vdev_mirror_ops = { 449 vdev_mirror_open, 450 vdev_mirror_close, 451 vdev_default_asize, 452 vdev_mirror_io_start, 453 vdev_mirror_io_done, 454 vdev_mirror_state_change, 455 VDEV_TYPE_MIRROR, /* name of this vdev type */ 456 B_FALSE /* not a leaf vdev */ 457 }; 458 459 vdev_ops_t vdev_replacing_ops = { 460 vdev_mirror_open, 461 vdev_mirror_close, 462 vdev_default_asize, 463 vdev_mirror_io_start, 464 vdev_mirror_io_done, 465 vdev_mirror_state_change, 466 VDEV_TYPE_REPLACING, /* name of this vdev type */ 467 B_FALSE /* not a leaf vdev */ 468 }; 469 470 vdev_ops_t vdev_spare_ops = { 471 vdev_mirror_open, 472 vdev_mirror_close, 473 vdev_default_asize, 474 vdev_mirror_io_start, 475 vdev_mirror_io_done, 476 vdev_mirror_state_change, 477 VDEV_TYPE_SPARE, /* name of this vdev type */ 478 B_FALSE /* not a leaf vdev */ 479 }; 480