1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Virtual Device Labels 29 * --------------------- 30 * 31 * The vdev label serves several distinct purposes: 32 * 33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 34 * identity within the pool. 35 * 36 * 2. Verify that all the devices given in a configuration are present 37 * within the pool. 38 * 39 * 3. Determine the uberblock for the pool. 40 * 41 * 4. In case of an import operation, determine the configuration of the 42 * toplevel vdev of which it is a part. 43 * 44 * 5. If an import operation cannot find all the devices in the pool, 45 * provide enough information to the administrator to determine which 46 * devices are missing. 47 * 48 * It is important to note that while the kernel is responsible for writing the 49 * label, it only consumes the information in the first three cases. The 50 * latter information is only consumed in userland when determining the 51 * configuration to import a pool. 52 * 53 * 54 * Label Organization 55 * ------------------ 56 * 57 * Before describing the contents of the label, it's important to understand how 58 * the labels are written and updated with respect to the uberblock. 59 * 60 * When the pool configuration is altered, either because it was newly created 61 * or a device was added, we want to update all the labels such that we can deal 62 * with fatal failure at any point. To this end, each disk has two labels which 63 * are updated before and after the uberblock is synced. Assuming we have 64 * labels and an uberblock with the following transaction groups: 65 * 66 * L1 UB L2 67 * +------+ +------+ +------+ 68 * | | | | | | 69 * | t10 | | t10 | | t10 | 70 * | | | | | | 71 * +------+ +------+ +------+ 72 * 73 * In this stable state, the labels and the uberblock were all updated within 74 * the same transaction group (10). Each label is mirrored and checksummed, so 75 * that we can detect when we fail partway through writing the label. 76 * 77 * In order to identify which labels are valid, the labels are written in the 78 * following manner: 79 * 80 * 1. For each vdev, update 'L1' to the new label 81 * 2. Update the uberblock 82 * 3. For each vdev, update 'L2' to the new label 83 * 84 * Given arbitrary failure, we can determine the correct label to use based on 85 * the transaction group. If we fail after updating L1 but before updating the 86 * UB, we will notice that L1's transaction group is greater than the uberblock, 87 * so L2 must be valid. If we fail after writing the uberblock but before 88 * writing L2, we will notice that L2's transaction group is less than L1, and 89 * therefore L1 is valid. 90 * 91 * Another added complexity is that not every label is updated when the config 92 * is synced. If we add a single device, we do not want to have to re-write 93 * every label for every device in the pool. This means that both L1 and L2 may 94 * be older than the pool uberblock, because the necessary information is stored 95 * on another vdev. 96 * 97 * 98 * On-disk Format 99 * -------------- 100 * 101 * The vdev label consists of two distinct parts, and is wrapped within the 102 * vdev_label_t structure. The label includes 8k of padding to permit legacy 103 * VTOC disk labels, but is otherwise ignored. 104 * 105 * The first half of the label is a packed nvlist which contains pool wide 106 * properties, per-vdev properties, and configuration information. It is 107 * described in more detail below. 108 * 109 * The latter half of the label consists of a redundant array of uberblocks. 110 * These uberblocks are updated whenever a transaction group is committed, 111 * or when the configuration is updated. When a pool is loaded, we scan each 112 * vdev for the 'best' uberblock. 113 * 114 * 115 * Configuration Information 116 * ------------------------- 117 * 118 * The nvlist describing the pool and vdev contains the following elements: 119 * 120 * version ZFS on-disk version 121 * name Pool name 122 * state Pool state 123 * txg Transaction group in which this label was written 124 * pool_guid Unique identifier for this pool 125 * vdev_tree An nvlist describing vdev tree. 126 * features_for_read 127 * An nvlist of the features necessary for reading the MOS. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/metaslab_impl.h> 147 #include <sys/zio.h> 148 #include <sys/dsl_scan.h> 149 #include <sys/abd.h> 150 #include <sys/fs/zfs.h> 151 152 /* 153 * Basic routines to read and write from a vdev label. 154 * Used throughout the rest of this file. 155 */ 156 uint64_t 157 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 158 { 159 ASSERT(offset < sizeof (vdev_label_t)); 160 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 161 162 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 163 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 164 } 165 166 /* 167 * Returns back the vdev label associated with the passed in offset. 168 */ 169 int 170 vdev_label_number(uint64_t psize, uint64_t offset) 171 { 172 int l; 173 174 if (offset >= psize - VDEV_LABEL_END_SIZE) { 175 offset -= psize - VDEV_LABEL_END_SIZE; 176 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 177 } 178 l = offset / sizeof (vdev_label_t); 179 return (l < VDEV_LABELS ? l : -1); 180 } 181 182 static void 183 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 184 uint64_t size, zio_done_func_t *done, void *private, int flags) 185 { 186 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 187 SCL_STATE_ALL); 188 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 189 190 zio_nowait(zio_read_phys(zio, vd, 191 vdev_label_offset(vd->vdev_psize, l, offset), 192 size, buf, ZIO_CHECKSUM_LABEL, done, private, 193 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 194 } 195 196 static void 197 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 198 uint64_t size, zio_done_func_t *done, void *private, int flags) 199 { 200 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 201 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 202 (SCL_CONFIG | SCL_STATE) && 203 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 204 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 205 206 zio_nowait(zio_write_phys(zio, vd, 207 vdev_label_offset(vd->vdev_psize, l, offset), 208 size, buf, ZIO_CHECKSUM_LABEL, done, private, 209 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 210 } 211 212 static void 213 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 214 { 215 spa_t *spa = vd->vdev_spa; 216 217 if (vd != spa->spa_root_vdev) 218 return; 219 220 /* provide either current or previous scan information */ 221 pool_scan_stat_t ps; 222 if (spa_scan_get_stats(spa, &ps) == 0) { 223 fnvlist_add_uint64_array(nvl, 224 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 225 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 226 } 227 228 pool_removal_stat_t prs; 229 if (spa_removal_get_stats(spa, &prs) == 0) { 230 fnvlist_add_uint64_array(nvl, 231 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 232 sizeof (prs) / sizeof (uint64_t)); 233 } 234 235 pool_checkpoint_stat_t pcs; 236 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 237 fnvlist_add_uint64_array(nvl, 238 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 239 sizeof (pcs) / sizeof (uint64_t)); 240 } 241 } 242 243 /* 244 * Generate the nvlist representing this vdev's config. 245 */ 246 nvlist_t * 247 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 248 vdev_config_flag_t flags) 249 { 250 nvlist_t *nv = NULL; 251 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 252 253 nv = fnvlist_alloc(); 254 255 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 256 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 257 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 258 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 259 260 if (vd->vdev_path != NULL) 261 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 262 263 if (vd->vdev_devid != NULL) 264 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 265 266 if (vd->vdev_physpath != NULL) 267 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 268 vd->vdev_physpath); 269 270 if (vd->vdev_fru != NULL) 271 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 272 273 if (vd->vdev_nparity != 0) { 274 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 275 VDEV_TYPE_RAIDZ) == 0); 276 277 /* 278 * Make sure someone hasn't managed to sneak a fancy new vdev 279 * into a crufty old storage pool. 280 */ 281 ASSERT(vd->vdev_nparity == 1 || 282 (vd->vdev_nparity <= 2 && 283 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 284 (vd->vdev_nparity <= 3 && 285 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 286 287 /* 288 * Note that we'll add the nparity tag even on storage pools 289 * that only support a single parity device -- older software 290 * will just ignore it. 291 */ 292 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 293 } 294 295 if (vd->vdev_wholedisk != -1ULL) 296 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 297 vd->vdev_wholedisk); 298 299 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 300 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 301 302 if (vd->vdev_isspare) 303 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 304 305 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 306 vd == vd->vdev_top) { 307 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 308 vd->vdev_ms_array); 309 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 310 vd->vdev_ms_shift); 311 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 312 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 313 vd->vdev_asize); 314 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 315 if (vd->vdev_removing) { 316 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 317 vd->vdev_removing); 318 } 319 } 320 321 if (vd->vdev_dtl_sm != NULL) { 322 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 323 space_map_object(vd->vdev_dtl_sm)); 324 } 325 326 if (vic->vic_mapping_object != 0) { 327 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 328 vic->vic_mapping_object); 329 } 330 331 if (vic->vic_births_object != 0) { 332 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 333 vic->vic_births_object); 334 } 335 336 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 337 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 338 vic->vic_prev_indirect_vdev); 339 } 340 341 if (vd->vdev_crtxg) 342 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 343 344 if (flags & VDEV_CONFIG_MOS) { 345 if (vd->vdev_leaf_zap != 0) { 346 ASSERT(vd->vdev_ops->vdev_op_leaf); 347 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 348 vd->vdev_leaf_zap); 349 } 350 351 if (vd->vdev_top_zap != 0) { 352 ASSERT(vd == vd->vdev_top); 353 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 354 vd->vdev_top_zap); 355 } 356 } 357 358 if (getstats) { 359 vdev_stat_t vs; 360 361 vdev_get_stats(vd, &vs); 362 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 363 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)); 364 365 root_vdev_actions_getprogress(vd, nv); 366 367 /* 368 * Note: this can be called from open context 369 * (spa_get_stats()), so we need the rwlock to prevent 370 * the mapping from being changed by condensing. 371 */ 372 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 373 if (vd->vdev_indirect_mapping != NULL) { 374 ASSERT(vd->vdev_indirect_births != NULL); 375 vdev_indirect_mapping_t *vim = 376 vd->vdev_indirect_mapping; 377 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 378 vdev_indirect_mapping_size(vim)); 379 } 380 rw_exit(&vd->vdev_indirect_rwlock); 381 if (vd->vdev_mg != NULL && 382 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 383 /* 384 * Compute approximately how much memory would be used 385 * for the indirect mapping if this device were to 386 * be removed. 387 * 388 * Note: If the frag metric is invalid, then not 389 * enough metaslabs have been converted to have 390 * histograms. 391 */ 392 uint64_t seg_count = 0; 393 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 394 395 /* 396 * There are the same number of allocated segments 397 * as free segments, so we will have at least one 398 * entry per free segment. However, small free 399 * segments (smaller than vdev_removal_max_span) 400 * will be combined with adjacent allocated segments 401 * as a single mapping. 402 */ 403 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 404 if (1ULL << (i + 1) < vdev_removal_max_span) { 405 to_alloc += 406 vd->vdev_mg->mg_histogram[i] << 407 i + 1; 408 } else { 409 seg_count += 410 vd->vdev_mg->mg_histogram[i]; 411 } 412 } 413 414 /* 415 * The maximum length of a mapping is 416 * zfs_remove_max_segment, so we need at least one entry 417 * per zfs_remove_max_segment of allocated data. 418 */ 419 seg_count += to_alloc / zfs_remove_max_segment; 420 421 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 422 seg_count * 423 sizeof (vdev_indirect_mapping_entry_phys_t)); 424 } 425 } 426 427 if (!vd->vdev_ops->vdev_op_leaf) { 428 nvlist_t **child; 429 int c, idx; 430 431 ASSERT(!vd->vdev_ishole); 432 433 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 434 KM_SLEEP); 435 436 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 437 vdev_t *cvd = vd->vdev_child[c]; 438 439 /* 440 * If we're generating an nvlist of removing 441 * vdevs then skip over any device which is 442 * not being removed. 443 */ 444 if ((flags & VDEV_CONFIG_REMOVING) && 445 !cvd->vdev_removing) 446 continue; 447 448 child[idx++] = vdev_config_generate(spa, cvd, 449 getstats, flags); 450 } 451 452 if (idx) { 453 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 454 child, idx); 455 } 456 457 for (c = 0; c < idx; c++) 458 nvlist_free(child[c]); 459 460 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 461 462 } else { 463 const char *aux = NULL; 464 465 if (vd->vdev_offline && !vd->vdev_tmpoffline) 466 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 467 if (vd->vdev_resilver_txg != 0) 468 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 469 vd->vdev_resilver_txg); 470 if (vd->vdev_faulted) 471 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 472 if (vd->vdev_degraded) 473 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 474 if (vd->vdev_removed) 475 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 476 if (vd->vdev_unspare) 477 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 478 if (vd->vdev_ishole) 479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 480 481 switch (vd->vdev_stat.vs_aux) { 482 case VDEV_AUX_ERR_EXCEEDED: 483 aux = "err_exceeded"; 484 break; 485 486 case VDEV_AUX_EXTERNAL: 487 aux = "external"; 488 break; 489 } 490 491 if (aux != NULL) 492 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 493 494 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 496 vd->vdev_orig_guid); 497 } 498 } 499 500 return (nv); 501 } 502 503 /* 504 * Generate a view of the top-level vdevs. If we currently have holes 505 * in the namespace, then generate an array which contains a list of holey 506 * vdevs. Additionally, add the number of top-level children that currently 507 * exist. 508 */ 509 void 510 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 511 { 512 vdev_t *rvd = spa->spa_root_vdev; 513 uint64_t *array; 514 uint_t c, idx; 515 516 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 517 518 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 519 vdev_t *tvd = rvd->vdev_child[c]; 520 521 if (tvd->vdev_ishole) { 522 array[idx++] = c; 523 } 524 } 525 526 if (idx) { 527 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 528 array, idx) == 0); 529 } 530 531 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 532 rvd->vdev_children) == 0); 533 534 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 535 } 536 537 /* 538 * Returns the configuration from the label of the given vdev. For vdevs 539 * which don't have a txg value stored on their label (i.e. spares/cache) 540 * or have not been completely initialized (txg = 0) just return 541 * the configuration from the first valid label we find. Otherwise, 542 * find the most up-to-date label that does not exceed the specified 543 * 'txg' value. 544 */ 545 nvlist_t * 546 vdev_label_read_config(vdev_t *vd, uint64_t txg) 547 { 548 spa_t *spa = vd->vdev_spa; 549 nvlist_t *config = NULL; 550 vdev_phys_t *vp; 551 abd_t *vp_abd; 552 zio_t *zio; 553 uint64_t best_txg = 0; 554 uint64_t label_txg = 0; 555 int error = 0; 556 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 557 ZIO_FLAG_SPECULATIVE; 558 559 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 560 561 if (!vdev_readable(vd)) 562 return (NULL); 563 564 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 565 vp = abd_to_buf(vp_abd); 566 567 retry: 568 for (int l = 0; l < VDEV_LABELS; l++) { 569 nvlist_t *label = NULL; 570 571 zio = zio_root(spa, NULL, NULL, flags); 572 573 vdev_label_read(zio, vd, l, vp_abd, 574 offsetof(vdev_label_t, vl_vdev_phys), 575 sizeof (vdev_phys_t), NULL, NULL, flags); 576 577 if (zio_wait(zio) == 0 && 578 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 579 &label, 0) == 0) { 580 /* 581 * Auxiliary vdevs won't have txg values in their 582 * labels and newly added vdevs may not have been 583 * completely initialized so just return the 584 * configuration from the first valid label we 585 * encounter. 586 */ 587 error = nvlist_lookup_uint64(label, 588 ZPOOL_CONFIG_POOL_TXG, &label_txg); 589 if ((error || label_txg == 0) && !config) { 590 config = label; 591 break; 592 } else if (label_txg <= txg && label_txg > best_txg) { 593 best_txg = label_txg; 594 nvlist_free(config); 595 config = fnvlist_dup(label); 596 } 597 } 598 599 if (label != NULL) { 600 nvlist_free(label); 601 label = NULL; 602 } 603 } 604 605 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 606 flags |= ZIO_FLAG_TRYHARD; 607 goto retry; 608 } 609 610 /* 611 * We found a valid label but it didn't pass txg restrictions. 612 */ 613 if (config == NULL && label_txg != 0) { 614 vdev_dbgmsg(vd, "label discarded as txg is too large " 615 "(%llu > %llu)", (u_longlong_t)label_txg, 616 (u_longlong_t)txg); 617 } 618 619 abd_free(vp_abd); 620 621 return (config); 622 } 623 624 /* 625 * Determine if a device is in use. The 'spare_guid' parameter will be filled 626 * in with the device guid if this spare is active elsewhere on the system. 627 */ 628 static boolean_t 629 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 630 uint64_t *spare_guid, uint64_t *l2cache_guid) 631 { 632 spa_t *spa = vd->vdev_spa; 633 uint64_t state, pool_guid, device_guid, txg, spare_pool; 634 uint64_t vdtxg = 0; 635 nvlist_t *label; 636 637 if (spare_guid) 638 *spare_guid = 0ULL; 639 if (l2cache_guid) 640 *l2cache_guid = 0ULL; 641 642 /* 643 * Read the label, if any, and perform some basic sanity checks. 644 */ 645 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 646 return (B_FALSE); 647 648 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 649 &vdtxg); 650 651 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 652 &state) != 0 || 653 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 654 &device_guid) != 0) { 655 nvlist_free(label); 656 return (B_FALSE); 657 } 658 659 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 660 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 661 &pool_guid) != 0 || 662 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 663 &txg) != 0)) { 664 nvlist_free(label); 665 return (B_FALSE); 666 } 667 668 nvlist_free(label); 669 670 /* 671 * Check to see if this device indeed belongs to the pool it claims to 672 * be a part of. The only way this is allowed is if the device is a hot 673 * spare (which we check for later on). 674 */ 675 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 676 !spa_guid_exists(pool_guid, device_guid) && 677 !spa_spare_exists(device_guid, NULL, NULL) && 678 !spa_l2cache_exists(device_guid, NULL)) 679 return (B_FALSE); 680 681 /* 682 * If the transaction group is zero, then this an initialized (but 683 * unused) label. This is only an error if the create transaction 684 * on-disk is the same as the one we're using now, in which case the 685 * user has attempted to add the same vdev multiple times in the same 686 * transaction. 687 */ 688 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 689 txg == 0 && vdtxg == crtxg) 690 return (B_TRUE); 691 692 /* 693 * Check to see if this is a spare device. We do an explicit check for 694 * spa_has_spare() here because it may be on our pending list of spares 695 * to add. We also check if it is an l2cache device. 696 */ 697 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 698 spa_has_spare(spa, device_guid)) { 699 if (spare_guid) 700 *spare_guid = device_guid; 701 702 switch (reason) { 703 case VDEV_LABEL_CREATE: 704 case VDEV_LABEL_L2CACHE: 705 return (B_TRUE); 706 707 case VDEV_LABEL_REPLACE: 708 return (!spa_has_spare(spa, device_guid) || 709 spare_pool != 0ULL); 710 711 case VDEV_LABEL_SPARE: 712 return (spa_has_spare(spa, device_guid)); 713 } 714 } 715 716 /* 717 * Check to see if this is an l2cache device. 718 */ 719 if (spa_l2cache_exists(device_guid, NULL)) 720 return (B_TRUE); 721 722 /* 723 * We can't rely on a pool's state if it's been imported 724 * read-only. Instead we look to see if the pools is marked 725 * read-only in the namespace and set the state to active. 726 */ 727 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 728 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 729 spa_mode(spa) == FREAD) 730 state = POOL_STATE_ACTIVE; 731 732 /* 733 * If the device is marked ACTIVE, then this device is in use by another 734 * pool on the system. 735 */ 736 return (state == POOL_STATE_ACTIVE); 737 } 738 739 /* 740 * Initialize a vdev label. We check to make sure each leaf device is not in 741 * use, and writable. We put down an initial label which we will later 742 * overwrite with a complete label. Note that it's important to do this 743 * sequentially, not in parallel, so that we catch cases of multiple use of the 744 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 745 * itself. 746 */ 747 int 748 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 749 { 750 spa_t *spa = vd->vdev_spa; 751 nvlist_t *label; 752 vdev_phys_t *vp; 753 abd_t *vp_abd; 754 abd_t *pad2; 755 uberblock_t *ub; 756 abd_t *ub_abd; 757 zio_t *zio; 758 char *buf; 759 size_t buflen; 760 int error; 761 uint64_t spare_guid, l2cache_guid; 762 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 763 764 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 765 766 for (int c = 0; c < vd->vdev_children; c++) 767 if ((error = vdev_label_init(vd->vdev_child[c], 768 crtxg, reason)) != 0) 769 return (error); 770 771 /* Track the creation time for this vdev */ 772 vd->vdev_crtxg = crtxg; 773 774 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 775 return (0); 776 777 /* 778 * Dead vdevs cannot be initialized. 779 */ 780 if (vdev_is_dead(vd)) 781 return (SET_ERROR(EIO)); 782 783 /* 784 * Determine if the vdev is in use. 785 */ 786 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 787 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 788 return (SET_ERROR(EBUSY)); 789 790 /* 791 * If this is a request to add or replace a spare or l2cache device 792 * that is in use elsewhere on the system, then we must update the 793 * guid (which was initialized to a random value) to reflect the 794 * actual GUID (which is shared between multiple pools). 795 */ 796 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 797 spare_guid != 0ULL) { 798 uint64_t guid_delta = spare_guid - vd->vdev_guid; 799 800 vd->vdev_guid += guid_delta; 801 802 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 803 pvd->vdev_guid_sum += guid_delta; 804 805 /* 806 * If this is a replacement, then we want to fallthrough to the 807 * rest of the code. If we're adding a spare, then it's already 808 * labeled appropriately and we can just return. 809 */ 810 if (reason == VDEV_LABEL_SPARE) 811 return (0); 812 ASSERT(reason == VDEV_LABEL_REPLACE || 813 reason == VDEV_LABEL_SPLIT); 814 } 815 816 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 817 l2cache_guid != 0ULL) { 818 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 819 820 vd->vdev_guid += guid_delta; 821 822 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 823 pvd->vdev_guid_sum += guid_delta; 824 825 /* 826 * If this is a replacement, then we want to fallthrough to the 827 * rest of the code. If we're adding an l2cache, then it's 828 * already labeled appropriately and we can just return. 829 */ 830 if (reason == VDEV_LABEL_L2CACHE) 831 return (0); 832 ASSERT(reason == VDEV_LABEL_REPLACE); 833 } 834 835 /* 836 * Initialize its label. 837 */ 838 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 839 abd_zero(vp_abd, sizeof (vdev_phys_t)); 840 vp = abd_to_buf(vp_abd); 841 842 /* 843 * Generate a label describing the pool and our top-level vdev. 844 * We mark it as being from txg 0 to indicate that it's not 845 * really part of an active pool just yet. The labels will 846 * be written again with a meaningful txg by spa_sync(). 847 */ 848 if (reason == VDEV_LABEL_SPARE || 849 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 850 /* 851 * For inactive hot spares, we generate a special label that 852 * identifies as a mutually shared hot spare. We write the 853 * label if we are adding a hot spare, or if we are removing an 854 * active hot spare (in which case we want to revert the 855 * labels). 856 */ 857 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 858 859 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 860 spa_version(spa)) == 0); 861 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 862 POOL_STATE_SPARE) == 0); 863 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 864 vd->vdev_guid) == 0); 865 } else if (reason == VDEV_LABEL_L2CACHE || 866 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 867 /* 868 * For level 2 ARC devices, add a special label. 869 */ 870 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 871 872 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 873 spa_version(spa)) == 0); 874 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 875 POOL_STATE_L2CACHE) == 0); 876 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 877 vd->vdev_guid) == 0); 878 } else { 879 uint64_t txg = 0ULL; 880 881 if (reason == VDEV_LABEL_SPLIT) 882 txg = spa->spa_uberblock.ub_txg; 883 label = spa_config_generate(spa, vd, txg, B_FALSE); 884 885 /* 886 * Add our creation time. This allows us to detect multiple 887 * vdev uses as described above, and automatically expires if we 888 * fail. 889 */ 890 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 891 crtxg) == 0); 892 } 893 894 buf = vp->vp_nvlist; 895 buflen = sizeof (vp->vp_nvlist); 896 897 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 898 if (error != 0) { 899 nvlist_free(label); 900 abd_free(vp_abd); 901 /* EFAULT means nvlist_pack ran out of room */ 902 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 903 } 904 905 /* 906 * Initialize uberblock template. 907 */ 908 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 909 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 910 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 911 ub = abd_to_buf(ub_abd); 912 ub->ub_txg = 0; 913 914 /* Initialize the 2nd padding area. */ 915 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 916 abd_zero(pad2, VDEV_PAD_SIZE); 917 918 /* 919 * Write everything in parallel. 920 */ 921 retry: 922 zio = zio_root(spa, NULL, NULL, flags); 923 924 for (int l = 0; l < VDEV_LABELS; l++) { 925 926 vdev_label_write(zio, vd, l, vp_abd, 927 offsetof(vdev_label_t, vl_vdev_phys), 928 sizeof (vdev_phys_t), NULL, NULL, flags); 929 930 /* 931 * Skip the 1st padding area. 932 * Zero out the 2nd padding area where it might have 933 * left over data from previous filesystem format. 934 */ 935 vdev_label_write(zio, vd, l, pad2, 936 offsetof(vdev_label_t, vl_pad2), 937 VDEV_PAD_SIZE, NULL, NULL, flags); 938 939 vdev_label_write(zio, vd, l, ub_abd, 940 offsetof(vdev_label_t, vl_uberblock), 941 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 942 } 943 944 error = zio_wait(zio); 945 946 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 947 flags |= ZIO_FLAG_TRYHARD; 948 goto retry; 949 } 950 951 nvlist_free(label); 952 abd_free(pad2); 953 abd_free(ub_abd); 954 abd_free(vp_abd); 955 956 /* 957 * If this vdev hasn't been previously identified as a spare, then we 958 * mark it as such only if a) we are labeling it as a spare, or b) it 959 * exists as a spare elsewhere in the system. Do the same for 960 * level 2 ARC devices. 961 */ 962 if (error == 0 && !vd->vdev_isspare && 963 (reason == VDEV_LABEL_SPARE || 964 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 965 spa_spare_add(vd); 966 967 if (error == 0 && !vd->vdev_isl2cache && 968 (reason == VDEV_LABEL_L2CACHE || 969 spa_l2cache_exists(vd->vdev_guid, NULL))) 970 spa_l2cache_add(vd); 971 972 return (error); 973 } 974 975 /* 976 * ========================================================================== 977 * uberblock load/sync 978 * ========================================================================== 979 */ 980 981 /* 982 * Consider the following situation: txg is safely synced to disk. We've 983 * written the first uberblock for txg + 1, and then we lose power. When we 984 * come back up, we fail to see the uberblock for txg + 1 because, say, 985 * it was on a mirrored device and the replica to which we wrote txg + 1 986 * is now offline. If we then make some changes and sync txg + 1, and then 987 * the missing replica comes back, then for a few seconds we'll have two 988 * conflicting uberblocks on disk with the same txg. The solution is simple: 989 * among uberblocks with equal txg, choose the one with the latest timestamp. 990 */ 991 static int 992 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 993 { 994 if (ub1->ub_txg < ub2->ub_txg) 995 return (-1); 996 if (ub1->ub_txg > ub2->ub_txg) 997 return (1); 998 999 if (ub1->ub_timestamp < ub2->ub_timestamp) 1000 return (-1); 1001 if (ub1->ub_timestamp > ub2->ub_timestamp) 1002 return (1); 1003 1004 return (0); 1005 } 1006 1007 struct ubl_cbdata { 1008 uberblock_t *ubl_ubbest; /* Best uberblock */ 1009 vdev_t *ubl_vd; /* vdev associated with the above */ 1010 }; 1011 1012 static void 1013 vdev_uberblock_load_done(zio_t *zio) 1014 { 1015 vdev_t *vd = zio->io_vd; 1016 spa_t *spa = zio->io_spa; 1017 zio_t *rio = zio->io_private; 1018 uberblock_t *ub = abd_to_buf(zio->io_abd); 1019 struct ubl_cbdata *cbp = rio->io_private; 1020 1021 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1022 1023 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1024 mutex_enter(&rio->io_lock); 1025 if (ub->ub_txg <= spa->spa_load_max_txg && 1026 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1027 /* 1028 * Keep track of the vdev in which this uberblock 1029 * was found. We will use this information later 1030 * to obtain the config nvlist associated with 1031 * this uberblock. 1032 */ 1033 *cbp->ubl_ubbest = *ub; 1034 cbp->ubl_vd = vd; 1035 } 1036 mutex_exit(&rio->io_lock); 1037 } 1038 1039 abd_free(zio->io_abd); 1040 } 1041 1042 static void 1043 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1044 struct ubl_cbdata *cbp) 1045 { 1046 for (int c = 0; c < vd->vdev_children; c++) 1047 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1048 1049 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1050 for (int l = 0; l < VDEV_LABELS; l++) { 1051 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1052 vdev_label_read(zio, vd, l, 1053 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1054 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1055 VDEV_UBERBLOCK_SIZE(vd), 1056 vdev_uberblock_load_done, zio, flags); 1057 } 1058 } 1059 } 1060 } 1061 1062 /* 1063 * Reads the 'best' uberblock from disk along with its associated 1064 * configuration. First, we read the uberblock array of each label of each 1065 * vdev, keeping track of the uberblock with the highest txg in each array. 1066 * Then, we read the configuration from the same vdev as the best uberblock. 1067 */ 1068 void 1069 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1070 { 1071 zio_t *zio; 1072 spa_t *spa = rvd->vdev_spa; 1073 struct ubl_cbdata cb; 1074 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1075 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1076 1077 ASSERT(ub); 1078 ASSERT(config); 1079 1080 bzero(ub, sizeof (uberblock_t)); 1081 *config = NULL; 1082 1083 cb.ubl_ubbest = ub; 1084 cb.ubl_vd = NULL; 1085 1086 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1087 zio = zio_root(spa, NULL, &cb, flags); 1088 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1089 (void) zio_wait(zio); 1090 1091 /* 1092 * It's possible that the best uberblock was discovered on a label 1093 * that has a configuration which was written in a future txg. 1094 * Search all labels on this vdev to find the configuration that 1095 * matches the txg for our uberblock. 1096 */ 1097 if (cb.ubl_vd != NULL) { 1098 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1099 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1100 1101 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1102 if (*config == NULL && spa->spa_extreme_rewind) { 1103 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1104 "Trying again without txg restrictions."); 1105 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1106 } 1107 if (*config == NULL) { 1108 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1109 } 1110 } 1111 spa_config_exit(spa, SCL_ALL, FTAG); 1112 } 1113 1114 /* 1115 * On success, increment root zio's count of good writes. 1116 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1117 */ 1118 static void 1119 vdev_uberblock_sync_done(zio_t *zio) 1120 { 1121 uint64_t *good_writes = zio->io_private; 1122 1123 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1124 atomic_inc_64(good_writes); 1125 } 1126 1127 /* 1128 * Write the uberblock to all labels of all leaves of the specified vdev. 1129 */ 1130 static void 1131 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1132 uberblock_t *ub, vdev_t *vd, int flags) 1133 { 1134 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1135 vdev_uberblock_sync(zio, good_writes, 1136 ub, vd->vdev_child[c], flags); 1137 } 1138 1139 if (!vd->vdev_ops->vdev_op_leaf) 1140 return; 1141 1142 if (!vdev_writeable(vd)) 1143 return; 1144 1145 int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 1146 1147 /* Copy the uberblock_t into the ABD */ 1148 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1149 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1150 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1151 1152 for (int l = 0; l < VDEV_LABELS; l++) 1153 vdev_label_write(zio, vd, l, ub_abd, 1154 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1155 vdev_uberblock_sync_done, good_writes, 1156 flags | ZIO_FLAG_DONT_PROPAGATE); 1157 1158 abd_free(ub_abd); 1159 } 1160 1161 /* Sync the uberblocks to all vdevs in svd[] */ 1162 int 1163 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1164 { 1165 spa_t *spa = svd[0]->vdev_spa; 1166 zio_t *zio; 1167 uint64_t good_writes = 0; 1168 1169 zio = zio_root(spa, NULL, NULL, flags); 1170 1171 for (int v = 0; v < svdcount; v++) 1172 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1173 1174 (void) zio_wait(zio); 1175 1176 /* 1177 * Flush the uberblocks to disk. This ensures that the odd labels 1178 * are no longer needed (because the new uberblocks and the even 1179 * labels are safely on disk), so it is safe to overwrite them. 1180 */ 1181 zio = zio_root(spa, NULL, NULL, flags); 1182 1183 for (int v = 0; v < svdcount; v++) { 1184 if (vdev_writeable(svd[v])) { 1185 zio_flush(zio, svd[v]); 1186 } 1187 } 1188 1189 (void) zio_wait(zio); 1190 1191 return (good_writes >= 1 ? 0 : EIO); 1192 } 1193 1194 /* 1195 * On success, increment the count of good writes for our top-level vdev. 1196 */ 1197 static void 1198 vdev_label_sync_done(zio_t *zio) 1199 { 1200 uint64_t *good_writes = zio->io_private; 1201 1202 if (zio->io_error == 0) 1203 atomic_inc_64(good_writes); 1204 } 1205 1206 /* 1207 * If there weren't enough good writes, indicate failure to the parent. 1208 */ 1209 static void 1210 vdev_label_sync_top_done(zio_t *zio) 1211 { 1212 uint64_t *good_writes = zio->io_private; 1213 1214 if (*good_writes == 0) 1215 zio->io_error = SET_ERROR(EIO); 1216 1217 kmem_free(good_writes, sizeof (uint64_t)); 1218 } 1219 1220 /* 1221 * We ignore errors for log and cache devices, simply free the private data. 1222 */ 1223 static void 1224 vdev_label_sync_ignore_done(zio_t *zio) 1225 { 1226 kmem_free(zio->io_private, sizeof (uint64_t)); 1227 } 1228 1229 /* 1230 * Write all even or odd labels to all leaves of the specified vdev. 1231 */ 1232 static void 1233 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1234 vdev_t *vd, int l, uint64_t txg, int flags) 1235 { 1236 nvlist_t *label; 1237 vdev_phys_t *vp; 1238 abd_t *vp_abd; 1239 char *buf; 1240 size_t buflen; 1241 1242 for (int c = 0; c < vd->vdev_children; c++) { 1243 vdev_label_sync(zio, good_writes, 1244 vd->vdev_child[c], l, txg, flags); 1245 } 1246 1247 if (!vd->vdev_ops->vdev_op_leaf) 1248 return; 1249 1250 if (!vdev_writeable(vd)) 1251 return; 1252 1253 /* 1254 * Generate a label describing the top-level config to which we belong. 1255 */ 1256 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1257 1258 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1259 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1260 vp = abd_to_buf(vp_abd); 1261 1262 buf = vp->vp_nvlist; 1263 buflen = sizeof (vp->vp_nvlist); 1264 1265 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1266 for (; l < VDEV_LABELS; l += 2) { 1267 vdev_label_write(zio, vd, l, vp_abd, 1268 offsetof(vdev_label_t, vl_vdev_phys), 1269 sizeof (vdev_phys_t), 1270 vdev_label_sync_done, good_writes, 1271 flags | ZIO_FLAG_DONT_PROPAGATE); 1272 } 1273 } 1274 1275 abd_free(vp_abd); 1276 nvlist_free(label); 1277 } 1278 1279 int 1280 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1281 { 1282 list_t *dl = &spa->spa_config_dirty_list; 1283 vdev_t *vd; 1284 zio_t *zio; 1285 int error; 1286 1287 /* 1288 * Write the new labels to disk. 1289 */ 1290 zio = zio_root(spa, NULL, NULL, flags); 1291 1292 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1293 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1294 KM_SLEEP); 1295 1296 ASSERT(!vd->vdev_ishole); 1297 1298 zio_t *vio = zio_null(zio, spa, NULL, 1299 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1300 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1301 good_writes, flags); 1302 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1303 zio_nowait(vio); 1304 } 1305 1306 error = zio_wait(zio); 1307 1308 /* 1309 * Flush the new labels to disk. 1310 */ 1311 zio = zio_root(spa, NULL, NULL, flags); 1312 1313 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1314 zio_flush(zio, vd); 1315 1316 (void) zio_wait(zio); 1317 1318 return (error); 1319 } 1320 1321 /* 1322 * Sync the uberblock and any changes to the vdev configuration. 1323 * 1324 * The order of operations is carefully crafted to ensure that 1325 * if the system panics or loses power at any time, the state on disk 1326 * is still transactionally consistent. The in-line comments below 1327 * describe the failure semantics at each stage. 1328 * 1329 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1330 * at any time, you can just call it again, and it will resume its work. 1331 */ 1332 int 1333 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1334 { 1335 spa_t *spa = svd[0]->vdev_spa; 1336 uberblock_t *ub = &spa->spa_uberblock; 1337 int error = 0; 1338 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1339 1340 ASSERT(svdcount != 0); 1341 retry: 1342 /* 1343 * Normally, we don't want to try too hard to write every label and 1344 * uberblock. If there is a flaky disk, we don't want the rest of the 1345 * sync process to block while we retry. But if we can't write a 1346 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1347 * bailing out and declaring the pool faulted. 1348 */ 1349 if (error != 0) { 1350 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1351 return (error); 1352 flags |= ZIO_FLAG_TRYHARD; 1353 } 1354 1355 ASSERT(ub->ub_txg <= txg); 1356 1357 /* 1358 * If this isn't a resync due to I/O errors, 1359 * and nothing changed in this transaction group, 1360 * and the vdev configuration hasn't changed, 1361 * then there's nothing to do. 1362 */ 1363 if (ub->ub_txg < txg && 1364 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1365 list_is_empty(&spa->spa_config_dirty_list)) 1366 return (0); 1367 1368 if (txg > spa_freeze_txg(spa)) 1369 return (0); 1370 1371 ASSERT(txg <= spa->spa_final_txg); 1372 1373 /* 1374 * Flush the write cache of every disk that's been written to 1375 * in this transaction group. This ensures that all blocks 1376 * written in this txg will be committed to stable storage 1377 * before any uberblock that references them. 1378 */ 1379 zio_t *zio = zio_root(spa, NULL, NULL, flags); 1380 1381 for (vdev_t *vd = 1382 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 1383 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1384 zio_flush(zio, vd); 1385 1386 (void) zio_wait(zio); 1387 1388 /* 1389 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1390 * system dies in the middle of this process, that's OK: all of the 1391 * even labels that made it to disk will be newer than any uberblock, 1392 * and will therefore be considered invalid. The odd labels (L1, L3), 1393 * which have not yet been touched, will still be valid. We flush 1394 * the new labels to disk to ensure that all even-label updates 1395 * are committed to stable storage before the uberblock update. 1396 */ 1397 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 1398 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1399 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1400 "for pool '%s' when syncing out the even labels " 1401 "of dirty vdevs", error, spa_name(spa)); 1402 } 1403 goto retry; 1404 } 1405 1406 /* 1407 * Sync the uberblocks to all vdevs in svd[]. 1408 * If the system dies in the middle of this step, there are two cases 1409 * to consider, and the on-disk state is consistent either way: 1410 * 1411 * (1) If none of the new uberblocks made it to disk, then the 1412 * previous uberblock will be the newest, and the odd labels 1413 * (which had not yet been touched) will be valid with respect 1414 * to that uberblock. 1415 * 1416 * (2) If one or more new uberblocks made it to disk, then they 1417 * will be the newest, and the even labels (which had all 1418 * been successfully committed) will be valid with respect 1419 * to the new uberblocks. 1420 */ 1421 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 1422 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1423 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 1424 "%d for pool '%s'", error, spa_name(spa)); 1425 } 1426 goto retry; 1427 } 1428 1429 /* 1430 * Sync out odd labels for every dirty vdev. If the system dies 1431 * in the middle of this process, the even labels and the new 1432 * uberblocks will suffice to open the pool. The next time 1433 * the pool is opened, the first thing we'll do -- before any 1434 * user data is modified -- is mark every vdev dirty so that 1435 * all labels will be brought up to date. We flush the new labels 1436 * to disk to ensure that all odd-label updates are committed to 1437 * stable storage before the next transaction group begins. 1438 */ 1439 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 1440 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1441 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1442 "for pool '%s' when syncing out the odd labels of " 1443 "dirty vdevs", error, spa_name(spa)); 1444 } 1445 goto retry; 1446 } 1447 1448 return (0); 1449 } 1450