xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision f78cdc34af236a6199dd9e21376f4a46348c0d56)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Virtual Device Labels
29  * ---------------------
30  *
31  * The vdev label serves several distinct purposes:
32  *
33  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34  *	   identity within the pool.
35  *
36  * 	2. Verify that all the devices given in a configuration are present
37  *         within the pool.
38  *
39  * 	3. Determine the uberblock for the pool.
40  *
41  * 	4. In case of an import operation, determine the configuration of the
42  *         toplevel vdev of which it is a part.
43  *
44  * 	5. If an import operation cannot find all the devices in the pool,
45  *         provide enough information to the administrator to determine which
46  *         devices are missing.
47  *
48  * It is important to note that while the kernel is responsible for writing the
49  * label, it only consumes the information in the first three cases.  The
50  * latter information is only consumed in userland when determining the
51  * configuration to import a pool.
52  *
53  *
54  * Label Organization
55  * ------------------
56  *
57  * Before describing the contents of the label, it's important to understand how
58  * the labels are written and updated with respect to the uberblock.
59  *
60  * When the pool configuration is altered, either because it was newly created
61  * or a device was added, we want to update all the labels such that we can deal
62  * with fatal failure at any point.  To this end, each disk has two labels which
63  * are updated before and after the uberblock is synced.  Assuming we have
64  * labels and an uberblock with the following transaction groups:
65  *
66  *              L1          UB          L2
67  *           +------+    +------+    +------+
68  *           |      |    |      |    |      |
69  *           | t10  |    | t10  |    | t10  |
70  *           |      |    |      |    |      |
71  *           +------+    +------+    +------+
72  *
73  * In this stable state, the labels and the uberblock were all updated within
74  * the same transaction group (10).  Each label is mirrored and checksummed, so
75  * that we can detect when we fail partway through writing the label.
76  *
77  * In order to identify which labels are valid, the labels are written in the
78  * following manner:
79  *
80  * 	1. For each vdev, update 'L1' to the new label
81  * 	2. Update the uberblock
82  * 	3. For each vdev, update 'L2' to the new label
83  *
84  * Given arbitrary failure, we can determine the correct label to use based on
85  * the transaction group.  If we fail after updating L1 but before updating the
86  * UB, we will notice that L1's transaction group is greater than the uberblock,
87  * so L2 must be valid.  If we fail after writing the uberblock but before
88  * writing L2, we will notice that L2's transaction group is less than L1, and
89  * therefore L1 is valid.
90  *
91  * Another added complexity is that not every label is updated when the config
92  * is synced.  If we add a single device, we do not want to have to re-write
93  * every label for every device in the pool.  This means that both L1 and L2 may
94  * be older than the pool uberblock, because the necessary information is stored
95  * on another vdev.
96  *
97  *
98  * On-disk Format
99  * --------------
100  *
101  * The vdev label consists of two distinct parts, and is wrapped within the
102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103  * VTOC disk labels, but is otherwise ignored.
104  *
105  * The first half of the label is a packed nvlist which contains pool wide
106  * properties, per-vdev properties, and configuration information.  It is
107  * described in more detail below.
108  *
109  * The latter half of the label consists of a redundant array of uberblocks.
110  * These uberblocks are updated whenever a transaction group is committed,
111  * or when the configuration is updated.  When a pool is loaded, we scan each
112  * vdev for the 'best' uberblock.
113  *
114  *
115  * Configuration Information
116  * -------------------------
117  *
118  * The nvlist describing the pool and vdev contains the following elements:
119  *
120  * 	version		ZFS on-disk version
121  * 	name		Pool name
122  * 	state		Pool state
123  * 	txg		Transaction group in which this label was written
124  * 	pool_guid	Unique identifier for this pool
125  * 	vdev_tree	An nvlist describing vdev tree.
126  *	features_for_read
127  *			An nvlist of the features necessary for reading the MOS.
128  *
129  * Each leaf device label also contains the following:
130  *
131  * 	top_guid	Unique ID for top-level vdev in which this is contained
132  * 	guid		Unique ID for the leaf vdev
133  *
134  * The 'vs' configuration follows the format described in 'spa_config.c'.
135  */
136 
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/metaslab_impl.h>
147 #include <sys/zio.h>
148 #include <sys/dsl_scan.h>
149 #include <sys/abd.h>
150 #include <sys/fs/zfs.h>
151 
152 /*
153  * Basic routines to read and write from a vdev label.
154  * Used throughout the rest of this file.
155  */
156 uint64_t
157 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
158 {
159 	ASSERT(offset < sizeof (vdev_label_t));
160 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
161 
162 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
163 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
164 }
165 
166 /*
167  * Returns back the vdev label associated with the passed in offset.
168  */
169 int
170 vdev_label_number(uint64_t psize, uint64_t offset)
171 {
172 	int l;
173 
174 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
175 		offset -= psize - VDEV_LABEL_END_SIZE;
176 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
177 	}
178 	l = offset / sizeof (vdev_label_t);
179 	return (l < VDEV_LABELS ? l : -1);
180 }
181 
182 static void
183 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
184     uint64_t size, zio_done_func_t *done, void *private, int flags)
185 {
186 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
187 	    SCL_STATE_ALL);
188 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
189 
190 	zio_nowait(zio_read_phys(zio, vd,
191 	    vdev_label_offset(vd->vdev_psize, l, offset),
192 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
193 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
194 }
195 
196 static void
197 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
198     uint64_t size, zio_done_func_t *done, void *private, int flags)
199 {
200 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
201 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
202 	    (SCL_CONFIG | SCL_STATE) &&
203 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
204 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
205 
206 	zio_nowait(zio_write_phys(zio, vd,
207 	    vdev_label_offset(vd->vdev_psize, l, offset),
208 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
209 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
210 }
211 
212 static void
213 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
214 {
215 	spa_t *spa = vd->vdev_spa;
216 
217 	if (vd != spa->spa_root_vdev)
218 		return;
219 
220 	/* provide either current or previous scan information */
221 	pool_scan_stat_t ps;
222 	if (spa_scan_get_stats(spa, &ps) == 0) {
223 		fnvlist_add_uint64_array(nvl,
224 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
225 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
226 	}
227 
228 	pool_removal_stat_t prs;
229 	if (spa_removal_get_stats(spa, &prs) == 0) {
230 		fnvlist_add_uint64_array(nvl,
231 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
232 		    sizeof (prs) / sizeof (uint64_t));
233 	}
234 
235 	pool_checkpoint_stat_t pcs;
236 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
237 		fnvlist_add_uint64_array(nvl,
238 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
239 		    sizeof (pcs) / sizeof (uint64_t));
240 	}
241 }
242 
243 /*
244  * Generate the nvlist representing this vdev's config.
245  */
246 nvlist_t *
247 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
248     vdev_config_flag_t flags)
249 {
250 	nvlist_t *nv = NULL;
251 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
252 
253 	nv = fnvlist_alloc();
254 
255 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
256 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
257 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
258 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
259 
260 	if (vd->vdev_path != NULL)
261 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
262 
263 	if (vd->vdev_devid != NULL)
264 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
265 
266 	if (vd->vdev_physpath != NULL)
267 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
268 		    vd->vdev_physpath);
269 
270 	if (vd->vdev_fru != NULL)
271 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
272 
273 	if (vd->vdev_nparity != 0) {
274 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
275 		    VDEV_TYPE_RAIDZ) == 0);
276 
277 		/*
278 		 * Make sure someone hasn't managed to sneak a fancy new vdev
279 		 * into a crufty old storage pool.
280 		 */
281 		ASSERT(vd->vdev_nparity == 1 ||
282 		    (vd->vdev_nparity <= 2 &&
283 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
284 		    (vd->vdev_nparity <= 3 &&
285 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
286 
287 		/*
288 		 * Note that we'll add the nparity tag even on storage pools
289 		 * that only support a single parity device -- older software
290 		 * will just ignore it.
291 		 */
292 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
293 	}
294 
295 	if (vd->vdev_wholedisk != -1ULL)
296 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
297 		    vd->vdev_wholedisk);
298 
299 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
300 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
301 
302 	if (vd->vdev_isspare)
303 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
304 
305 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
306 	    vd == vd->vdev_top) {
307 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
308 		    vd->vdev_ms_array);
309 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
310 		    vd->vdev_ms_shift);
311 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
312 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
313 		    vd->vdev_asize);
314 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
315 		if (vd->vdev_removing) {
316 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
317 			    vd->vdev_removing);
318 		}
319 	}
320 
321 	if (vd->vdev_dtl_sm != NULL) {
322 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
323 		    space_map_object(vd->vdev_dtl_sm));
324 	}
325 
326 	if (vic->vic_mapping_object != 0) {
327 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
328 		    vic->vic_mapping_object);
329 	}
330 
331 	if (vic->vic_births_object != 0) {
332 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
333 		    vic->vic_births_object);
334 	}
335 
336 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
337 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
338 		    vic->vic_prev_indirect_vdev);
339 	}
340 
341 	if (vd->vdev_crtxg)
342 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
343 
344 	if (flags & VDEV_CONFIG_MOS) {
345 		if (vd->vdev_leaf_zap != 0) {
346 			ASSERT(vd->vdev_ops->vdev_op_leaf);
347 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
348 			    vd->vdev_leaf_zap);
349 		}
350 
351 		if (vd->vdev_top_zap != 0) {
352 			ASSERT(vd == vd->vdev_top);
353 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
354 			    vd->vdev_top_zap);
355 		}
356 	}
357 
358 	if (getstats) {
359 		vdev_stat_t vs;
360 
361 		vdev_get_stats(vd, &vs);
362 		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
363 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
364 
365 		root_vdev_actions_getprogress(vd, nv);
366 
367 		/*
368 		 * Note: this can be called from open context
369 		 * (spa_get_stats()), so we need the rwlock to prevent
370 		 * the mapping from being changed by condensing.
371 		 */
372 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
373 		if (vd->vdev_indirect_mapping != NULL) {
374 			ASSERT(vd->vdev_indirect_births != NULL);
375 			vdev_indirect_mapping_t *vim =
376 			    vd->vdev_indirect_mapping;
377 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
378 			    vdev_indirect_mapping_size(vim));
379 		}
380 		rw_exit(&vd->vdev_indirect_rwlock);
381 		if (vd->vdev_mg != NULL &&
382 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
383 			/*
384 			 * Compute approximately how much memory would be used
385 			 * for the indirect mapping if this device were to
386 			 * be removed.
387 			 *
388 			 * Note: If the frag metric is invalid, then not
389 			 * enough metaslabs have been converted to have
390 			 * histograms.
391 			 */
392 			uint64_t seg_count = 0;
393 
394 			/*
395 			 * There are the same number of allocated segments
396 			 * as free segments, so we will have at least one
397 			 * entry per free segment.
398 			 */
399 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
400 				seg_count += vd->vdev_mg->mg_histogram[i];
401 			}
402 
403 			/*
404 			 * The maximum length of a mapping is SPA_MAXBLOCKSIZE,
405 			 * so we need at least one entry per SPA_MAXBLOCKSIZE
406 			 * of allocated data.
407 			 */
408 			seg_count += vd->vdev_stat.vs_alloc / SPA_MAXBLOCKSIZE;
409 
410 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
411 			    seg_count *
412 			    sizeof (vdev_indirect_mapping_entry_phys_t));
413 		}
414 	}
415 
416 	if (!vd->vdev_ops->vdev_op_leaf) {
417 		nvlist_t **child;
418 		int c, idx;
419 
420 		ASSERT(!vd->vdev_ishole);
421 
422 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
423 		    KM_SLEEP);
424 
425 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
426 			vdev_t *cvd = vd->vdev_child[c];
427 
428 			/*
429 			 * If we're generating an nvlist of removing
430 			 * vdevs then skip over any device which is
431 			 * not being removed.
432 			 */
433 			if ((flags & VDEV_CONFIG_REMOVING) &&
434 			    !cvd->vdev_removing)
435 				continue;
436 
437 			child[idx++] = vdev_config_generate(spa, cvd,
438 			    getstats, flags);
439 		}
440 
441 		if (idx) {
442 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
443 			    child, idx);
444 		}
445 
446 		for (c = 0; c < idx; c++)
447 			nvlist_free(child[c]);
448 
449 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
450 
451 	} else {
452 		const char *aux = NULL;
453 
454 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
455 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
456 		if (vd->vdev_resilver_txg != 0)
457 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
458 			    vd->vdev_resilver_txg);
459 		if (vd->vdev_faulted)
460 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
461 		if (vd->vdev_degraded)
462 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
463 		if (vd->vdev_removed)
464 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
465 		if (vd->vdev_unspare)
466 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
467 		if (vd->vdev_ishole)
468 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
469 
470 		switch (vd->vdev_stat.vs_aux) {
471 		case VDEV_AUX_ERR_EXCEEDED:
472 			aux = "err_exceeded";
473 			break;
474 
475 		case VDEV_AUX_EXTERNAL:
476 			aux = "external";
477 			break;
478 		}
479 
480 		if (aux != NULL)
481 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
482 
483 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
484 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
485 			    vd->vdev_orig_guid);
486 		}
487 	}
488 
489 	return (nv);
490 }
491 
492 /*
493  * Generate a view of the top-level vdevs.  If we currently have holes
494  * in the namespace, then generate an array which contains a list of holey
495  * vdevs.  Additionally, add the number of top-level children that currently
496  * exist.
497  */
498 void
499 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
500 {
501 	vdev_t *rvd = spa->spa_root_vdev;
502 	uint64_t *array;
503 	uint_t c, idx;
504 
505 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
506 
507 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
508 		vdev_t *tvd = rvd->vdev_child[c];
509 
510 		if (tvd->vdev_ishole) {
511 			array[idx++] = c;
512 		}
513 	}
514 
515 	if (idx) {
516 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
517 		    array, idx) == 0);
518 	}
519 
520 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
521 	    rvd->vdev_children) == 0);
522 
523 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
524 }
525 
526 /*
527  * Returns the configuration from the label of the given vdev. For vdevs
528  * which don't have a txg value stored on their label (i.e. spares/cache)
529  * or have not been completely initialized (txg = 0) just return
530  * the configuration from the first valid label we find. Otherwise,
531  * find the most up-to-date label that does not exceed the specified
532  * 'txg' value.
533  */
534 nvlist_t *
535 vdev_label_read_config(vdev_t *vd, uint64_t txg)
536 {
537 	spa_t *spa = vd->vdev_spa;
538 	nvlist_t *config = NULL;
539 	vdev_phys_t *vp;
540 	abd_t *vp_abd;
541 	zio_t *zio;
542 	uint64_t best_txg = 0;
543 	uint64_t label_txg = 0;
544 	int error = 0;
545 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
546 	    ZIO_FLAG_SPECULATIVE;
547 
548 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
549 
550 	if (!vdev_readable(vd))
551 		return (NULL);
552 
553 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
554 	vp = abd_to_buf(vp_abd);
555 
556 retry:
557 	for (int l = 0; l < VDEV_LABELS; l++) {
558 		nvlist_t *label = NULL;
559 
560 		zio = zio_root(spa, NULL, NULL, flags);
561 
562 		vdev_label_read(zio, vd, l, vp_abd,
563 		    offsetof(vdev_label_t, vl_vdev_phys),
564 		    sizeof (vdev_phys_t), NULL, NULL, flags);
565 
566 		if (zio_wait(zio) == 0 &&
567 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
568 		    &label, 0) == 0) {
569 			/*
570 			 * Auxiliary vdevs won't have txg values in their
571 			 * labels and newly added vdevs may not have been
572 			 * completely initialized so just return the
573 			 * configuration from the first valid label we
574 			 * encounter.
575 			 */
576 			error = nvlist_lookup_uint64(label,
577 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
578 			if ((error || label_txg == 0) && !config) {
579 				config = label;
580 				break;
581 			} else if (label_txg <= txg && label_txg > best_txg) {
582 				best_txg = label_txg;
583 				nvlist_free(config);
584 				config = fnvlist_dup(label);
585 			}
586 		}
587 
588 		if (label != NULL) {
589 			nvlist_free(label);
590 			label = NULL;
591 		}
592 	}
593 
594 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
595 		flags |= ZIO_FLAG_TRYHARD;
596 		goto retry;
597 	}
598 
599 	/*
600 	 * We found a valid label but it didn't pass txg restrictions.
601 	 */
602 	if (config == NULL && label_txg != 0) {
603 		vdev_dbgmsg(vd, "label discarded as txg is too large "
604 		    "(%llu > %llu)", (u_longlong_t)label_txg,
605 		    (u_longlong_t)txg);
606 	}
607 
608 	abd_free(vp_abd);
609 
610 	return (config);
611 }
612 
613 /*
614  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
615  * in with the device guid if this spare is active elsewhere on the system.
616  */
617 static boolean_t
618 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
619     uint64_t *spare_guid, uint64_t *l2cache_guid)
620 {
621 	spa_t *spa = vd->vdev_spa;
622 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
623 	uint64_t vdtxg = 0;
624 	nvlist_t *label;
625 
626 	if (spare_guid)
627 		*spare_guid = 0ULL;
628 	if (l2cache_guid)
629 		*l2cache_guid = 0ULL;
630 
631 	/*
632 	 * Read the label, if any, and perform some basic sanity checks.
633 	 */
634 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
635 		return (B_FALSE);
636 
637 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
638 	    &vdtxg);
639 
640 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
641 	    &state) != 0 ||
642 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
643 	    &device_guid) != 0) {
644 		nvlist_free(label);
645 		return (B_FALSE);
646 	}
647 
648 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
649 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
650 	    &pool_guid) != 0 ||
651 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
652 	    &txg) != 0)) {
653 		nvlist_free(label);
654 		return (B_FALSE);
655 	}
656 
657 	nvlist_free(label);
658 
659 	/*
660 	 * Check to see if this device indeed belongs to the pool it claims to
661 	 * be a part of.  The only way this is allowed is if the device is a hot
662 	 * spare (which we check for later on).
663 	 */
664 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
665 	    !spa_guid_exists(pool_guid, device_guid) &&
666 	    !spa_spare_exists(device_guid, NULL, NULL) &&
667 	    !spa_l2cache_exists(device_guid, NULL))
668 		return (B_FALSE);
669 
670 	/*
671 	 * If the transaction group is zero, then this an initialized (but
672 	 * unused) label.  This is only an error if the create transaction
673 	 * on-disk is the same as the one we're using now, in which case the
674 	 * user has attempted to add the same vdev multiple times in the same
675 	 * transaction.
676 	 */
677 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
678 	    txg == 0 && vdtxg == crtxg)
679 		return (B_TRUE);
680 
681 	/*
682 	 * Check to see if this is a spare device.  We do an explicit check for
683 	 * spa_has_spare() here because it may be on our pending list of spares
684 	 * to add.  We also check if it is an l2cache device.
685 	 */
686 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
687 	    spa_has_spare(spa, device_guid)) {
688 		if (spare_guid)
689 			*spare_guid = device_guid;
690 
691 		switch (reason) {
692 		case VDEV_LABEL_CREATE:
693 		case VDEV_LABEL_L2CACHE:
694 			return (B_TRUE);
695 
696 		case VDEV_LABEL_REPLACE:
697 			return (!spa_has_spare(spa, device_guid) ||
698 			    spare_pool != 0ULL);
699 
700 		case VDEV_LABEL_SPARE:
701 			return (spa_has_spare(spa, device_guid));
702 		}
703 	}
704 
705 	/*
706 	 * Check to see if this is an l2cache device.
707 	 */
708 	if (spa_l2cache_exists(device_guid, NULL))
709 		return (B_TRUE);
710 
711 	/*
712 	 * We can't rely on a pool's state if it's been imported
713 	 * read-only.  Instead we look to see if the pools is marked
714 	 * read-only in the namespace and set the state to active.
715 	 */
716 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
717 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
718 	    spa_mode(spa) == FREAD)
719 		state = POOL_STATE_ACTIVE;
720 
721 	/*
722 	 * If the device is marked ACTIVE, then this device is in use by another
723 	 * pool on the system.
724 	 */
725 	return (state == POOL_STATE_ACTIVE);
726 }
727 
728 /*
729  * Initialize a vdev label.  We check to make sure each leaf device is not in
730  * use, and writable.  We put down an initial label which we will later
731  * overwrite with a complete label.  Note that it's important to do this
732  * sequentially, not in parallel, so that we catch cases of multiple use of the
733  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
734  * itself.
735  */
736 int
737 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
738 {
739 	spa_t *spa = vd->vdev_spa;
740 	nvlist_t *label;
741 	vdev_phys_t *vp;
742 	abd_t *vp_abd;
743 	abd_t *pad2;
744 	uberblock_t *ub;
745 	abd_t *ub_abd;
746 	zio_t *zio;
747 	char *buf;
748 	size_t buflen;
749 	int error;
750 	uint64_t spare_guid, l2cache_guid;
751 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
752 
753 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
754 
755 	for (int c = 0; c < vd->vdev_children; c++)
756 		if ((error = vdev_label_init(vd->vdev_child[c],
757 		    crtxg, reason)) != 0)
758 			return (error);
759 
760 	/* Track the creation time for this vdev */
761 	vd->vdev_crtxg = crtxg;
762 
763 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
764 		return (0);
765 
766 	/*
767 	 * Dead vdevs cannot be initialized.
768 	 */
769 	if (vdev_is_dead(vd))
770 		return (SET_ERROR(EIO));
771 
772 	/*
773 	 * Determine if the vdev is in use.
774 	 */
775 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
776 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
777 		return (SET_ERROR(EBUSY));
778 
779 	/*
780 	 * If this is a request to add or replace a spare or l2cache device
781 	 * that is in use elsewhere on the system, then we must update the
782 	 * guid (which was initialized to a random value) to reflect the
783 	 * actual GUID (which is shared between multiple pools).
784 	 */
785 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
786 	    spare_guid != 0ULL) {
787 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
788 
789 		vd->vdev_guid += guid_delta;
790 
791 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
792 			pvd->vdev_guid_sum += guid_delta;
793 
794 		/*
795 		 * If this is a replacement, then we want to fallthrough to the
796 		 * rest of the code.  If we're adding a spare, then it's already
797 		 * labeled appropriately and we can just return.
798 		 */
799 		if (reason == VDEV_LABEL_SPARE)
800 			return (0);
801 		ASSERT(reason == VDEV_LABEL_REPLACE ||
802 		    reason == VDEV_LABEL_SPLIT);
803 	}
804 
805 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
806 	    l2cache_guid != 0ULL) {
807 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
808 
809 		vd->vdev_guid += guid_delta;
810 
811 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
812 			pvd->vdev_guid_sum += guid_delta;
813 
814 		/*
815 		 * If this is a replacement, then we want to fallthrough to the
816 		 * rest of the code.  If we're adding an l2cache, then it's
817 		 * already labeled appropriately and we can just return.
818 		 */
819 		if (reason == VDEV_LABEL_L2CACHE)
820 			return (0);
821 		ASSERT(reason == VDEV_LABEL_REPLACE);
822 	}
823 
824 	/*
825 	 * Initialize its label.
826 	 */
827 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
828 	abd_zero(vp_abd, sizeof (vdev_phys_t));
829 	vp = abd_to_buf(vp_abd);
830 
831 	/*
832 	 * Generate a label describing the pool and our top-level vdev.
833 	 * We mark it as being from txg 0 to indicate that it's not
834 	 * really part of an active pool just yet.  The labels will
835 	 * be written again with a meaningful txg by spa_sync().
836 	 */
837 	if (reason == VDEV_LABEL_SPARE ||
838 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
839 		/*
840 		 * For inactive hot spares, we generate a special label that
841 		 * identifies as a mutually shared hot spare.  We write the
842 		 * label if we are adding a hot spare, or if we are removing an
843 		 * active hot spare (in which case we want to revert the
844 		 * labels).
845 		 */
846 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
847 
848 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
849 		    spa_version(spa)) == 0);
850 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
851 		    POOL_STATE_SPARE) == 0);
852 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
853 		    vd->vdev_guid) == 0);
854 	} else if (reason == VDEV_LABEL_L2CACHE ||
855 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
856 		/*
857 		 * For level 2 ARC devices, add a special label.
858 		 */
859 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
860 
861 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
862 		    spa_version(spa)) == 0);
863 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
864 		    POOL_STATE_L2CACHE) == 0);
865 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
866 		    vd->vdev_guid) == 0);
867 	} else {
868 		uint64_t txg = 0ULL;
869 
870 		if (reason == VDEV_LABEL_SPLIT)
871 			txg = spa->spa_uberblock.ub_txg;
872 		label = spa_config_generate(spa, vd, txg, B_FALSE);
873 
874 		/*
875 		 * Add our creation time.  This allows us to detect multiple
876 		 * vdev uses as described above, and automatically expires if we
877 		 * fail.
878 		 */
879 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
880 		    crtxg) == 0);
881 	}
882 
883 	buf = vp->vp_nvlist;
884 	buflen = sizeof (vp->vp_nvlist);
885 
886 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
887 	if (error != 0) {
888 		nvlist_free(label);
889 		abd_free(vp_abd);
890 		/* EFAULT means nvlist_pack ran out of room */
891 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
892 	}
893 
894 	/*
895 	 * Initialize uberblock template.
896 	 */
897 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
898 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
899 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
900 	ub = abd_to_buf(ub_abd);
901 	ub->ub_txg = 0;
902 
903 	/* Initialize the 2nd padding area. */
904 	pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
905 	abd_zero(pad2, VDEV_PAD_SIZE);
906 
907 	/*
908 	 * Write everything in parallel.
909 	 */
910 retry:
911 	zio = zio_root(spa, NULL, NULL, flags);
912 
913 	for (int l = 0; l < VDEV_LABELS; l++) {
914 
915 		vdev_label_write(zio, vd, l, vp_abd,
916 		    offsetof(vdev_label_t, vl_vdev_phys),
917 		    sizeof (vdev_phys_t), NULL, NULL, flags);
918 
919 		/*
920 		 * Skip the 1st padding area.
921 		 * Zero out the 2nd padding area where it might have
922 		 * left over data from previous filesystem format.
923 		 */
924 		vdev_label_write(zio, vd, l, pad2,
925 		    offsetof(vdev_label_t, vl_pad2),
926 		    VDEV_PAD_SIZE, NULL, NULL, flags);
927 
928 		vdev_label_write(zio, vd, l, ub_abd,
929 		    offsetof(vdev_label_t, vl_uberblock),
930 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
931 	}
932 
933 	error = zio_wait(zio);
934 
935 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
936 		flags |= ZIO_FLAG_TRYHARD;
937 		goto retry;
938 	}
939 
940 	nvlist_free(label);
941 	abd_free(pad2);
942 	abd_free(ub_abd);
943 	abd_free(vp_abd);
944 
945 	/*
946 	 * If this vdev hasn't been previously identified as a spare, then we
947 	 * mark it as such only if a) we are labeling it as a spare, or b) it
948 	 * exists as a spare elsewhere in the system.  Do the same for
949 	 * level 2 ARC devices.
950 	 */
951 	if (error == 0 && !vd->vdev_isspare &&
952 	    (reason == VDEV_LABEL_SPARE ||
953 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
954 		spa_spare_add(vd);
955 
956 	if (error == 0 && !vd->vdev_isl2cache &&
957 	    (reason == VDEV_LABEL_L2CACHE ||
958 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
959 		spa_l2cache_add(vd);
960 
961 	return (error);
962 }
963 
964 /*
965  * ==========================================================================
966  * uberblock load/sync
967  * ==========================================================================
968  */
969 
970 /*
971  * Consider the following situation: txg is safely synced to disk.  We've
972  * written the first uberblock for txg + 1, and then we lose power.  When we
973  * come back up, we fail to see the uberblock for txg + 1 because, say,
974  * it was on a mirrored device and the replica to which we wrote txg + 1
975  * is now offline.  If we then make some changes and sync txg + 1, and then
976  * the missing replica comes back, then for a few seconds we'll have two
977  * conflicting uberblocks on disk with the same txg.  The solution is simple:
978  * among uberblocks with equal txg, choose the one with the latest timestamp.
979  */
980 static int
981 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
982 {
983 	if (ub1->ub_txg < ub2->ub_txg)
984 		return (-1);
985 	if (ub1->ub_txg > ub2->ub_txg)
986 		return (1);
987 
988 	if (ub1->ub_timestamp < ub2->ub_timestamp)
989 		return (-1);
990 	if (ub1->ub_timestamp > ub2->ub_timestamp)
991 		return (1);
992 
993 	return (0);
994 }
995 
996 struct ubl_cbdata {
997 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
998 	vdev_t		*ubl_vd;	/* vdev associated with the above */
999 };
1000 
1001 static void
1002 vdev_uberblock_load_done(zio_t *zio)
1003 {
1004 	vdev_t *vd = zio->io_vd;
1005 	spa_t *spa = zio->io_spa;
1006 	zio_t *rio = zio->io_private;
1007 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1008 	struct ubl_cbdata *cbp = rio->io_private;
1009 
1010 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1011 
1012 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1013 		mutex_enter(&rio->io_lock);
1014 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1015 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1016 			/*
1017 			 * Keep track of the vdev in which this uberblock
1018 			 * was found. We will use this information later
1019 			 * to obtain the config nvlist associated with
1020 			 * this uberblock.
1021 			 */
1022 			*cbp->ubl_ubbest = *ub;
1023 			cbp->ubl_vd = vd;
1024 		}
1025 		mutex_exit(&rio->io_lock);
1026 	}
1027 
1028 	abd_free(zio->io_abd);
1029 }
1030 
1031 static void
1032 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1033     struct ubl_cbdata *cbp)
1034 {
1035 	for (int c = 0; c < vd->vdev_children; c++)
1036 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1037 
1038 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1039 		for (int l = 0; l < VDEV_LABELS; l++) {
1040 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1041 				vdev_label_read(zio, vd, l,
1042 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1043 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1044 				    VDEV_UBERBLOCK_SIZE(vd),
1045 				    vdev_uberblock_load_done, zio, flags);
1046 			}
1047 		}
1048 	}
1049 }
1050 
1051 /*
1052  * Reads the 'best' uberblock from disk along with its associated
1053  * configuration. First, we read the uberblock array of each label of each
1054  * vdev, keeping track of the uberblock with the highest txg in each array.
1055  * Then, we read the configuration from the same vdev as the best uberblock.
1056  */
1057 void
1058 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1059 {
1060 	zio_t *zio;
1061 	spa_t *spa = rvd->vdev_spa;
1062 	struct ubl_cbdata cb;
1063 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1064 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1065 
1066 	ASSERT(ub);
1067 	ASSERT(config);
1068 
1069 	bzero(ub, sizeof (uberblock_t));
1070 	*config = NULL;
1071 
1072 	cb.ubl_ubbest = ub;
1073 	cb.ubl_vd = NULL;
1074 
1075 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1076 	zio = zio_root(spa, NULL, &cb, flags);
1077 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1078 	(void) zio_wait(zio);
1079 
1080 	/*
1081 	 * It's possible that the best uberblock was discovered on a label
1082 	 * that has a configuration which was written in a future txg.
1083 	 * Search all labels on this vdev to find the configuration that
1084 	 * matches the txg for our uberblock.
1085 	 */
1086 	if (cb.ubl_vd != NULL) {
1087 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1088 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1089 
1090 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1091 		if (*config == NULL && spa->spa_extreme_rewind) {
1092 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1093 			    "Trying again without txg restrictions.");
1094 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1095 		}
1096 		if (*config == NULL) {
1097 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1098 		}
1099 	}
1100 	spa_config_exit(spa, SCL_ALL, FTAG);
1101 }
1102 
1103 /*
1104  * On success, increment root zio's count of good writes.
1105  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1106  */
1107 static void
1108 vdev_uberblock_sync_done(zio_t *zio)
1109 {
1110 	uint64_t *good_writes = zio->io_private;
1111 
1112 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1113 		atomic_inc_64(good_writes);
1114 }
1115 
1116 /*
1117  * Write the uberblock to all labels of all leaves of the specified vdev.
1118  */
1119 static void
1120 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
1121 {
1122 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1123 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1124 
1125 	if (!vd->vdev_ops->vdev_op_leaf)
1126 		return;
1127 
1128 	if (!vdev_writeable(vd))
1129 		return;
1130 
1131 	int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1132 
1133 	/* Copy the uberblock_t into the ABD */
1134 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1135 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1136 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1137 
1138 	for (int l = 0; l < VDEV_LABELS; l++)
1139 		vdev_label_write(zio, vd, l, ub_abd,
1140 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1141 		    vdev_uberblock_sync_done, zio->io_private,
1142 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1143 
1144 	abd_free(ub_abd);
1145 }
1146 
1147 /* Sync the uberblocks to all vdevs in svd[] */
1148 int
1149 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1150 {
1151 	spa_t *spa = svd[0]->vdev_spa;
1152 	zio_t *zio;
1153 	uint64_t good_writes = 0;
1154 
1155 	zio = zio_root(spa, NULL, &good_writes, flags);
1156 
1157 	for (int v = 0; v < svdcount; v++)
1158 		vdev_uberblock_sync(zio, ub, svd[v], flags);
1159 
1160 	(void) zio_wait(zio);
1161 
1162 	/*
1163 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1164 	 * are no longer needed (because the new uberblocks and the even
1165 	 * labels are safely on disk), so it is safe to overwrite them.
1166 	 */
1167 	zio = zio_root(spa, NULL, NULL, flags);
1168 
1169 	for (int v = 0; v < svdcount; v++) {
1170 		if (vdev_writeable(svd[v])) {
1171 			zio_flush(zio, svd[v]);
1172 		}
1173 	}
1174 
1175 	(void) zio_wait(zio);
1176 
1177 	return (good_writes >= 1 ? 0 : EIO);
1178 }
1179 
1180 /*
1181  * On success, increment the count of good writes for our top-level vdev.
1182  */
1183 static void
1184 vdev_label_sync_done(zio_t *zio)
1185 {
1186 	uint64_t *good_writes = zio->io_private;
1187 
1188 	if (zio->io_error == 0)
1189 		atomic_inc_64(good_writes);
1190 }
1191 
1192 /*
1193  * If there weren't enough good writes, indicate failure to the parent.
1194  */
1195 static void
1196 vdev_label_sync_top_done(zio_t *zio)
1197 {
1198 	uint64_t *good_writes = zio->io_private;
1199 
1200 	if (*good_writes == 0)
1201 		zio->io_error = SET_ERROR(EIO);
1202 
1203 	kmem_free(good_writes, sizeof (uint64_t));
1204 }
1205 
1206 /*
1207  * We ignore errors for log and cache devices, simply free the private data.
1208  */
1209 static void
1210 vdev_label_sync_ignore_done(zio_t *zio)
1211 {
1212 	kmem_free(zio->io_private, sizeof (uint64_t));
1213 }
1214 
1215 /*
1216  * Write all even or odd labels to all leaves of the specified vdev.
1217  */
1218 static void
1219 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1220 {
1221 	nvlist_t *label;
1222 	vdev_phys_t *vp;
1223 	abd_t *vp_abd;
1224 	char *buf;
1225 	size_t buflen;
1226 
1227 	for (int c = 0; c < vd->vdev_children; c++)
1228 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1229 
1230 	if (!vd->vdev_ops->vdev_op_leaf)
1231 		return;
1232 
1233 	if (!vdev_writeable(vd))
1234 		return;
1235 
1236 	/*
1237 	 * Generate a label describing the top-level config to which we belong.
1238 	 */
1239 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1240 
1241 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1242 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1243 	vp = abd_to_buf(vp_abd);
1244 
1245 	buf = vp->vp_nvlist;
1246 	buflen = sizeof (vp->vp_nvlist);
1247 
1248 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1249 		for (; l < VDEV_LABELS; l += 2) {
1250 			vdev_label_write(zio, vd, l, vp_abd,
1251 			    offsetof(vdev_label_t, vl_vdev_phys),
1252 			    sizeof (vdev_phys_t),
1253 			    vdev_label_sync_done, zio->io_private,
1254 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1255 		}
1256 	}
1257 
1258 	abd_free(vp_abd);
1259 	nvlist_free(label);
1260 }
1261 
1262 int
1263 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1264 {
1265 	list_t *dl = &spa->spa_config_dirty_list;
1266 	vdev_t *vd;
1267 	zio_t *zio;
1268 	int error;
1269 
1270 	/*
1271 	 * Write the new labels to disk.
1272 	 */
1273 	zio = zio_root(spa, NULL, NULL, flags);
1274 
1275 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1276 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1277 		    KM_SLEEP);
1278 
1279 		ASSERT(!vd->vdev_ishole);
1280 
1281 		zio_t *vio = zio_null(zio, spa, NULL,
1282 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1283 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1284 		    good_writes, flags);
1285 		vdev_label_sync(vio, vd, l, txg, flags);
1286 		zio_nowait(vio);
1287 	}
1288 
1289 	error = zio_wait(zio);
1290 
1291 	/*
1292 	 * Flush the new labels to disk.
1293 	 */
1294 	zio = zio_root(spa, NULL, NULL, flags);
1295 
1296 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1297 		zio_flush(zio, vd);
1298 
1299 	(void) zio_wait(zio);
1300 
1301 	return (error);
1302 }
1303 
1304 /*
1305  * Sync the uberblock and any changes to the vdev configuration.
1306  *
1307  * The order of operations is carefully crafted to ensure that
1308  * if the system panics or loses power at any time, the state on disk
1309  * is still transactionally consistent.  The in-line comments below
1310  * describe the failure semantics at each stage.
1311  *
1312  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1313  * at any time, you can just call it again, and it will resume its work.
1314  */
1315 int
1316 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1317 {
1318 	spa_t *spa = svd[0]->vdev_spa;
1319 	uberblock_t *ub = &spa->spa_uberblock;
1320 	int error = 0;
1321 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1322 
1323 	ASSERT(svdcount != 0);
1324 retry:
1325 	/*
1326 	 * Normally, we don't want to try too hard to write every label and
1327 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1328 	 * sync process to block while we retry.  But if we can't write a
1329 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1330 	 * bailing out and declaring the pool faulted.
1331 	 */
1332 	if (error != 0) {
1333 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1334 			return (error);
1335 		flags |= ZIO_FLAG_TRYHARD;
1336 	}
1337 
1338 	ASSERT(ub->ub_txg <= txg);
1339 
1340 	/*
1341 	 * If this isn't a resync due to I/O errors,
1342 	 * and nothing changed in this transaction group,
1343 	 * and the vdev configuration hasn't changed,
1344 	 * then there's nothing to do.
1345 	 */
1346 	if (ub->ub_txg < txg &&
1347 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1348 	    list_is_empty(&spa->spa_config_dirty_list))
1349 		return (0);
1350 
1351 	if (txg > spa_freeze_txg(spa))
1352 		return (0);
1353 
1354 	ASSERT(txg <= spa->spa_final_txg);
1355 
1356 	/*
1357 	 * Flush the write cache of every disk that's been written to
1358 	 * in this transaction group.  This ensures that all blocks
1359 	 * written in this txg will be committed to stable storage
1360 	 * before any uberblock that references them.
1361 	 */
1362 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1363 
1364 	for (vdev_t *vd =
1365 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1366 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1367 		zio_flush(zio, vd);
1368 
1369 	(void) zio_wait(zio);
1370 
1371 	/*
1372 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1373 	 * system dies in the middle of this process, that's OK: all of the
1374 	 * even labels that made it to disk will be newer than any uberblock,
1375 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1376 	 * which have not yet been touched, will still be valid.  We flush
1377 	 * the new labels to disk to ensure that all even-label updates
1378 	 * are committed to stable storage before the uberblock update.
1379 	 */
1380 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1381 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1382 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1383 			    "for pool '%s' when syncing out the even labels "
1384 			    "of dirty vdevs", error, spa_name(spa));
1385 		}
1386 		goto retry;
1387 	}
1388 
1389 	/*
1390 	 * Sync the uberblocks to all vdevs in svd[].
1391 	 * If the system dies in the middle of this step, there are two cases
1392 	 * to consider, and the on-disk state is consistent either way:
1393 	 *
1394 	 * (1)	If none of the new uberblocks made it to disk, then the
1395 	 *	previous uberblock will be the newest, and the odd labels
1396 	 *	(which had not yet been touched) will be valid with respect
1397 	 *	to that uberblock.
1398 	 *
1399 	 * (2)	If one or more new uberblocks made it to disk, then they
1400 	 *	will be the newest, and the even labels (which had all
1401 	 *	been successfully committed) will be valid with respect
1402 	 *	to the new uberblocks.
1403 	 */
1404 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1405 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1406 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1407 			    "%d for pool '%s'", error, spa_name(spa));
1408 		}
1409 		goto retry;
1410 	}
1411 
1412 	/*
1413 	 * Sync out odd labels for every dirty vdev.  If the system dies
1414 	 * in the middle of this process, the even labels and the new
1415 	 * uberblocks will suffice to open the pool.  The next time
1416 	 * the pool is opened, the first thing we'll do -- before any
1417 	 * user data is modified -- is mark every vdev dirty so that
1418 	 * all labels will be brought up to date.  We flush the new labels
1419 	 * to disk to ensure that all odd-label updates are committed to
1420 	 * stable storage before the next transaction group begins.
1421 	 */
1422 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1423 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1424 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1425 			    "for pool '%s' when syncing out the odd labels of "
1426 			    "dirty vdevs", error, spa_name(spa));
1427 		}
1428 		goto retry;
1429 	}
1430 
1431 	return (0);
1432 }
1433