1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/zio.h> 34 #include <sys/abd.h> 35 #include <sys/fs/zfs.h> 36 37 /* 38 * Virtual device vector for mirroring. 39 */ 40 41 typedef struct mirror_child { 42 vdev_t *mc_vd; 43 uint64_t mc_offset; 44 int mc_error; 45 uint8_t mc_tried; 46 uint8_t mc_skipped; 47 uint8_t mc_speculative; 48 } mirror_child_t; 49 50 typedef struct mirror_map { 51 int mm_children; 52 int mm_replacing; 53 int mm_preferred; 54 int mm_root; 55 mirror_child_t mm_child[1]; 56 } mirror_map_t; 57 58 int vdev_mirror_shift = 21; 59 60 static void 61 vdev_mirror_map_free(zio_t *zio) 62 { 63 mirror_map_t *mm = zio->io_vsd; 64 65 kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children])); 66 } 67 68 static const zio_vsd_ops_t vdev_mirror_vsd_ops = { 69 vdev_mirror_map_free, 70 zio_vsd_default_cksum_report 71 }; 72 73 static mirror_map_t * 74 vdev_mirror_map_alloc(zio_t *zio) 75 { 76 mirror_map_t *mm = NULL; 77 mirror_child_t *mc; 78 vdev_t *vd = zio->io_vd; 79 int c, d; 80 81 if (vd == NULL) { 82 dva_t *dva = zio->io_bp->blk_dva; 83 spa_t *spa = zio->io_spa; 84 85 c = BP_GET_NDVAS(zio->io_bp); 86 87 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 88 mm->mm_children = c; 89 mm->mm_replacing = B_FALSE; 90 mm->mm_preferred = spa_get_random(c); 91 mm->mm_root = B_TRUE; 92 93 /* 94 * Check the other, lower-index DVAs to see if they're on 95 * the same vdev as the child we picked. If they are, use 96 * them since they are likely to have been allocated from 97 * the primary metaslab in use at the time, and hence are 98 * more likely to have locality with single-copy data. 99 */ 100 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) { 101 if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c])) 102 mm->mm_preferred = d; 103 } 104 105 for (c = 0; c < mm->mm_children; c++) { 106 mc = &mm->mm_child[c]; 107 108 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); 109 mc->mc_offset = DVA_GET_OFFSET(&dva[c]); 110 } 111 } else { 112 c = vd->vdev_children; 113 114 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP); 115 mm->mm_children = c; 116 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops || 117 vd->vdev_ops == &vdev_spare_ops); 118 mm->mm_preferred = mm->mm_replacing ? 0 : 119 (zio->io_offset >> vdev_mirror_shift) % c; 120 mm->mm_root = B_FALSE; 121 122 for (c = 0; c < mm->mm_children; c++) { 123 mc = &mm->mm_child[c]; 124 mc->mc_vd = vd->vdev_child[c]; 125 mc->mc_offset = zio->io_offset; 126 } 127 } 128 129 zio->io_vsd = mm; 130 zio->io_vsd_ops = &vdev_mirror_vsd_ops; 131 return (mm); 132 } 133 134 static int 135 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 136 uint64_t *ashift) 137 { 138 int numerrors = 0; 139 int lasterror = 0; 140 141 if (vd->vdev_children == 0) { 142 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 143 return (SET_ERROR(EINVAL)); 144 } 145 146 vdev_open_children(vd); 147 148 for (int c = 0; c < vd->vdev_children; c++) { 149 vdev_t *cvd = vd->vdev_child[c]; 150 151 if (cvd->vdev_open_error) { 152 lasterror = cvd->vdev_open_error; 153 numerrors++; 154 continue; 155 } 156 157 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 158 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; 159 *ashift = MAX(*ashift, cvd->vdev_ashift); 160 } 161 162 if (numerrors == vd->vdev_children) { 163 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 164 return (lasterror); 165 } 166 167 return (0); 168 } 169 170 static void 171 vdev_mirror_close(vdev_t *vd) 172 { 173 for (int c = 0; c < vd->vdev_children; c++) 174 vdev_close(vd->vdev_child[c]); 175 } 176 177 static void 178 vdev_mirror_child_done(zio_t *zio) 179 { 180 mirror_child_t *mc = zio->io_private; 181 182 mc->mc_error = zio->io_error; 183 mc->mc_tried = 1; 184 mc->mc_skipped = 0; 185 } 186 187 static void 188 vdev_mirror_scrub_done(zio_t *zio) 189 { 190 mirror_child_t *mc = zio->io_private; 191 192 if (zio->io_error == 0) { 193 zio_t *pio; 194 zio_link_t *zl = NULL; 195 196 mutex_enter(&zio->io_lock); 197 while ((pio = zio_walk_parents(zio, &zl)) != NULL) { 198 mutex_enter(&pio->io_lock); 199 ASSERT3U(zio->io_size, >=, pio->io_size); 200 abd_copy(pio->io_abd, zio->io_abd, pio->io_size); 201 mutex_exit(&pio->io_lock); 202 } 203 mutex_exit(&zio->io_lock); 204 } 205 abd_free(zio->io_abd); 206 207 mc->mc_error = zio->io_error; 208 mc->mc_tried = 1; 209 mc->mc_skipped = 0; 210 } 211 212 /* 213 * Try to find a child whose DTL doesn't contain the block we want to read. 214 * If we can't, try the read on any vdev we haven't already tried. 215 */ 216 static int 217 vdev_mirror_child_select(zio_t *zio) 218 { 219 mirror_map_t *mm = zio->io_vsd; 220 mirror_child_t *mc; 221 uint64_t txg = zio->io_txg; 222 int i, c; 223 224 ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg); 225 226 /* 227 * Try to find a child whose DTL doesn't contain the block to read. 228 * If a child is known to be completely inaccessible (indicated by 229 * vdev_readable() returning B_FALSE), don't even try. 230 */ 231 for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) { 232 if (c >= mm->mm_children) 233 c = 0; 234 mc = &mm->mm_child[c]; 235 if (mc->mc_tried || mc->mc_skipped) 236 continue; 237 if (!vdev_readable(mc->mc_vd)) { 238 mc->mc_error = SET_ERROR(ENXIO); 239 mc->mc_tried = 1; /* don't even try */ 240 mc->mc_skipped = 1; 241 continue; 242 } 243 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) 244 return (c); 245 mc->mc_error = SET_ERROR(ESTALE); 246 mc->mc_skipped = 1; 247 mc->mc_speculative = 1; 248 } 249 250 /* 251 * Every device is either missing or has this txg in its DTL. 252 * Look for any child we haven't already tried before giving up. 253 */ 254 for (c = 0; c < mm->mm_children; c++) 255 if (!mm->mm_child[c].mc_tried) 256 return (c); 257 258 /* 259 * Every child failed. There's no place left to look. 260 */ 261 return (-1); 262 } 263 264 static void 265 vdev_mirror_io_start(zio_t *zio) 266 { 267 mirror_map_t *mm; 268 mirror_child_t *mc; 269 int c, children; 270 271 mm = vdev_mirror_map_alloc(zio); 272 273 if (zio->io_type == ZIO_TYPE_READ) { 274 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) { 275 /* 276 * For scrubbing reads we need to allocate a read 277 * buffer for each child and issue reads to all 278 * children. If any child succeeds, it will copy its 279 * data into zio->io_data in vdev_mirror_scrub_done. 280 */ 281 for (c = 0; c < mm->mm_children; c++) { 282 mc = &mm->mm_child[c]; 283 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 284 mc->mc_vd, mc->mc_offset, 285 abd_alloc_sametype(zio->io_abd, 286 zio->io_size), zio->io_size, 287 zio->io_type, zio->io_priority, 0, 288 vdev_mirror_scrub_done, mc)); 289 } 290 zio_execute(zio); 291 return; 292 } 293 /* 294 * For normal reads just pick one child. 295 */ 296 c = vdev_mirror_child_select(zio); 297 children = (c >= 0); 298 } else { 299 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 300 301 /* 302 * Writes go to all children. 303 */ 304 c = 0; 305 children = mm->mm_children; 306 } 307 308 while (children--) { 309 mc = &mm->mm_child[c]; 310 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 311 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, 312 zio->io_type, zio->io_priority, 0, 313 vdev_mirror_child_done, mc)); 314 c++; 315 } 316 317 zio_execute(zio); 318 } 319 320 static int 321 vdev_mirror_worst_error(mirror_map_t *mm) 322 { 323 int error[2] = { 0, 0 }; 324 325 for (int c = 0; c < mm->mm_children; c++) { 326 mirror_child_t *mc = &mm->mm_child[c]; 327 int s = mc->mc_speculative; 328 error[s] = zio_worst_error(error[s], mc->mc_error); 329 } 330 331 return (error[0] ? error[0] : error[1]); 332 } 333 334 static void 335 vdev_mirror_io_done(zio_t *zio) 336 { 337 mirror_map_t *mm = zio->io_vsd; 338 mirror_child_t *mc; 339 int c; 340 int good_copies = 0; 341 int unexpected_errors = 0; 342 343 for (c = 0; c < mm->mm_children; c++) { 344 mc = &mm->mm_child[c]; 345 346 if (mc->mc_error) { 347 if (!mc->mc_skipped) 348 unexpected_errors++; 349 } else if (mc->mc_tried) { 350 good_copies++; 351 } 352 } 353 354 if (zio->io_type == ZIO_TYPE_WRITE) { 355 /* 356 * XXX -- for now, treat partial writes as success. 357 * 358 * Now that we support write reallocation, it would be better 359 * to treat partial failure as real failure unless there are 360 * no non-degraded top-level vdevs left, and not update DTLs 361 * if we intend to reallocate. 362 */ 363 /* XXPOLICY */ 364 if (good_copies != mm->mm_children) { 365 /* 366 * Always require at least one good copy. 367 * 368 * For ditto blocks (io_vd == NULL), require 369 * all copies to be good. 370 * 371 * XXX -- for replacing vdevs, there's no great answer. 372 * If the old device is really dead, we may not even 373 * be able to access it -- so we only want to 374 * require good writes to the new device. But if 375 * the new device turns out to be flaky, we want 376 * to be able to detach it -- which requires all 377 * writes to the old device to have succeeded. 378 */ 379 if (good_copies == 0 || zio->io_vd == NULL) 380 zio->io_error = vdev_mirror_worst_error(mm); 381 } 382 return; 383 } 384 385 ASSERT(zio->io_type == ZIO_TYPE_READ); 386 387 /* 388 * If we don't have a good copy yet, keep trying other children. 389 */ 390 /* XXPOLICY */ 391 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { 392 ASSERT(c >= 0 && c < mm->mm_children); 393 mc = &mm->mm_child[c]; 394 zio_vdev_io_redone(zio); 395 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 396 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, 397 ZIO_TYPE_READ, zio->io_priority, 0, 398 vdev_mirror_child_done, mc)); 399 return; 400 } 401 402 /* XXPOLICY */ 403 if (good_copies == 0) { 404 zio->io_error = vdev_mirror_worst_error(mm); 405 ASSERT(zio->io_error != 0); 406 } 407 408 if (good_copies && spa_writeable(zio->io_spa) && 409 (unexpected_errors || 410 (zio->io_flags & ZIO_FLAG_RESILVER) || 411 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) { 412 /* 413 * Use the good data we have in hand to repair damaged children. 414 */ 415 for (c = 0; c < mm->mm_children; c++) { 416 /* 417 * Don't rewrite known good children. 418 * Not only is it unnecessary, it could 419 * actually be harmful: if the system lost 420 * power while rewriting the only good copy, 421 * there would be no good copies left! 422 */ 423 mc = &mm->mm_child[c]; 424 425 if (mc->mc_error == 0) { 426 if (mc->mc_tried) 427 continue; 428 if (!(zio->io_flags & ZIO_FLAG_SCRUB) && 429 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, 430 zio->io_txg, 1)) 431 continue; 432 mc->mc_error = SET_ERROR(ESTALE); 433 } 434 435 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 436 mc->mc_vd, mc->mc_offset, 437 zio->io_abd, zio->io_size, 438 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE, 439 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 440 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 441 } 442 } 443 } 444 445 static void 446 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) 447 { 448 if (faulted == vd->vdev_children) 449 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 450 VDEV_AUX_NO_REPLICAS); 451 else if (degraded + faulted != 0) 452 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 453 else 454 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 455 } 456 457 vdev_ops_t vdev_mirror_ops = { 458 vdev_mirror_open, 459 vdev_mirror_close, 460 vdev_default_asize, 461 vdev_mirror_io_start, 462 vdev_mirror_io_done, 463 vdev_mirror_state_change, 464 NULL, 465 NULL, 466 VDEV_TYPE_MIRROR, /* name of this vdev type */ 467 B_FALSE /* not a leaf vdev */ 468 }; 469 470 vdev_ops_t vdev_replacing_ops = { 471 vdev_mirror_open, 472 vdev_mirror_close, 473 vdev_default_asize, 474 vdev_mirror_io_start, 475 vdev_mirror_io_done, 476 vdev_mirror_state_change, 477 NULL, 478 NULL, 479 VDEV_TYPE_REPLACING, /* name of this vdev type */ 480 B_FALSE /* not a leaf vdev */ 481 }; 482 483 vdev_ops_t vdev_spare_ops = { 484 vdev_mirror_open, 485 vdev_mirror_close, 486 vdev_default_asize, 487 vdev_mirror_io_start, 488 vdev_mirror_io_done, 489 vdev_mirror_state_change, 490 NULL, 491 NULL, 492 VDEV_TYPE_SPARE, /* name of this vdev type */ 493 B_FALSE /* not a leaf vdev */ 494 }; 495