1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/vdev_impl.h> 29 #include <sys/zio.h> 30 #include <sys/fs/zfs.h> 31 32 /* 33 * Virtual device vector for mirroring. 34 */ 35 36 typedef struct mirror_child { 37 vdev_t *mc_vd; 38 uint64_t mc_offset; 39 int mc_error; 40 uint8_t mc_tried; 41 uint8_t mc_skipped; 42 uint8_t mc_speculative; 43 } mirror_child_t; 44 45 typedef struct mirror_map { 46 int mm_children; 47 int mm_replacing; 48 int mm_preferred; 49 int mm_root; 50 mirror_child_t mm_child[1]; 51 } mirror_map_t; 52 53 int vdev_mirror_shift = 21; 54 55 static void 56 vdev_mirror_map_free(zio_t *zio) 57 { 58 mirror_map_t *mm = zio->io_vsd; 59 60 kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children])); 61 } 62 63 static mirror_map_t * 64 vdev_mirror_map_alloc(zio_t *zio) 65 { 66 mirror_map_t *mm = NULL; 67 mirror_child_t *mc; 68 vdev_t *vd = zio->io_vd; 69 int c, d; 70 71 if (vd == NULL) { 72 dva_t *dva = zio->io_bp->blk_dva; 73 spa_t *spa = zio->io_spa; 74 75 c = BP_GET_NDVAS(zio->io_bp); 76 77 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 78 mm->mm_children = c; 79 mm->mm_replacing = B_FALSE; 80 mm->mm_preferred = spa_get_random(c); 81 mm->mm_root = B_TRUE; 82 83 /* 84 * Check the other, lower-index DVAs to see if they're on 85 * the same vdev as the child we picked. If they are, use 86 * them since they are likely to have been allocated from 87 * the primary metaslab in use at the time, and hence are 88 * more likely to have locality with single-copy data. 89 */ 90 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) { 91 if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c])) 92 mm->mm_preferred = d; 93 } 94 95 for (c = 0; c < mm->mm_children; c++) { 96 mc = &mm->mm_child[c]; 97 98 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); 99 mc->mc_offset = DVA_GET_OFFSET(&dva[c]); 100 } 101 } else { 102 c = vd->vdev_children; 103 104 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 105 mm->mm_children = c; 106 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops || 107 vd->vdev_ops == &vdev_spare_ops); 108 mm->mm_preferred = mm->mm_replacing ? 0 : 109 (zio->io_offset >> vdev_mirror_shift) % c; 110 mm->mm_root = B_FALSE; 111 112 for (c = 0; c < mm->mm_children; c++) { 113 mc = &mm->mm_child[c]; 114 mc->mc_vd = vd->vdev_child[c]; 115 mc->mc_offset = zio->io_offset; 116 } 117 } 118 119 zio->io_vsd = mm; 120 zio->io_vsd_free = vdev_mirror_map_free; 121 return (mm); 122 } 123 124 static int 125 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *ashift) 126 { 127 int numerrors = 0; 128 int lasterror = 0; 129 130 if (vd->vdev_children == 0) { 131 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 132 return (EINVAL); 133 } 134 135 vdev_open_children(vd); 136 137 for (int c = 0; c < vd->vdev_children; c++) { 138 vdev_t *cvd = vd->vdev_child[c]; 139 140 if (cvd->vdev_open_error) { 141 lasterror = cvd->vdev_open_error; 142 numerrors++; 143 continue; 144 } 145 146 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 147 *ashift = MAX(*ashift, cvd->vdev_ashift); 148 } 149 150 if (numerrors == vd->vdev_children) { 151 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 152 return (lasterror); 153 } 154 155 return (0); 156 } 157 158 static void 159 vdev_mirror_close(vdev_t *vd) 160 { 161 for (int c = 0; c < vd->vdev_children; c++) 162 vdev_close(vd->vdev_child[c]); 163 } 164 165 static void 166 vdev_mirror_child_done(zio_t *zio) 167 { 168 mirror_child_t *mc = zio->io_private; 169 170 mc->mc_error = zio->io_error; 171 mc->mc_tried = 1; 172 mc->mc_skipped = 0; 173 } 174 175 static void 176 vdev_mirror_scrub_done(zio_t *zio) 177 { 178 mirror_child_t *mc = zio->io_private; 179 180 if (zio->io_error == 0) { 181 zio_t *pio; 182 183 mutex_enter(&zio->io_lock); 184 while ((pio = zio_walk_parents(zio)) != NULL) { 185 mutex_enter(&pio->io_lock); 186 ASSERT3U(zio->io_size, >=, pio->io_size); 187 bcopy(zio->io_data, pio->io_data, pio->io_size); 188 mutex_exit(&pio->io_lock); 189 } 190 mutex_exit(&zio->io_lock); 191 } 192 193 zio_buf_free(zio->io_data, zio->io_size); 194 195 mc->mc_error = zio->io_error; 196 mc->mc_tried = 1; 197 mc->mc_skipped = 0; 198 } 199 200 /* 201 * Try to find a child whose DTL doesn't contain the block we want to read. 202 * If we can't, try the read on any vdev we haven't already tried. 203 */ 204 static int 205 vdev_mirror_child_select(zio_t *zio) 206 { 207 mirror_map_t *mm = zio->io_vsd; 208 mirror_child_t *mc; 209 uint64_t txg = zio->io_txg; 210 int i, c; 211 212 ASSERT(zio->io_bp == NULL || zio->io_bp->blk_birth == txg); 213 214 /* 215 * Try to find a child whose DTL doesn't contain the block to read. 216 * If a child is known to be completely inaccessible (indicated by 217 * vdev_readable() returning B_FALSE), don't even try. 218 */ 219 for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) { 220 if (c >= mm->mm_children) 221 c = 0; 222 mc = &mm->mm_child[c]; 223 if (mc->mc_tried || mc->mc_skipped) 224 continue; 225 if (!vdev_readable(mc->mc_vd)) { 226 mc->mc_error = ENXIO; 227 mc->mc_tried = 1; /* don't even try */ 228 mc->mc_skipped = 1; 229 continue; 230 } 231 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) 232 return (c); 233 mc->mc_error = ESTALE; 234 mc->mc_skipped = 1; 235 mc->mc_speculative = 1; 236 } 237 238 /* 239 * Every device is either missing or has this txg in its DTL. 240 * Look for any child we haven't already tried before giving up. 241 */ 242 for (c = 0; c < mm->mm_children; c++) 243 if (!mm->mm_child[c].mc_tried) 244 return (c); 245 246 /* 247 * Every child failed. There's no place left to look. 248 */ 249 return (-1); 250 } 251 252 static int 253 vdev_mirror_io_start(zio_t *zio) 254 { 255 mirror_map_t *mm; 256 mirror_child_t *mc; 257 int c, children; 258 259 mm = vdev_mirror_map_alloc(zio); 260 261 if (zio->io_type == ZIO_TYPE_READ) { 262 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) { 263 /* 264 * For scrubbing reads we need to allocate a read 265 * buffer for each child and issue reads to all 266 * children. If any child succeeds, it will copy its 267 * data into zio->io_data in vdev_mirror_scrub_done. 268 */ 269 for (c = 0; c < mm->mm_children; c++) { 270 mc = &mm->mm_child[c]; 271 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 272 mc->mc_vd, mc->mc_offset, 273 zio_buf_alloc(zio->io_size), zio->io_size, 274 zio->io_type, zio->io_priority, 0, 275 vdev_mirror_scrub_done, mc)); 276 } 277 return (ZIO_PIPELINE_CONTINUE); 278 } 279 /* 280 * For normal reads just pick one child. 281 */ 282 c = vdev_mirror_child_select(zio); 283 children = (c >= 0); 284 } else { 285 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 286 287 /* 288 * Writes go to all children. 289 */ 290 c = 0; 291 children = mm->mm_children; 292 } 293 294 while (children--) { 295 mc = &mm->mm_child[c]; 296 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 297 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 298 zio->io_type, zio->io_priority, 0, 299 vdev_mirror_child_done, mc)); 300 c++; 301 } 302 303 return (ZIO_PIPELINE_CONTINUE); 304 } 305 306 static int 307 vdev_mirror_worst_error(mirror_map_t *mm) 308 { 309 int error[2] = { 0, 0 }; 310 311 for (int c = 0; c < mm->mm_children; c++) { 312 mirror_child_t *mc = &mm->mm_child[c]; 313 int s = mc->mc_speculative; 314 error[s] = zio_worst_error(error[s], mc->mc_error); 315 } 316 317 return (error[0] ? error[0] : error[1]); 318 } 319 320 static void 321 vdev_mirror_io_done(zio_t *zio) 322 { 323 mirror_map_t *mm = zio->io_vsd; 324 mirror_child_t *mc; 325 int c; 326 int good_copies = 0; 327 int unexpected_errors = 0; 328 329 for (c = 0; c < mm->mm_children; c++) { 330 mc = &mm->mm_child[c]; 331 332 if (mc->mc_error) { 333 if (!mc->mc_skipped) 334 unexpected_errors++; 335 } else if (mc->mc_tried) { 336 good_copies++; 337 } 338 } 339 340 if (zio->io_type == ZIO_TYPE_WRITE) { 341 /* 342 * XXX -- for now, treat partial writes as success. 343 * 344 * Now that we support write reallocation, it would be better 345 * to treat partial failure as real failure unless there are 346 * no non-degraded top-level vdevs left, and not update DTLs 347 * if we intend to reallocate. 348 */ 349 /* XXPOLICY */ 350 if (good_copies != mm->mm_children) { 351 /* 352 * Always require at least one good copy. 353 * 354 * For ditto blocks (io_vd == NULL), require 355 * all copies to be good. 356 * 357 * XXX -- for replacing vdevs, there's no great answer. 358 * If the old device is really dead, we may not even 359 * be able to access it -- so we only want to 360 * require good writes to the new device. But if 361 * the new device turns out to be flaky, we want 362 * to be able to detach it -- which requires all 363 * writes to the old device to have succeeded. 364 */ 365 if (good_copies == 0 || zio->io_vd == NULL) 366 zio->io_error = vdev_mirror_worst_error(mm); 367 } 368 return; 369 } 370 371 ASSERT(zio->io_type == ZIO_TYPE_READ); 372 373 /* 374 * If we don't have a good copy yet, keep trying other children. 375 */ 376 /* XXPOLICY */ 377 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { 378 ASSERT(c >= 0 && c < mm->mm_children); 379 mc = &mm->mm_child[c]; 380 zio_vdev_io_redone(zio); 381 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 382 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 383 ZIO_TYPE_READ, zio->io_priority, 0, 384 vdev_mirror_child_done, mc)); 385 return; 386 } 387 388 /* XXPOLICY */ 389 if (good_copies == 0) { 390 zio->io_error = vdev_mirror_worst_error(mm); 391 ASSERT(zio->io_error != 0); 392 } 393 394 if (good_copies && spa_writeable(zio->io_spa) && 395 (unexpected_errors || 396 (zio->io_flags & ZIO_FLAG_RESILVER) || 397 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) { 398 /* 399 * Use the good data we have in hand to repair damaged children. 400 */ 401 for (c = 0; c < mm->mm_children; c++) { 402 /* 403 * Don't rewrite known good children. 404 * Not only is it unnecessary, it could 405 * actually be harmful: if the system lost 406 * power while rewriting the only good copy, 407 * there would be no good copies left! 408 */ 409 mc = &mm->mm_child[c]; 410 411 if (mc->mc_error == 0) { 412 if (mc->mc_tried) 413 continue; 414 if (!(zio->io_flags & ZIO_FLAG_SCRUB) && 415 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, 416 zio->io_txg, 1)) 417 continue; 418 mc->mc_error = ESTALE; 419 } 420 421 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 422 mc->mc_vd, mc->mc_offset, 423 zio->io_data, zio->io_size, 424 ZIO_TYPE_WRITE, zio->io_priority, 425 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 426 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 427 } 428 } 429 } 430 431 static void 432 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) 433 { 434 if (faulted == vd->vdev_children) 435 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 436 VDEV_AUX_NO_REPLICAS); 437 else if (degraded + faulted != 0) 438 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 439 else 440 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 441 } 442 443 vdev_ops_t vdev_mirror_ops = { 444 vdev_mirror_open, 445 vdev_mirror_close, 446 vdev_default_asize, 447 vdev_mirror_io_start, 448 vdev_mirror_io_done, 449 vdev_mirror_state_change, 450 VDEV_TYPE_MIRROR, /* name of this vdev type */ 451 B_FALSE /* not a leaf vdev */ 452 }; 453 454 vdev_ops_t vdev_replacing_ops = { 455 vdev_mirror_open, 456 vdev_mirror_close, 457 vdev_default_asize, 458 vdev_mirror_io_start, 459 vdev_mirror_io_done, 460 vdev_mirror_state_change, 461 VDEV_TYPE_REPLACING, /* name of this vdev type */ 462 B_FALSE /* not a leaf vdev */ 463 }; 464 465 vdev_ops_t vdev_spare_ops = { 466 vdev_mirror_open, 467 vdev_mirror_close, 468 vdev_default_asize, 469 vdev_mirror_io_start, 470 vdev_mirror_io_done, 471 vdev_mirror_state_change, 472 VDEV_TYPE_SPARE, /* name of this vdev type */ 473 B_FALSE /* not a leaf vdev */ 474 }; 475