xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision d1aea6f139360e9e7f1504facb24f8521047b15c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Virtual Device Labels
29  * ---------------------
30  *
31  * The vdev label serves several distinct purposes:
32  *
33  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34  *	   identity within the pool.
35  *
36  * 	2. Verify that all the devices given in a configuration are present
37  *         within the pool.
38  *
39  * 	3. Determine the uberblock for the pool.
40  *
41  * 	4. In case of an import operation, determine the configuration of the
42  *         toplevel vdev of which it is a part.
43  *
44  * 	5. If an import operation cannot find all the devices in the pool,
45  *         provide enough information to the administrator to determine which
46  *         devices are missing.
47  *
48  * It is important to note that while the kernel is responsible for writing the
49  * label, it only consumes the information in the first three cases.  The
50  * latter information is only consumed in userland when determining the
51  * configuration to import a pool.
52  *
53  *
54  * Label Organization
55  * ------------------
56  *
57  * Before describing the contents of the label, it's important to understand how
58  * the labels are written and updated with respect to the uberblock.
59  *
60  * When the pool configuration is altered, either because it was newly created
61  * or a device was added, we want to update all the labels such that we can deal
62  * with fatal failure at any point.  To this end, each disk has two labels which
63  * are updated before and after the uberblock is synced.  Assuming we have
64  * labels and an uberblock with the following transaction groups:
65  *
66  *              L1          UB          L2
67  *           +------+    +------+    +------+
68  *           |      |    |      |    |      |
69  *           | t10  |    | t10  |    | t10  |
70  *           |      |    |      |    |      |
71  *           +------+    +------+    +------+
72  *
73  * In this stable state, the labels and the uberblock were all updated within
74  * the same transaction group (10).  Each label is mirrored and checksummed, so
75  * that we can detect when we fail partway through writing the label.
76  *
77  * In order to identify which labels are valid, the labels are written in the
78  * following manner:
79  *
80  * 	1. For each vdev, update 'L1' to the new label
81  * 	2. Update the uberblock
82  * 	3. For each vdev, update 'L2' to the new label
83  *
84  * Given arbitrary failure, we can determine the correct label to use based on
85  * the transaction group.  If we fail after updating L1 but before updating the
86  * UB, we will notice that L1's transaction group is greater than the uberblock,
87  * so L2 must be valid.  If we fail after writing the uberblock but before
88  * writing L2, we will notice that L2's transaction group is less than L1, and
89  * therefore L1 is valid.
90  *
91  * Another added complexity is that not every label is updated when the config
92  * is synced.  If we add a single device, we do not want to have to re-write
93  * every label for every device in the pool.  This means that both L1 and L2 may
94  * be older than the pool uberblock, because the necessary information is stored
95  * on another vdev.
96  *
97  *
98  * On-disk Format
99  * --------------
100  *
101  * The vdev label consists of two distinct parts, and is wrapped within the
102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103  * VTOC disk labels, but is otherwise ignored.
104  *
105  * The first half of the label is a packed nvlist which contains pool wide
106  * properties, per-vdev properties, and configuration information.  It is
107  * described in more detail below.
108  *
109  * The latter half of the label consists of a redundant array of uberblocks.
110  * These uberblocks are updated whenever a transaction group is committed,
111  * or when the configuration is updated.  When a pool is loaded, we scan each
112  * vdev for the 'best' uberblock.
113  *
114  *
115  * Configuration Information
116  * -------------------------
117  *
118  * The nvlist describing the pool and vdev contains the following elements:
119  *
120  * 	version		ZFS on-disk version
121  * 	name		Pool name
122  * 	state		Pool state
123  * 	txg		Transaction group in which this label was written
124  * 	pool_guid	Unique identifier for this pool
125  * 	vdev_tree	An nvlist describing vdev tree.
126  *	features_for_read
127  *			An nvlist of the features necessary for reading the MOS.
128  *
129  * Each leaf device label also contains the following:
130  *
131  * 	top_guid	Unique ID for top-level vdev in which this is contained
132  * 	guid		Unique ID for the leaf vdev
133  *
134  * The 'vs' configuration follows the format described in 'spa_config.c'.
135  */
136 
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/zio.h>
147 #include <sys/dsl_scan.h>
148 #include <sys/abd.h>
149 #include <sys/fs/zfs.h>
150 
151 /*
152  * Basic routines to read and write from a vdev label.
153  * Used throughout the rest of this file.
154  */
155 uint64_t
156 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
157 {
158 	ASSERT(offset < sizeof (vdev_label_t));
159 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
160 
161 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
162 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
163 }
164 
165 /*
166  * Returns back the vdev label associated with the passed in offset.
167  */
168 int
169 vdev_label_number(uint64_t psize, uint64_t offset)
170 {
171 	int l;
172 
173 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
174 		offset -= psize - VDEV_LABEL_END_SIZE;
175 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
176 	}
177 	l = offset / sizeof (vdev_label_t);
178 	return (l < VDEV_LABELS ? l : -1);
179 }
180 
181 static void
182 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
183     uint64_t size, zio_done_func_t *done, void *private, int flags)
184 {
185 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
186 	    SCL_STATE_ALL);
187 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
188 
189 	zio_nowait(zio_read_phys(zio, vd,
190 	    vdev_label_offset(vd->vdev_psize, l, offset),
191 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
192 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
193 }
194 
195 static void
196 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
197     uint64_t size, zio_done_func_t *done, void *private, int flags)
198 {
199 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
200 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
201 	    (SCL_CONFIG | SCL_STATE) &&
202 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
203 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
204 
205 	zio_nowait(zio_write_phys(zio, vd,
206 	    vdev_label_offset(vd->vdev_psize, l, offset),
207 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
208 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
209 }
210 
211 /*
212  * Generate the nvlist representing this vdev's config.
213  */
214 nvlist_t *
215 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
216     vdev_config_flag_t flags)
217 {
218 	nvlist_t *nv = NULL;
219 
220 	nv = fnvlist_alloc();
221 
222 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
223 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
224 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
225 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
226 
227 	if (vd->vdev_path != NULL)
228 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
229 
230 	if (vd->vdev_devid != NULL)
231 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
232 
233 	if (vd->vdev_physpath != NULL)
234 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
235 		    vd->vdev_physpath);
236 
237 	if (vd->vdev_fru != NULL)
238 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
239 
240 	if (vd->vdev_nparity != 0) {
241 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
242 		    VDEV_TYPE_RAIDZ) == 0);
243 
244 		/*
245 		 * Make sure someone hasn't managed to sneak a fancy new vdev
246 		 * into a crufty old storage pool.
247 		 */
248 		ASSERT(vd->vdev_nparity == 1 ||
249 		    (vd->vdev_nparity <= 2 &&
250 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
251 		    (vd->vdev_nparity <= 3 &&
252 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
253 
254 		/*
255 		 * Note that we'll add the nparity tag even on storage pools
256 		 * that only support a single parity device -- older software
257 		 * will just ignore it.
258 		 */
259 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
260 	}
261 
262 	if (vd->vdev_wholedisk != -1ULL)
263 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
264 		    vd->vdev_wholedisk);
265 
266 	if (vd->vdev_not_present)
267 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
268 
269 	if (vd->vdev_isspare)
270 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
271 
272 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
273 	    vd == vd->vdev_top) {
274 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
275 		    vd->vdev_ms_array);
276 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
277 		    vd->vdev_ms_shift);
278 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
279 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
280 		    vd->vdev_asize);
281 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
282 		if (vd->vdev_removing)
283 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
284 			    vd->vdev_removing);
285 	}
286 
287 	if (vd->vdev_dtl_sm != NULL) {
288 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
289 		    space_map_object(vd->vdev_dtl_sm));
290 	}
291 
292 	if (vd->vdev_crtxg)
293 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
294 
295 	if (flags & VDEV_CONFIG_MOS) {
296 		if (vd->vdev_leaf_zap != 0) {
297 			ASSERT(vd->vdev_ops->vdev_op_leaf);
298 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
299 			    vd->vdev_leaf_zap);
300 		}
301 
302 		if (vd->vdev_top_zap != 0) {
303 			ASSERT(vd == vd->vdev_top);
304 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
305 			    vd->vdev_top_zap);
306 		}
307 	}
308 
309 	if (getstats) {
310 		vdev_stat_t vs;
311 		pool_scan_stat_t ps;
312 
313 		vdev_get_stats(vd, &vs);
314 		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
315 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
316 
317 		/* provide either current or previous scan information */
318 		if (spa_scan_get_stats(spa, &ps) == 0) {
319 			fnvlist_add_uint64_array(nv,
320 			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
321 			    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
322 		}
323 	}
324 
325 	if (!vd->vdev_ops->vdev_op_leaf) {
326 		nvlist_t **child;
327 		int c, idx;
328 
329 		ASSERT(!vd->vdev_ishole);
330 
331 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
332 		    KM_SLEEP);
333 
334 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
335 			vdev_t *cvd = vd->vdev_child[c];
336 
337 			/*
338 			 * If we're generating an nvlist of removing
339 			 * vdevs then skip over any device which is
340 			 * not being removed.
341 			 */
342 			if ((flags & VDEV_CONFIG_REMOVING) &&
343 			    !cvd->vdev_removing)
344 				continue;
345 
346 			child[idx++] = vdev_config_generate(spa, cvd,
347 			    getstats, flags);
348 		}
349 
350 		if (idx) {
351 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
352 			    child, idx);
353 		}
354 
355 		for (c = 0; c < idx; c++)
356 			nvlist_free(child[c]);
357 
358 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
359 
360 	} else {
361 		const char *aux = NULL;
362 
363 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
364 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
365 		if (vd->vdev_resilver_txg != 0)
366 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
367 			    vd->vdev_resilver_txg);
368 		if (vd->vdev_faulted)
369 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
370 		if (vd->vdev_degraded)
371 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
372 		if (vd->vdev_removed)
373 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
374 		if (vd->vdev_unspare)
375 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
376 		if (vd->vdev_ishole)
377 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
378 
379 		switch (vd->vdev_stat.vs_aux) {
380 		case VDEV_AUX_ERR_EXCEEDED:
381 			aux = "err_exceeded";
382 			break;
383 
384 		case VDEV_AUX_EXTERNAL:
385 			aux = "external";
386 			break;
387 		}
388 
389 		if (aux != NULL)
390 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
391 
392 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
393 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
394 			    vd->vdev_orig_guid);
395 		}
396 	}
397 
398 	return (nv);
399 }
400 
401 /*
402  * Generate a view of the top-level vdevs.  If we currently have holes
403  * in the namespace, then generate an array which contains a list of holey
404  * vdevs.  Additionally, add the number of top-level children that currently
405  * exist.
406  */
407 void
408 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
409 {
410 	vdev_t *rvd = spa->spa_root_vdev;
411 	uint64_t *array;
412 	uint_t c, idx;
413 
414 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
415 
416 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
417 		vdev_t *tvd = rvd->vdev_child[c];
418 
419 		if (tvd->vdev_ishole)
420 			array[idx++] = c;
421 	}
422 
423 	if (idx) {
424 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
425 		    array, idx) == 0);
426 	}
427 
428 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
429 	    rvd->vdev_children) == 0);
430 
431 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
432 }
433 
434 /*
435  * Returns the configuration from the label of the given vdev. For vdevs
436  * which don't have a txg value stored on their label (i.e. spares/cache)
437  * or have not been completely initialized (txg = 0) just return
438  * the configuration from the first valid label we find. Otherwise,
439  * find the most up-to-date label that does not exceed the specified
440  * 'txg' value.
441  */
442 nvlist_t *
443 vdev_label_read_config(vdev_t *vd, uint64_t txg)
444 {
445 	spa_t *spa = vd->vdev_spa;
446 	nvlist_t *config = NULL;
447 	vdev_phys_t *vp;
448 	abd_t *vp_abd;
449 	zio_t *zio;
450 	uint64_t best_txg = 0;
451 	int error = 0;
452 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
453 	    ZIO_FLAG_SPECULATIVE;
454 
455 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
456 
457 	if (!vdev_readable(vd))
458 		return (NULL);
459 
460 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
461 	vp = abd_to_buf(vp_abd);
462 
463 retry:
464 	for (int l = 0; l < VDEV_LABELS; l++) {
465 		nvlist_t *label = NULL;
466 
467 		zio = zio_root(spa, NULL, NULL, flags);
468 
469 		vdev_label_read(zio, vd, l, vp_abd,
470 		    offsetof(vdev_label_t, vl_vdev_phys),
471 		    sizeof (vdev_phys_t), NULL, NULL, flags);
472 
473 		if (zio_wait(zio) == 0 &&
474 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
475 		    &label, 0) == 0) {
476 			uint64_t label_txg = 0;
477 
478 			/*
479 			 * Auxiliary vdevs won't have txg values in their
480 			 * labels and newly added vdevs may not have been
481 			 * completely initialized so just return the
482 			 * configuration from the first valid label we
483 			 * encounter.
484 			 */
485 			error = nvlist_lookup_uint64(label,
486 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
487 			if ((error || label_txg == 0) && !config) {
488 				config = label;
489 				break;
490 			} else if (label_txg <= txg && label_txg > best_txg) {
491 				best_txg = label_txg;
492 				nvlist_free(config);
493 				config = fnvlist_dup(label);
494 			}
495 		}
496 
497 		if (label != NULL) {
498 			nvlist_free(label);
499 			label = NULL;
500 		}
501 	}
502 
503 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
504 		flags |= ZIO_FLAG_TRYHARD;
505 		goto retry;
506 	}
507 
508 	abd_free(vp_abd);
509 
510 	return (config);
511 }
512 
513 /*
514  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
515  * in with the device guid if this spare is active elsewhere on the system.
516  */
517 static boolean_t
518 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
519     uint64_t *spare_guid, uint64_t *l2cache_guid)
520 {
521 	spa_t *spa = vd->vdev_spa;
522 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
523 	uint64_t vdtxg = 0;
524 	nvlist_t *label;
525 
526 	if (spare_guid)
527 		*spare_guid = 0ULL;
528 	if (l2cache_guid)
529 		*l2cache_guid = 0ULL;
530 
531 	/*
532 	 * Read the label, if any, and perform some basic sanity checks.
533 	 */
534 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
535 		return (B_FALSE);
536 
537 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
538 	    &vdtxg);
539 
540 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
541 	    &state) != 0 ||
542 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
543 	    &device_guid) != 0) {
544 		nvlist_free(label);
545 		return (B_FALSE);
546 	}
547 
548 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
549 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
550 	    &pool_guid) != 0 ||
551 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
552 	    &txg) != 0)) {
553 		nvlist_free(label);
554 		return (B_FALSE);
555 	}
556 
557 	nvlist_free(label);
558 
559 	/*
560 	 * Check to see if this device indeed belongs to the pool it claims to
561 	 * be a part of.  The only way this is allowed is if the device is a hot
562 	 * spare (which we check for later on).
563 	 */
564 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
565 	    !spa_guid_exists(pool_guid, device_guid) &&
566 	    !spa_spare_exists(device_guid, NULL, NULL) &&
567 	    !spa_l2cache_exists(device_guid, NULL))
568 		return (B_FALSE);
569 
570 	/*
571 	 * If the transaction group is zero, then this an initialized (but
572 	 * unused) label.  This is only an error if the create transaction
573 	 * on-disk is the same as the one we're using now, in which case the
574 	 * user has attempted to add the same vdev multiple times in the same
575 	 * transaction.
576 	 */
577 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
578 	    txg == 0 && vdtxg == crtxg)
579 		return (B_TRUE);
580 
581 	/*
582 	 * Check to see if this is a spare device.  We do an explicit check for
583 	 * spa_has_spare() here because it may be on our pending list of spares
584 	 * to add.  We also check if it is an l2cache device.
585 	 */
586 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
587 	    spa_has_spare(spa, device_guid)) {
588 		if (spare_guid)
589 			*spare_guid = device_guid;
590 
591 		switch (reason) {
592 		case VDEV_LABEL_CREATE:
593 		case VDEV_LABEL_L2CACHE:
594 			return (B_TRUE);
595 
596 		case VDEV_LABEL_REPLACE:
597 			return (!spa_has_spare(spa, device_guid) ||
598 			    spare_pool != 0ULL);
599 
600 		case VDEV_LABEL_SPARE:
601 			return (spa_has_spare(spa, device_guid));
602 		}
603 	}
604 
605 	/*
606 	 * Check to see if this is an l2cache device.
607 	 */
608 	if (spa_l2cache_exists(device_guid, NULL))
609 		return (B_TRUE);
610 
611 	/*
612 	 * We can't rely on a pool's state if it's been imported
613 	 * read-only.  Instead we look to see if the pools is marked
614 	 * read-only in the namespace and set the state to active.
615 	 */
616 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
617 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
618 	    spa_mode(spa) == FREAD)
619 		state = POOL_STATE_ACTIVE;
620 
621 	/*
622 	 * If the device is marked ACTIVE, then this device is in use by another
623 	 * pool on the system.
624 	 */
625 	return (state == POOL_STATE_ACTIVE);
626 }
627 
628 /*
629  * Initialize a vdev label.  We check to make sure each leaf device is not in
630  * use, and writable.  We put down an initial label which we will later
631  * overwrite with a complete label.  Note that it's important to do this
632  * sequentially, not in parallel, so that we catch cases of multiple use of the
633  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
634  * itself.
635  */
636 int
637 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
638 {
639 	spa_t *spa = vd->vdev_spa;
640 	nvlist_t *label;
641 	vdev_phys_t *vp;
642 	abd_t *vp_abd;
643 	abd_t *pad2;
644 	uberblock_t *ub;
645 	abd_t *ub_abd;
646 	zio_t *zio;
647 	char *buf;
648 	size_t buflen;
649 	int error;
650 	uint64_t spare_guid, l2cache_guid;
651 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
652 
653 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
654 
655 	for (int c = 0; c < vd->vdev_children; c++)
656 		if ((error = vdev_label_init(vd->vdev_child[c],
657 		    crtxg, reason)) != 0)
658 			return (error);
659 
660 	/* Track the creation time for this vdev */
661 	vd->vdev_crtxg = crtxg;
662 
663 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
664 		return (0);
665 
666 	/*
667 	 * Dead vdevs cannot be initialized.
668 	 */
669 	if (vdev_is_dead(vd))
670 		return (SET_ERROR(EIO));
671 
672 	/*
673 	 * Determine if the vdev is in use.
674 	 */
675 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
676 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
677 		return (SET_ERROR(EBUSY));
678 
679 	/*
680 	 * If this is a request to add or replace a spare or l2cache device
681 	 * that is in use elsewhere on the system, then we must update the
682 	 * guid (which was initialized to a random value) to reflect the
683 	 * actual GUID (which is shared between multiple pools).
684 	 */
685 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
686 	    spare_guid != 0ULL) {
687 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
688 
689 		vd->vdev_guid += guid_delta;
690 
691 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
692 			pvd->vdev_guid_sum += guid_delta;
693 
694 		/*
695 		 * If this is a replacement, then we want to fallthrough to the
696 		 * rest of the code.  If we're adding a spare, then it's already
697 		 * labeled appropriately and we can just return.
698 		 */
699 		if (reason == VDEV_LABEL_SPARE)
700 			return (0);
701 		ASSERT(reason == VDEV_LABEL_REPLACE ||
702 		    reason == VDEV_LABEL_SPLIT);
703 	}
704 
705 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
706 	    l2cache_guid != 0ULL) {
707 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
708 
709 		vd->vdev_guid += guid_delta;
710 
711 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
712 			pvd->vdev_guid_sum += guid_delta;
713 
714 		/*
715 		 * If this is a replacement, then we want to fallthrough to the
716 		 * rest of the code.  If we're adding an l2cache, then it's
717 		 * already labeled appropriately and we can just return.
718 		 */
719 		if (reason == VDEV_LABEL_L2CACHE)
720 			return (0);
721 		ASSERT(reason == VDEV_LABEL_REPLACE);
722 	}
723 
724 	/*
725 	 * Initialize its label.
726 	 */
727 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
728 	abd_zero(vp_abd, sizeof (vdev_phys_t));
729 	vp = abd_to_buf(vp_abd);
730 
731 	/*
732 	 * Generate a label describing the pool and our top-level vdev.
733 	 * We mark it as being from txg 0 to indicate that it's not
734 	 * really part of an active pool just yet.  The labels will
735 	 * be written again with a meaningful txg by spa_sync().
736 	 */
737 	if (reason == VDEV_LABEL_SPARE ||
738 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
739 		/*
740 		 * For inactive hot spares, we generate a special label that
741 		 * identifies as a mutually shared hot spare.  We write the
742 		 * label if we are adding a hot spare, or if we are removing an
743 		 * active hot spare (in which case we want to revert the
744 		 * labels).
745 		 */
746 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
747 
748 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
749 		    spa_version(spa)) == 0);
750 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
751 		    POOL_STATE_SPARE) == 0);
752 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
753 		    vd->vdev_guid) == 0);
754 	} else if (reason == VDEV_LABEL_L2CACHE ||
755 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
756 		/*
757 		 * For level 2 ARC devices, add a special label.
758 		 */
759 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
760 
761 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
762 		    spa_version(spa)) == 0);
763 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
764 		    POOL_STATE_L2CACHE) == 0);
765 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
766 		    vd->vdev_guid) == 0);
767 	} else {
768 		uint64_t txg = 0ULL;
769 
770 		if (reason == VDEV_LABEL_SPLIT)
771 			txg = spa->spa_uberblock.ub_txg;
772 		label = spa_config_generate(spa, vd, txg, B_FALSE);
773 
774 		/*
775 		 * Add our creation time.  This allows us to detect multiple
776 		 * vdev uses as described above, and automatically expires if we
777 		 * fail.
778 		 */
779 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
780 		    crtxg) == 0);
781 	}
782 
783 	buf = vp->vp_nvlist;
784 	buflen = sizeof (vp->vp_nvlist);
785 
786 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
787 	if (error != 0) {
788 		nvlist_free(label);
789 		abd_free(vp_abd);
790 		/* EFAULT means nvlist_pack ran out of room */
791 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
792 	}
793 
794 	/*
795 	 * Initialize uberblock template.
796 	 */
797 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
798 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
799 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
800 	ub = abd_to_buf(ub_abd);
801 	ub->ub_txg = 0;
802 
803 	/* Initialize the 2nd padding area. */
804 	pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
805 	abd_zero(pad2, VDEV_PAD_SIZE);
806 
807 	/*
808 	 * Write everything in parallel.
809 	 */
810 retry:
811 	zio = zio_root(spa, NULL, NULL, flags);
812 
813 	for (int l = 0; l < VDEV_LABELS; l++) {
814 
815 		vdev_label_write(zio, vd, l, vp_abd,
816 		    offsetof(vdev_label_t, vl_vdev_phys),
817 		    sizeof (vdev_phys_t), NULL, NULL, flags);
818 
819 		/*
820 		 * Skip the 1st padding area.
821 		 * Zero out the 2nd padding area where it might have
822 		 * left over data from previous filesystem format.
823 		 */
824 		vdev_label_write(zio, vd, l, pad2,
825 		    offsetof(vdev_label_t, vl_pad2),
826 		    VDEV_PAD_SIZE, NULL, NULL, flags);
827 
828 		vdev_label_write(zio, vd, l, ub_abd,
829 		    offsetof(vdev_label_t, vl_uberblock),
830 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
831 	}
832 
833 	error = zio_wait(zio);
834 
835 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
836 		flags |= ZIO_FLAG_TRYHARD;
837 		goto retry;
838 	}
839 
840 	nvlist_free(label);
841 	abd_free(pad2);
842 	abd_free(ub_abd);
843 	abd_free(vp_abd);
844 
845 	/*
846 	 * If this vdev hasn't been previously identified as a spare, then we
847 	 * mark it as such only if a) we are labeling it as a spare, or b) it
848 	 * exists as a spare elsewhere in the system.  Do the same for
849 	 * level 2 ARC devices.
850 	 */
851 	if (error == 0 && !vd->vdev_isspare &&
852 	    (reason == VDEV_LABEL_SPARE ||
853 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
854 		spa_spare_add(vd);
855 
856 	if (error == 0 && !vd->vdev_isl2cache &&
857 	    (reason == VDEV_LABEL_L2CACHE ||
858 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
859 		spa_l2cache_add(vd);
860 
861 	return (error);
862 }
863 
864 /*
865  * ==========================================================================
866  * uberblock load/sync
867  * ==========================================================================
868  */
869 
870 /*
871  * Consider the following situation: txg is safely synced to disk.  We've
872  * written the first uberblock for txg + 1, and then we lose power.  When we
873  * come back up, we fail to see the uberblock for txg + 1 because, say,
874  * it was on a mirrored device and the replica to which we wrote txg + 1
875  * is now offline.  If we then make some changes and sync txg + 1, and then
876  * the missing replica comes back, then for a few seconds we'll have two
877  * conflicting uberblocks on disk with the same txg.  The solution is simple:
878  * among uberblocks with equal txg, choose the one with the latest timestamp.
879  */
880 static int
881 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
882 {
883 	if (ub1->ub_txg < ub2->ub_txg)
884 		return (-1);
885 	if (ub1->ub_txg > ub2->ub_txg)
886 		return (1);
887 
888 	if (ub1->ub_timestamp < ub2->ub_timestamp)
889 		return (-1);
890 	if (ub1->ub_timestamp > ub2->ub_timestamp)
891 		return (1);
892 
893 	return (0);
894 }
895 
896 struct ubl_cbdata {
897 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
898 	vdev_t		*ubl_vd;	/* vdev associated with the above */
899 };
900 
901 static void
902 vdev_uberblock_load_done(zio_t *zio)
903 {
904 	vdev_t *vd = zio->io_vd;
905 	spa_t *spa = zio->io_spa;
906 	zio_t *rio = zio->io_private;
907 	uberblock_t *ub = abd_to_buf(zio->io_abd);
908 	struct ubl_cbdata *cbp = rio->io_private;
909 
910 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
911 
912 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
913 		mutex_enter(&rio->io_lock);
914 		if (ub->ub_txg <= spa->spa_load_max_txg &&
915 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
916 			/*
917 			 * Keep track of the vdev in which this uberblock
918 			 * was found. We will use this information later
919 			 * to obtain the config nvlist associated with
920 			 * this uberblock.
921 			 */
922 			*cbp->ubl_ubbest = *ub;
923 			cbp->ubl_vd = vd;
924 		}
925 		mutex_exit(&rio->io_lock);
926 	}
927 
928 	abd_free(zio->io_abd);
929 }
930 
931 static void
932 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
933     struct ubl_cbdata *cbp)
934 {
935 	for (int c = 0; c < vd->vdev_children; c++)
936 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
937 
938 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
939 		for (int l = 0; l < VDEV_LABELS; l++) {
940 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
941 				vdev_label_read(zio, vd, l,
942 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
943 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
944 				    VDEV_UBERBLOCK_SIZE(vd),
945 				    vdev_uberblock_load_done, zio, flags);
946 			}
947 		}
948 	}
949 }
950 
951 /*
952  * Reads the 'best' uberblock from disk along with its associated
953  * configuration. First, we read the uberblock array of each label of each
954  * vdev, keeping track of the uberblock with the highest txg in each array.
955  * Then, we read the configuration from the same vdev as the best uberblock.
956  */
957 void
958 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
959 {
960 	zio_t *zio;
961 	spa_t *spa = rvd->vdev_spa;
962 	struct ubl_cbdata cb;
963 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
964 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
965 
966 	ASSERT(ub);
967 	ASSERT(config);
968 
969 	bzero(ub, sizeof (uberblock_t));
970 	*config = NULL;
971 
972 	cb.ubl_ubbest = ub;
973 	cb.ubl_vd = NULL;
974 
975 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
976 	zio = zio_root(spa, NULL, &cb, flags);
977 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
978 	(void) zio_wait(zio);
979 
980 	/*
981 	 * It's possible that the best uberblock was discovered on a label
982 	 * that has a configuration which was written in a future txg.
983 	 * Search all labels on this vdev to find the configuration that
984 	 * matches the txg for our uberblock.
985 	 */
986 	if (cb.ubl_vd != NULL)
987 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
988 	spa_config_exit(spa, SCL_ALL, FTAG);
989 }
990 
991 /*
992  * On success, increment root zio's count of good writes.
993  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
994  */
995 static void
996 vdev_uberblock_sync_done(zio_t *zio)
997 {
998 	uint64_t *good_writes = zio->io_private;
999 
1000 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1001 		atomic_inc_64(good_writes);
1002 }
1003 
1004 /*
1005  * Write the uberblock to all labels of all leaves of the specified vdev.
1006  */
1007 static void
1008 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
1009 {
1010 	for (int c = 0; c < vd->vdev_children; c++)
1011 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1012 
1013 	if (!vd->vdev_ops->vdev_op_leaf)
1014 		return;
1015 
1016 	if (!vdev_writeable(vd))
1017 		return;
1018 
1019 	int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1020 
1021 	/* Copy the uberblock_t into the ABD */
1022 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1023 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1024 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1025 
1026 	for (int l = 0; l < VDEV_LABELS; l++)
1027 		vdev_label_write(zio, vd, l, ub_abd,
1028 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1029 		    vdev_uberblock_sync_done, zio->io_private,
1030 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1031 
1032 	abd_free(ub_abd);
1033 }
1034 
1035 /* Sync the uberblocks to all vdevs in svd[] */
1036 int
1037 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1038 {
1039 	spa_t *spa = svd[0]->vdev_spa;
1040 	zio_t *zio;
1041 	uint64_t good_writes = 0;
1042 
1043 	zio = zio_root(spa, NULL, &good_writes, flags);
1044 
1045 	for (int v = 0; v < svdcount; v++)
1046 		vdev_uberblock_sync(zio, ub, svd[v], flags);
1047 
1048 	(void) zio_wait(zio);
1049 
1050 	/*
1051 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1052 	 * are no longer needed (because the new uberblocks and the even
1053 	 * labels are safely on disk), so it is safe to overwrite them.
1054 	 */
1055 	zio = zio_root(spa, NULL, NULL, flags);
1056 
1057 	for (int v = 0; v < svdcount; v++)
1058 		zio_flush(zio, svd[v]);
1059 
1060 	(void) zio_wait(zio);
1061 
1062 	return (good_writes >= 1 ? 0 : EIO);
1063 }
1064 
1065 /*
1066  * On success, increment the count of good writes for our top-level vdev.
1067  */
1068 static void
1069 vdev_label_sync_done(zio_t *zio)
1070 {
1071 	uint64_t *good_writes = zio->io_private;
1072 
1073 	if (zio->io_error == 0)
1074 		atomic_inc_64(good_writes);
1075 }
1076 
1077 /*
1078  * If there weren't enough good writes, indicate failure to the parent.
1079  */
1080 static void
1081 vdev_label_sync_top_done(zio_t *zio)
1082 {
1083 	uint64_t *good_writes = zio->io_private;
1084 
1085 	if (*good_writes == 0)
1086 		zio->io_error = SET_ERROR(EIO);
1087 
1088 	kmem_free(good_writes, sizeof (uint64_t));
1089 }
1090 
1091 /*
1092  * We ignore errors for log and cache devices, simply free the private data.
1093  */
1094 static void
1095 vdev_label_sync_ignore_done(zio_t *zio)
1096 {
1097 	kmem_free(zio->io_private, sizeof (uint64_t));
1098 }
1099 
1100 /*
1101  * Write all even or odd labels to all leaves of the specified vdev.
1102  */
1103 static void
1104 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1105 {
1106 	nvlist_t *label;
1107 	vdev_phys_t *vp;
1108 	abd_t *vp_abd;
1109 	char *buf;
1110 	size_t buflen;
1111 
1112 	for (int c = 0; c < vd->vdev_children; c++)
1113 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1114 
1115 	if (!vd->vdev_ops->vdev_op_leaf)
1116 		return;
1117 
1118 	if (!vdev_writeable(vd))
1119 		return;
1120 
1121 	/*
1122 	 * Generate a label describing the top-level config to which we belong.
1123 	 */
1124 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1125 
1126 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1127 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1128 	vp = abd_to_buf(vp_abd);
1129 
1130 	buf = vp->vp_nvlist;
1131 	buflen = sizeof (vp->vp_nvlist);
1132 
1133 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1134 		for (; l < VDEV_LABELS; l += 2) {
1135 			vdev_label_write(zio, vd, l, vp_abd,
1136 			    offsetof(vdev_label_t, vl_vdev_phys),
1137 			    sizeof (vdev_phys_t),
1138 			    vdev_label_sync_done, zio->io_private,
1139 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1140 		}
1141 	}
1142 
1143 	abd_free(vp_abd);
1144 	nvlist_free(label);
1145 }
1146 
1147 int
1148 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1149 {
1150 	list_t *dl = &spa->spa_config_dirty_list;
1151 	vdev_t *vd;
1152 	zio_t *zio;
1153 	int error;
1154 
1155 	/*
1156 	 * Write the new labels to disk.
1157 	 */
1158 	zio = zio_root(spa, NULL, NULL, flags);
1159 
1160 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1161 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1162 		    KM_SLEEP);
1163 
1164 		ASSERT(!vd->vdev_ishole);
1165 
1166 		zio_t *vio = zio_null(zio, spa, NULL,
1167 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1168 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1169 		    good_writes, flags);
1170 		vdev_label_sync(vio, vd, l, txg, flags);
1171 		zio_nowait(vio);
1172 	}
1173 
1174 	error = zio_wait(zio);
1175 
1176 	/*
1177 	 * Flush the new labels to disk.
1178 	 */
1179 	zio = zio_root(spa, NULL, NULL, flags);
1180 
1181 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1182 		zio_flush(zio, vd);
1183 
1184 	(void) zio_wait(zio);
1185 
1186 	return (error);
1187 }
1188 
1189 /*
1190  * Sync the uberblock and any changes to the vdev configuration.
1191  *
1192  * The order of operations is carefully crafted to ensure that
1193  * if the system panics or loses power at any time, the state on disk
1194  * is still transactionally consistent.  The in-line comments below
1195  * describe the failure semantics at each stage.
1196  *
1197  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1198  * at any time, you can just call it again, and it will resume its work.
1199  */
1200 int
1201 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1202 {
1203 	spa_t *spa = svd[0]->vdev_spa;
1204 	uberblock_t *ub = &spa->spa_uberblock;
1205 	vdev_t *vd;
1206 	zio_t *zio;
1207 	int error = 0;
1208 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1209 
1210 retry:
1211 	/*
1212 	 * Normally, we don't want to try too hard to write every label and
1213 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1214 	 * sync process to block while we retry.  But if we can't write a
1215 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1216 	 * bailing out and declaring the pool faulted.
1217 	 */
1218 	if (error != 0) {
1219 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1220 			return (error);
1221 		flags |= ZIO_FLAG_TRYHARD;
1222 	}
1223 
1224 	ASSERT(ub->ub_txg <= txg);
1225 
1226 	/*
1227 	 * If this isn't a resync due to I/O errors,
1228 	 * and nothing changed in this transaction group,
1229 	 * and the vdev configuration hasn't changed,
1230 	 * then there's nothing to do.
1231 	 */
1232 	if (ub->ub_txg < txg &&
1233 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1234 	    list_is_empty(&spa->spa_config_dirty_list))
1235 		return (0);
1236 
1237 	if (txg > spa_freeze_txg(spa))
1238 		return (0);
1239 
1240 	ASSERT(txg <= spa->spa_final_txg);
1241 
1242 	/*
1243 	 * Flush the write cache of every disk that's been written to
1244 	 * in this transaction group.  This ensures that all blocks
1245 	 * written in this txg will be committed to stable storage
1246 	 * before any uberblock that references them.
1247 	 */
1248 	zio = zio_root(spa, NULL, NULL, flags);
1249 
1250 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1251 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1252 		zio_flush(zio, vd);
1253 
1254 	(void) zio_wait(zio);
1255 
1256 	/*
1257 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1258 	 * system dies in the middle of this process, that's OK: all of the
1259 	 * even labels that made it to disk will be newer than any uberblock,
1260 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1261 	 * which have not yet been touched, will still be valid.  We flush
1262 	 * the new labels to disk to ensure that all even-label updates
1263 	 * are committed to stable storage before the uberblock update.
1264 	 */
1265 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1266 		goto retry;
1267 
1268 	/*
1269 	 * Sync the uberblocks to all vdevs in svd[].
1270 	 * If the system dies in the middle of this step, there are two cases
1271 	 * to consider, and the on-disk state is consistent either way:
1272 	 *
1273 	 * (1)	If none of the new uberblocks made it to disk, then the
1274 	 *	previous uberblock will be the newest, and the odd labels
1275 	 *	(which had not yet been touched) will be valid with respect
1276 	 *	to that uberblock.
1277 	 *
1278 	 * (2)	If one or more new uberblocks made it to disk, then they
1279 	 *	will be the newest, and the even labels (which had all
1280 	 *	been successfully committed) will be valid with respect
1281 	 *	to the new uberblocks.
1282 	 */
1283 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1284 		goto retry;
1285 
1286 	/*
1287 	 * Sync out odd labels for every dirty vdev.  If the system dies
1288 	 * in the middle of this process, the even labels and the new
1289 	 * uberblocks will suffice to open the pool.  The next time
1290 	 * the pool is opened, the first thing we'll do -- before any
1291 	 * user data is modified -- is mark every vdev dirty so that
1292 	 * all labels will be brought up to date.  We flush the new labels
1293 	 * to disk to ensure that all odd-label updates are committed to
1294 	 * stable storage before the next transaction group begins.
1295 	 */
1296 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0)
1297 		goto retry;
1298 
1299 	return (0);
1300 }
1301