1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Virtual Device Labels 29 * --------------------- 30 * 31 * The vdev label serves several distinct purposes: 32 * 33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 34 * identity within the pool. 35 * 36 * 2. Verify that all the devices given in a configuration are present 37 * within the pool. 38 * 39 * 3. Determine the uberblock for the pool. 40 * 41 * 4. In case of an import operation, determine the configuration of the 42 * toplevel vdev of which it is a part. 43 * 44 * 5. If an import operation cannot find all the devices in the pool, 45 * provide enough information to the administrator to determine which 46 * devices are missing. 47 * 48 * It is important to note that while the kernel is responsible for writing the 49 * label, it only consumes the information in the first three cases. The 50 * latter information is only consumed in userland when determining the 51 * configuration to import a pool. 52 * 53 * 54 * Label Organization 55 * ------------------ 56 * 57 * Before describing the contents of the label, it's important to understand how 58 * the labels are written and updated with respect to the uberblock. 59 * 60 * When the pool configuration is altered, either because it was newly created 61 * or a device was added, we want to update all the labels such that we can deal 62 * with fatal failure at any point. To this end, each disk has two labels which 63 * are updated before and after the uberblock is synced. Assuming we have 64 * labels and an uberblock with the following transaction groups: 65 * 66 * L1 UB L2 67 * +------+ +------+ +------+ 68 * | | | | | | 69 * | t10 | | t10 | | t10 | 70 * | | | | | | 71 * +------+ +------+ +------+ 72 * 73 * In this stable state, the labels and the uberblock were all updated within 74 * the same transaction group (10). Each label is mirrored and checksummed, so 75 * that we can detect when we fail partway through writing the label. 76 * 77 * In order to identify which labels are valid, the labels are written in the 78 * following manner: 79 * 80 * 1. For each vdev, update 'L1' to the new label 81 * 2. Update the uberblock 82 * 3. For each vdev, update 'L2' to the new label 83 * 84 * Given arbitrary failure, we can determine the correct label to use based on 85 * the transaction group. If we fail after updating L1 but before updating the 86 * UB, we will notice that L1's transaction group is greater than the uberblock, 87 * so L2 must be valid. If we fail after writing the uberblock but before 88 * writing L2, we will notice that L2's transaction group is less than L1, and 89 * therefore L1 is valid. 90 * 91 * Another added complexity is that not every label is updated when the config 92 * is synced. If we add a single device, we do not want to have to re-write 93 * every label for every device in the pool. This means that both L1 and L2 may 94 * be older than the pool uberblock, because the necessary information is stored 95 * on another vdev. 96 * 97 * 98 * On-disk Format 99 * -------------- 100 * 101 * The vdev label consists of two distinct parts, and is wrapped within the 102 * vdev_label_t structure. The label includes 8k of padding to permit legacy 103 * VTOC disk labels, but is otherwise ignored. 104 * 105 * The first half of the label is a packed nvlist which contains pool wide 106 * properties, per-vdev properties, and configuration information. It is 107 * described in more detail below. 108 * 109 * The latter half of the label consists of a redundant array of uberblocks. 110 * These uberblocks are updated whenever a transaction group is committed, 111 * or when the configuration is updated. When a pool is loaded, we scan each 112 * vdev for the 'best' uberblock. 113 * 114 * 115 * Configuration Information 116 * ------------------------- 117 * 118 * The nvlist describing the pool and vdev contains the following elements: 119 * 120 * version ZFS on-disk version 121 * name Pool name 122 * state Pool state 123 * txg Transaction group in which this label was written 124 * pool_guid Unique identifier for this pool 125 * vdev_tree An nvlist describing vdev tree. 126 * features_for_read 127 * An nvlist of the features necessary for reading the MOS. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/zio.h> 147 #include <sys/dsl_scan.h> 148 #include <sys/abd.h> 149 #include <sys/fs/zfs.h> 150 151 /* 152 * Basic routines to read and write from a vdev label. 153 * Used throughout the rest of this file. 154 */ 155 uint64_t 156 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 157 { 158 ASSERT(offset < sizeof (vdev_label_t)); 159 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 160 161 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 162 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 163 } 164 165 /* 166 * Returns back the vdev label associated with the passed in offset. 167 */ 168 int 169 vdev_label_number(uint64_t psize, uint64_t offset) 170 { 171 int l; 172 173 if (offset >= psize - VDEV_LABEL_END_SIZE) { 174 offset -= psize - VDEV_LABEL_END_SIZE; 175 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 176 } 177 l = offset / sizeof (vdev_label_t); 178 return (l < VDEV_LABELS ? l : -1); 179 } 180 181 static void 182 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 183 uint64_t size, zio_done_func_t *done, void *private, int flags) 184 { 185 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 186 SCL_STATE_ALL); 187 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 188 189 zio_nowait(zio_read_phys(zio, vd, 190 vdev_label_offset(vd->vdev_psize, l, offset), 191 size, buf, ZIO_CHECKSUM_LABEL, done, private, 192 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 193 } 194 195 static void 196 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 197 uint64_t size, zio_done_func_t *done, void *private, int flags) 198 { 199 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 200 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 201 (SCL_CONFIG | SCL_STATE) && 202 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 203 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 204 205 zio_nowait(zio_write_phys(zio, vd, 206 vdev_label_offset(vd->vdev_psize, l, offset), 207 size, buf, ZIO_CHECKSUM_LABEL, done, private, 208 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 209 } 210 211 /* 212 * Generate the nvlist representing this vdev's config. 213 */ 214 nvlist_t * 215 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 216 vdev_config_flag_t flags) 217 { 218 nvlist_t *nv = NULL; 219 220 nv = fnvlist_alloc(); 221 222 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 223 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 224 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 225 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 226 227 if (vd->vdev_path != NULL) 228 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 229 230 if (vd->vdev_devid != NULL) 231 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 232 233 if (vd->vdev_physpath != NULL) 234 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 235 vd->vdev_physpath); 236 237 if (vd->vdev_fru != NULL) 238 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 239 240 if (vd->vdev_nparity != 0) { 241 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 242 VDEV_TYPE_RAIDZ) == 0); 243 244 /* 245 * Make sure someone hasn't managed to sneak a fancy new vdev 246 * into a crufty old storage pool. 247 */ 248 ASSERT(vd->vdev_nparity == 1 || 249 (vd->vdev_nparity <= 2 && 250 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 251 (vd->vdev_nparity <= 3 && 252 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 253 254 /* 255 * Note that we'll add the nparity tag even on storage pools 256 * that only support a single parity device -- older software 257 * will just ignore it. 258 */ 259 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 260 } 261 262 if (vd->vdev_wholedisk != -1ULL) 263 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 264 vd->vdev_wholedisk); 265 266 if (vd->vdev_not_present) 267 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 268 269 if (vd->vdev_isspare) 270 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 271 272 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 273 vd == vd->vdev_top) { 274 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 275 vd->vdev_ms_array); 276 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 277 vd->vdev_ms_shift); 278 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 279 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 280 vd->vdev_asize); 281 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 282 if (vd->vdev_removing) 283 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 284 vd->vdev_removing); 285 } 286 287 if (vd->vdev_dtl_sm != NULL) { 288 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 289 space_map_object(vd->vdev_dtl_sm)); 290 } 291 292 if (vd->vdev_crtxg) 293 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 294 295 if (flags & VDEV_CONFIG_MOS) { 296 if (vd->vdev_leaf_zap != 0) { 297 ASSERT(vd->vdev_ops->vdev_op_leaf); 298 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 299 vd->vdev_leaf_zap); 300 } 301 302 if (vd->vdev_top_zap != 0) { 303 ASSERT(vd == vd->vdev_top); 304 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 305 vd->vdev_top_zap); 306 } 307 } 308 309 if (getstats) { 310 vdev_stat_t vs; 311 pool_scan_stat_t ps; 312 313 vdev_get_stats(vd, &vs); 314 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 315 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)); 316 317 /* provide either current or previous scan information */ 318 if (spa_scan_get_stats(spa, &ps) == 0) { 319 fnvlist_add_uint64_array(nv, 320 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 321 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 322 } 323 } 324 325 if (!vd->vdev_ops->vdev_op_leaf) { 326 nvlist_t **child; 327 int c, idx; 328 329 ASSERT(!vd->vdev_ishole); 330 331 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 332 KM_SLEEP); 333 334 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 335 vdev_t *cvd = vd->vdev_child[c]; 336 337 /* 338 * If we're generating an nvlist of removing 339 * vdevs then skip over any device which is 340 * not being removed. 341 */ 342 if ((flags & VDEV_CONFIG_REMOVING) && 343 !cvd->vdev_removing) 344 continue; 345 346 child[idx++] = vdev_config_generate(spa, cvd, 347 getstats, flags); 348 } 349 350 if (idx) { 351 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 352 child, idx); 353 } 354 355 for (c = 0; c < idx; c++) 356 nvlist_free(child[c]); 357 358 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 359 360 } else { 361 const char *aux = NULL; 362 363 if (vd->vdev_offline && !vd->vdev_tmpoffline) 364 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 365 if (vd->vdev_resilver_txg != 0) 366 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 367 vd->vdev_resilver_txg); 368 if (vd->vdev_faulted) 369 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 370 if (vd->vdev_degraded) 371 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 372 if (vd->vdev_removed) 373 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 374 if (vd->vdev_unspare) 375 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 376 if (vd->vdev_ishole) 377 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 378 379 switch (vd->vdev_stat.vs_aux) { 380 case VDEV_AUX_ERR_EXCEEDED: 381 aux = "err_exceeded"; 382 break; 383 384 case VDEV_AUX_EXTERNAL: 385 aux = "external"; 386 break; 387 } 388 389 if (aux != NULL) 390 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 391 392 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 393 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 394 vd->vdev_orig_guid); 395 } 396 } 397 398 return (nv); 399 } 400 401 /* 402 * Generate a view of the top-level vdevs. If we currently have holes 403 * in the namespace, then generate an array which contains a list of holey 404 * vdevs. Additionally, add the number of top-level children that currently 405 * exist. 406 */ 407 void 408 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 409 { 410 vdev_t *rvd = spa->spa_root_vdev; 411 uint64_t *array; 412 uint_t c, idx; 413 414 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 415 416 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 417 vdev_t *tvd = rvd->vdev_child[c]; 418 419 if (tvd->vdev_ishole) 420 array[idx++] = c; 421 } 422 423 if (idx) { 424 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 425 array, idx) == 0); 426 } 427 428 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 429 rvd->vdev_children) == 0); 430 431 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 432 } 433 434 /* 435 * Returns the configuration from the label of the given vdev. For vdevs 436 * which don't have a txg value stored on their label (i.e. spares/cache) 437 * or have not been completely initialized (txg = 0) just return 438 * the configuration from the first valid label we find. Otherwise, 439 * find the most up-to-date label that does not exceed the specified 440 * 'txg' value. 441 */ 442 nvlist_t * 443 vdev_label_read_config(vdev_t *vd, uint64_t txg) 444 { 445 spa_t *spa = vd->vdev_spa; 446 nvlist_t *config = NULL; 447 vdev_phys_t *vp; 448 abd_t *vp_abd; 449 zio_t *zio; 450 uint64_t best_txg = 0; 451 int error = 0; 452 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 453 ZIO_FLAG_SPECULATIVE; 454 455 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 456 457 if (!vdev_readable(vd)) 458 return (NULL); 459 460 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 461 vp = abd_to_buf(vp_abd); 462 463 retry: 464 for (int l = 0; l < VDEV_LABELS; l++) { 465 nvlist_t *label = NULL; 466 467 zio = zio_root(spa, NULL, NULL, flags); 468 469 vdev_label_read(zio, vd, l, vp_abd, 470 offsetof(vdev_label_t, vl_vdev_phys), 471 sizeof (vdev_phys_t), NULL, NULL, flags); 472 473 if (zio_wait(zio) == 0 && 474 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 475 &label, 0) == 0) { 476 uint64_t label_txg = 0; 477 478 /* 479 * Auxiliary vdevs won't have txg values in their 480 * labels and newly added vdevs may not have been 481 * completely initialized so just return the 482 * configuration from the first valid label we 483 * encounter. 484 */ 485 error = nvlist_lookup_uint64(label, 486 ZPOOL_CONFIG_POOL_TXG, &label_txg); 487 if ((error || label_txg == 0) && !config) { 488 config = label; 489 break; 490 } else if (label_txg <= txg && label_txg > best_txg) { 491 best_txg = label_txg; 492 nvlist_free(config); 493 config = fnvlist_dup(label); 494 } 495 } 496 497 if (label != NULL) { 498 nvlist_free(label); 499 label = NULL; 500 } 501 } 502 503 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 504 flags |= ZIO_FLAG_TRYHARD; 505 goto retry; 506 } 507 508 abd_free(vp_abd); 509 510 return (config); 511 } 512 513 /* 514 * Determine if a device is in use. The 'spare_guid' parameter will be filled 515 * in with the device guid if this spare is active elsewhere on the system. 516 */ 517 static boolean_t 518 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 519 uint64_t *spare_guid, uint64_t *l2cache_guid) 520 { 521 spa_t *spa = vd->vdev_spa; 522 uint64_t state, pool_guid, device_guid, txg, spare_pool; 523 uint64_t vdtxg = 0; 524 nvlist_t *label; 525 526 if (spare_guid) 527 *spare_guid = 0ULL; 528 if (l2cache_guid) 529 *l2cache_guid = 0ULL; 530 531 /* 532 * Read the label, if any, and perform some basic sanity checks. 533 */ 534 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 535 return (B_FALSE); 536 537 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 538 &vdtxg); 539 540 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 541 &state) != 0 || 542 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 543 &device_guid) != 0) { 544 nvlist_free(label); 545 return (B_FALSE); 546 } 547 548 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 549 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 550 &pool_guid) != 0 || 551 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 552 &txg) != 0)) { 553 nvlist_free(label); 554 return (B_FALSE); 555 } 556 557 nvlist_free(label); 558 559 /* 560 * Check to see if this device indeed belongs to the pool it claims to 561 * be a part of. The only way this is allowed is if the device is a hot 562 * spare (which we check for later on). 563 */ 564 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 565 !spa_guid_exists(pool_guid, device_guid) && 566 !spa_spare_exists(device_guid, NULL, NULL) && 567 !spa_l2cache_exists(device_guid, NULL)) 568 return (B_FALSE); 569 570 /* 571 * If the transaction group is zero, then this an initialized (but 572 * unused) label. This is only an error if the create transaction 573 * on-disk is the same as the one we're using now, in which case the 574 * user has attempted to add the same vdev multiple times in the same 575 * transaction. 576 */ 577 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 578 txg == 0 && vdtxg == crtxg) 579 return (B_TRUE); 580 581 /* 582 * Check to see if this is a spare device. We do an explicit check for 583 * spa_has_spare() here because it may be on our pending list of spares 584 * to add. We also check if it is an l2cache device. 585 */ 586 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 587 spa_has_spare(spa, device_guid)) { 588 if (spare_guid) 589 *spare_guid = device_guid; 590 591 switch (reason) { 592 case VDEV_LABEL_CREATE: 593 case VDEV_LABEL_L2CACHE: 594 return (B_TRUE); 595 596 case VDEV_LABEL_REPLACE: 597 return (!spa_has_spare(spa, device_guid) || 598 spare_pool != 0ULL); 599 600 case VDEV_LABEL_SPARE: 601 return (spa_has_spare(spa, device_guid)); 602 } 603 } 604 605 /* 606 * Check to see if this is an l2cache device. 607 */ 608 if (spa_l2cache_exists(device_guid, NULL)) 609 return (B_TRUE); 610 611 /* 612 * We can't rely on a pool's state if it's been imported 613 * read-only. Instead we look to see if the pools is marked 614 * read-only in the namespace and set the state to active. 615 */ 616 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 617 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 618 spa_mode(spa) == FREAD) 619 state = POOL_STATE_ACTIVE; 620 621 /* 622 * If the device is marked ACTIVE, then this device is in use by another 623 * pool on the system. 624 */ 625 return (state == POOL_STATE_ACTIVE); 626 } 627 628 /* 629 * Initialize a vdev label. We check to make sure each leaf device is not in 630 * use, and writable. We put down an initial label which we will later 631 * overwrite with a complete label. Note that it's important to do this 632 * sequentially, not in parallel, so that we catch cases of multiple use of the 633 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 634 * itself. 635 */ 636 int 637 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 638 { 639 spa_t *spa = vd->vdev_spa; 640 nvlist_t *label; 641 vdev_phys_t *vp; 642 abd_t *vp_abd; 643 abd_t *pad2; 644 uberblock_t *ub; 645 abd_t *ub_abd; 646 zio_t *zio; 647 char *buf; 648 size_t buflen; 649 int error; 650 uint64_t spare_guid, l2cache_guid; 651 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 652 653 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 654 655 for (int c = 0; c < vd->vdev_children; c++) 656 if ((error = vdev_label_init(vd->vdev_child[c], 657 crtxg, reason)) != 0) 658 return (error); 659 660 /* Track the creation time for this vdev */ 661 vd->vdev_crtxg = crtxg; 662 663 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 664 return (0); 665 666 /* 667 * Dead vdevs cannot be initialized. 668 */ 669 if (vdev_is_dead(vd)) 670 return (SET_ERROR(EIO)); 671 672 /* 673 * Determine if the vdev is in use. 674 */ 675 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 676 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 677 return (SET_ERROR(EBUSY)); 678 679 /* 680 * If this is a request to add or replace a spare or l2cache device 681 * that is in use elsewhere on the system, then we must update the 682 * guid (which was initialized to a random value) to reflect the 683 * actual GUID (which is shared between multiple pools). 684 */ 685 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 686 spare_guid != 0ULL) { 687 uint64_t guid_delta = spare_guid - vd->vdev_guid; 688 689 vd->vdev_guid += guid_delta; 690 691 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 692 pvd->vdev_guid_sum += guid_delta; 693 694 /* 695 * If this is a replacement, then we want to fallthrough to the 696 * rest of the code. If we're adding a spare, then it's already 697 * labeled appropriately and we can just return. 698 */ 699 if (reason == VDEV_LABEL_SPARE) 700 return (0); 701 ASSERT(reason == VDEV_LABEL_REPLACE || 702 reason == VDEV_LABEL_SPLIT); 703 } 704 705 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 706 l2cache_guid != 0ULL) { 707 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 708 709 vd->vdev_guid += guid_delta; 710 711 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 712 pvd->vdev_guid_sum += guid_delta; 713 714 /* 715 * If this is a replacement, then we want to fallthrough to the 716 * rest of the code. If we're adding an l2cache, then it's 717 * already labeled appropriately and we can just return. 718 */ 719 if (reason == VDEV_LABEL_L2CACHE) 720 return (0); 721 ASSERT(reason == VDEV_LABEL_REPLACE); 722 } 723 724 /* 725 * Initialize its label. 726 */ 727 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 728 abd_zero(vp_abd, sizeof (vdev_phys_t)); 729 vp = abd_to_buf(vp_abd); 730 731 /* 732 * Generate a label describing the pool and our top-level vdev. 733 * We mark it as being from txg 0 to indicate that it's not 734 * really part of an active pool just yet. The labels will 735 * be written again with a meaningful txg by spa_sync(). 736 */ 737 if (reason == VDEV_LABEL_SPARE || 738 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 739 /* 740 * For inactive hot spares, we generate a special label that 741 * identifies as a mutually shared hot spare. We write the 742 * label if we are adding a hot spare, or if we are removing an 743 * active hot spare (in which case we want to revert the 744 * labels). 745 */ 746 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 747 748 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 749 spa_version(spa)) == 0); 750 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 751 POOL_STATE_SPARE) == 0); 752 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 753 vd->vdev_guid) == 0); 754 } else if (reason == VDEV_LABEL_L2CACHE || 755 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 756 /* 757 * For level 2 ARC devices, add a special label. 758 */ 759 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 760 761 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 762 spa_version(spa)) == 0); 763 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 764 POOL_STATE_L2CACHE) == 0); 765 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 766 vd->vdev_guid) == 0); 767 } else { 768 uint64_t txg = 0ULL; 769 770 if (reason == VDEV_LABEL_SPLIT) 771 txg = spa->spa_uberblock.ub_txg; 772 label = spa_config_generate(spa, vd, txg, B_FALSE); 773 774 /* 775 * Add our creation time. This allows us to detect multiple 776 * vdev uses as described above, and automatically expires if we 777 * fail. 778 */ 779 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 780 crtxg) == 0); 781 } 782 783 buf = vp->vp_nvlist; 784 buflen = sizeof (vp->vp_nvlist); 785 786 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 787 if (error != 0) { 788 nvlist_free(label); 789 abd_free(vp_abd); 790 /* EFAULT means nvlist_pack ran out of room */ 791 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 792 } 793 794 /* 795 * Initialize uberblock template. 796 */ 797 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 798 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 799 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 800 ub = abd_to_buf(ub_abd); 801 ub->ub_txg = 0; 802 803 /* Initialize the 2nd padding area. */ 804 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 805 abd_zero(pad2, VDEV_PAD_SIZE); 806 807 /* 808 * Write everything in parallel. 809 */ 810 retry: 811 zio = zio_root(spa, NULL, NULL, flags); 812 813 for (int l = 0; l < VDEV_LABELS; l++) { 814 815 vdev_label_write(zio, vd, l, vp_abd, 816 offsetof(vdev_label_t, vl_vdev_phys), 817 sizeof (vdev_phys_t), NULL, NULL, flags); 818 819 /* 820 * Skip the 1st padding area. 821 * Zero out the 2nd padding area where it might have 822 * left over data from previous filesystem format. 823 */ 824 vdev_label_write(zio, vd, l, pad2, 825 offsetof(vdev_label_t, vl_pad2), 826 VDEV_PAD_SIZE, NULL, NULL, flags); 827 828 vdev_label_write(zio, vd, l, ub_abd, 829 offsetof(vdev_label_t, vl_uberblock), 830 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 831 } 832 833 error = zio_wait(zio); 834 835 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 836 flags |= ZIO_FLAG_TRYHARD; 837 goto retry; 838 } 839 840 nvlist_free(label); 841 abd_free(pad2); 842 abd_free(ub_abd); 843 abd_free(vp_abd); 844 845 /* 846 * If this vdev hasn't been previously identified as a spare, then we 847 * mark it as such only if a) we are labeling it as a spare, or b) it 848 * exists as a spare elsewhere in the system. Do the same for 849 * level 2 ARC devices. 850 */ 851 if (error == 0 && !vd->vdev_isspare && 852 (reason == VDEV_LABEL_SPARE || 853 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 854 spa_spare_add(vd); 855 856 if (error == 0 && !vd->vdev_isl2cache && 857 (reason == VDEV_LABEL_L2CACHE || 858 spa_l2cache_exists(vd->vdev_guid, NULL))) 859 spa_l2cache_add(vd); 860 861 return (error); 862 } 863 864 /* 865 * ========================================================================== 866 * uberblock load/sync 867 * ========================================================================== 868 */ 869 870 /* 871 * Consider the following situation: txg is safely synced to disk. We've 872 * written the first uberblock for txg + 1, and then we lose power. When we 873 * come back up, we fail to see the uberblock for txg + 1 because, say, 874 * it was on a mirrored device and the replica to which we wrote txg + 1 875 * is now offline. If we then make some changes and sync txg + 1, and then 876 * the missing replica comes back, then for a few seconds we'll have two 877 * conflicting uberblocks on disk with the same txg. The solution is simple: 878 * among uberblocks with equal txg, choose the one with the latest timestamp. 879 */ 880 static int 881 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 882 { 883 if (ub1->ub_txg < ub2->ub_txg) 884 return (-1); 885 if (ub1->ub_txg > ub2->ub_txg) 886 return (1); 887 888 if (ub1->ub_timestamp < ub2->ub_timestamp) 889 return (-1); 890 if (ub1->ub_timestamp > ub2->ub_timestamp) 891 return (1); 892 893 return (0); 894 } 895 896 struct ubl_cbdata { 897 uberblock_t *ubl_ubbest; /* Best uberblock */ 898 vdev_t *ubl_vd; /* vdev associated with the above */ 899 }; 900 901 static void 902 vdev_uberblock_load_done(zio_t *zio) 903 { 904 vdev_t *vd = zio->io_vd; 905 spa_t *spa = zio->io_spa; 906 zio_t *rio = zio->io_private; 907 uberblock_t *ub = abd_to_buf(zio->io_abd); 908 struct ubl_cbdata *cbp = rio->io_private; 909 910 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 911 912 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 913 mutex_enter(&rio->io_lock); 914 if (ub->ub_txg <= spa->spa_load_max_txg && 915 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 916 /* 917 * Keep track of the vdev in which this uberblock 918 * was found. We will use this information later 919 * to obtain the config nvlist associated with 920 * this uberblock. 921 */ 922 *cbp->ubl_ubbest = *ub; 923 cbp->ubl_vd = vd; 924 } 925 mutex_exit(&rio->io_lock); 926 } 927 928 abd_free(zio->io_abd); 929 } 930 931 static void 932 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 933 struct ubl_cbdata *cbp) 934 { 935 for (int c = 0; c < vd->vdev_children; c++) 936 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 937 938 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 939 for (int l = 0; l < VDEV_LABELS; l++) { 940 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 941 vdev_label_read(zio, vd, l, 942 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 943 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 944 VDEV_UBERBLOCK_SIZE(vd), 945 vdev_uberblock_load_done, zio, flags); 946 } 947 } 948 } 949 } 950 951 /* 952 * Reads the 'best' uberblock from disk along with its associated 953 * configuration. First, we read the uberblock array of each label of each 954 * vdev, keeping track of the uberblock with the highest txg in each array. 955 * Then, we read the configuration from the same vdev as the best uberblock. 956 */ 957 void 958 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 959 { 960 zio_t *zio; 961 spa_t *spa = rvd->vdev_spa; 962 struct ubl_cbdata cb; 963 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 964 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 965 966 ASSERT(ub); 967 ASSERT(config); 968 969 bzero(ub, sizeof (uberblock_t)); 970 *config = NULL; 971 972 cb.ubl_ubbest = ub; 973 cb.ubl_vd = NULL; 974 975 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 976 zio = zio_root(spa, NULL, &cb, flags); 977 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 978 (void) zio_wait(zio); 979 980 /* 981 * It's possible that the best uberblock was discovered on a label 982 * that has a configuration which was written in a future txg. 983 * Search all labels on this vdev to find the configuration that 984 * matches the txg for our uberblock. 985 */ 986 if (cb.ubl_vd != NULL) 987 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 988 spa_config_exit(spa, SCL_ALL, FTAG); 989 } 990 991 /* 992 * On success, increment root zio's count of good writes. 993 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 994 */ 995 static void 996 vdev_uberblock_sync_done(zio_t *zio) 997 { 998 uint64_t *good_writes = zio->io_private; 999 1000 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1001 atomic_inc_64(good_writes); 1002 } 1003 1004 /* 1005 * Write the uberblock to all labels of all leaves of the specified vdev. 1006 */ 1007 static void 1008 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 1009 { 1010 for (int c = 0; c < vd->vdev_children; c++) 1011 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 1012 1013 if (!vd->vdev_ops->vdev_op_leaf) 1014 return; 1015 1016 if (!vdev_writeable(vd)) 1017 return; 1018 1019 int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 1020 1021 /* Copy the uberblock_t into the ABD */ 1022 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1023 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1024 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1025 1026 for (int l = 0; l < VDEV_LABELS; l++) 1027 vdev_label_write(zio, vd, l, ub_abd, 1028 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1029 vdev_uberblock_sync_done, zio->io_private, 1030 flags | ZIO_FLAG_DONT_PROPAGATE); 1031 1032 abd_free(ub_abd); 1033 } 1034 1035 /* Sync the uberblocks to all vdevs in svd[] */ 1036 int 1037 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1038 { 1039 spa_t *spa = svd[0]->vdev_spa; 1040 zio_t *zio; 1041 uint64_t good_writes = 0; 1042 1043 zio = zio_root(spa, NULL, &good_writes, flags); 1044 1045 for (int v = 0; v < svdcount; v++) 1046 vdev_uberblock_sync(zio, ub, svd[v], flags); 1047 1048 (void) zio_wait(zio); 1049 1050 /* 1051 * Flush the uberblocks to disk. This ensures that the odd labels 1052 * are no longer needed (because the new uberblocks and the even 1053 * labels are safely on disk), so it is safe to overwrite them. 1054 */ 1055 zio = zio_root(spa, NULL, NULL, flags); 1056 1057 for (int v = 0; v < svdcount; v++) 1058 zio_flush(zio, svd[v]); 1059 1060 (void) zio_wait(zio); 1061 1062 return (good_writes >= 1 ? 0 : EIO); 1063 } 1064 1065 /* 1066 * On success, increment the count of good writes for our top-level vdev. 1067 */ 1068 static void 1069 vdev_label_sync_done(zio_t *zio) 1070 { 1071 uint64_t *good_writes = zio->io_private; 1072 1073 if (zio->io_error == 0) 1074 atomic_inc_64(good_writes); 1075 } 1076 1077 /* 1078 * If there weren't enough good writes, indicate failure to the parent. 1079 */ 1080 static void 1081 vdev_label_sync_top_done(zio_t *zio) 1082 { 1083 uint64_t *good_writes = zio->io_private; 1084 1085 if (*good_writes == 0) 1086 zio->io_error = SET_ERROR(EIO); 1087 1088 kmem_free(good_writes, sizeof (uint64_t)); 1089 } 1090 1091 /* 1092 * We ignore errors for log and cache devices, simply free the private data. 1093 */ 1094 static void 1095 vdev_label_sync_ignore_done(zio_t *zio) 1096 { 1097 kmem_free(zio->io_private, sizeof (uint64_t)); 1098 } 1099 1100 /* 1101 * Write all even or odd labels to all leaves of the specified vdev. 1102 */ 1103 static void 1104 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 1105 { 1106 nvlist_t *label; 1107 vdev_phys_t *vp; 1108 abd_t *vp_abd; 1109 char *buf; 1110 size_t buflen; 1111 1112 for (int c = 0; c < vd->vdev_children; c++) 1113 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 1114 1115 if (!vd->vdev_ops->vdev_op_leaf) 1116 return; 1117 1118 if (!vdev_writeable(vd)) 1119 return; 1120 1121 /* 1122 * Generate a label describing the top-level config to which we belong. 1123 */ 1124 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1125 1126 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1127 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1128 vp = abd_to_buf(vp_abd); 1129 1130 buf = vp->vp_nvlist; 1131 buflen = sizeof (vp->vp_nvlist); 1132 1133 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1134 for (; l < VDEV_LABELS; l += 2) { 1135 vdev_label_write(zio, vd, l, vp_abd, 1136 offsetof(vdev_label_t, vl_vdev_phys), 1137 sizeof (vdev_phys_t), 1138 vdev_label_sync_done, zio->io_private, 1139 flags | ZIO_FLAG_DONT_PROPAGATE); 1140 } 1141 } 1142 1143 abd_free(vp_abd); 1144 nvlist_free(label); 1145 } 1146 1147 int 1148 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1149 { 1150 list_t *dl = &spa->spa_config_dirty_list; 1151 vdev_t *vd; 1152 zio_t *zio; 1153 int error; 1154 1155 /* 1156 * Write the new labels to disk. 1157 */ 1158 zio = zio_root(spa, NULL, NULL, flags); 1159 1160 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1161 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1162 KM_SLEEP); 1163 1164 ASSERT(!vd->vdev_ishole); 1165 1166 zio_t *vio = zio_null(zio, spa, NULL, 1167 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1168 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1169 good_writes, flags); 1170 vdev_label_sync(vio, vd, l, txg, flags); 1171 zio_nowait(vio); 1172 } 1173 1174 error = zio_wait(zio); 1175 1176 /* 1177 * Flush the new labels to disk. 1178 */ 1179 zio = zio_root(spa, NULL, NULL, flags); 1180 1181 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1182 zio_flush(zio, vd); 1183 1184 (void) zio_wait(zio); 1185 1186 return (error); 1187 } 1188 1189 /* 1190 * Sync the uberblock and any changes to the vdev configuration. 1191 * 1192 * The order of operations is carefully crafted to ensure that 1193 * if the system panics or loses power at any time, the state on disk 1194 * is still transactionally consistent. The in-line comments below 1195 * describe the failure semantics at each stage. 1196 * 1197 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1198 * at any time, you can just call it again, and it will resume its work. 1199 */ 1200 int 1201 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1202 { 1203 spa_t *spa = svd[0]->vdev_spa; 1204 uberblock_t *ub = &spa->spa_uberblock; 1205 vdev_t *vd; 1206 zio_t *zio; 1207 int error = 0; 1208 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1209 1210 retry: 1211 /* 1212 * Normally, we don't want to try too hard to write every label and 1213 * uberblock. If there is a flaky disk, we don't want the rest of the 1214 * sync process to block while we retry. But if we can't write a 1215 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1216 * bailing out and declaring the pool faulted. 1217 */ 1218 if (error != 0) { 1219 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1220 return (error); 1221 flags |= ZIO_FLAG_TRYHARD; 1222 } 1223 1224 ASSERT(ub->ub_txg <= txg); 1225 1226 /* 1227 * If this isn't a resync due to I/O errors, 1228 * and nothing changed in this transaction group, 1229 * and the vdev configuration hasn't changed, 1230 * then there's nothing to do. 1231 */ 1232 if (ub->ub_txg < txg && 1233 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1234 list_is_empty(&spa->spa_config_dirty_list)) 1235 return (0); 1236 1237 if (txg > spa_freeze_txg(spa)) 1238 return (0); 1239 1240 ASSERT(txg <= spa->spa_final_txg); 1241 1242 /* 1243 * Flush the write cache of every disk that's been written to 1244 * in this transaction group. This ensures that all blocks 1245 * written in this txg will be committed to stable storage 1246 * before any uberblock that references them. 1247 */ 1248 zio = zio_root(spa, NULL, NULL, flags); 1249 1250 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1251 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1252 zio_flush(zio, vd); 1253 1254 (void) zio_wait(zio); 1255 1256 /* 1257 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1258 * system dies in the middle of this process, that's OK: all of the 1259 * even labels that made it to disk will be newer than any uberblock, 1260 * and will therefore be considered invalid. The odd labels (L1, L3), 1261 * which have not yet been touched, will still be valid. We flush 1262 * the new labels to disk to ensure that all even-label updates 1263 * are committed to stable storage before the uberblock update. 1264 */ 1265 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1266 goto retry; 1267 1268 /* 1269 * Sync the uberblocks to all vdevs in svd[]. 1270 * If the system dies in the middle of this step, there are two cases 1271 * to consider, and the on-disk state is consistent either way: 1272 * 1273 * (1) If none of the new uberblocks made it to disk, then the 1274 * previous uberblock will be the newest, and the odd labels 1275 * (which had not yet been touched) will be valid with respect 1276 * to that uberblock. 1277 * 1278 * (2) If one or more new uberblocks made it to disk, then they 1279 * will be the newest, and the even labels (which had all 1280 * been successfully committed) will be valid with respect 1281 * to the new uberblocks. 1282 */ 1283 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1284 goto retry; 1285 1286 /* 1287 * Sync out odd labels for every dirty vdev. If the system dies 1288 * in the middle of this process, the even labels and the new 1289 * uberblocks will suffice to open the pool. The next time 1290 * the pool is opened, the first thing we'll do -- before any 1291 * user data is modified -- is mark every vdev dirty so that 1292 * all labels will be brought up to date. We flush the new labels 1293 * to disk to ensure that all odd-label updates are committed to 1294 * stable storage before the next transaction group begins. 1295 */ 1296 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) 1297 goto retry; 1298 1299 return (0); 1300 } 1301