xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision cdd3e9a818787b4def17c9f707f435885ce0ed31)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright 2020 Joyent, Inc.
27  */
28 
29 /*
30  * Virtual Device Labels
31  * ---------------------
32  *
33  * The vdev label serves several distinct purposes:
34  *
35  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
36  *	   identity within the pool.
37  *
38  *	2. Verify that all the devices given in a configuration are present
39  *         within the pool.
40  *
41  *	3. Determine the uberblock for the pool.
42  *
43  *	4. In case of an import operation, determine the configuration of the
44  *         toplevel vdev of which it is a part.
45  *
46  *	5. If an import operation cannot find all the devices in the pool,
47  *         provide enough information to the administrator to determine which
48  *         devices are missing.
49  *
50  * It is important to note that while the kernel is responsible for writing the
51  * label, it only consumes the information in the first three cases.  The
52  * latter information is only consumed in userland when determining the
53  * configuration to import a pool.
54  *
55  *
56  * Label Organization
57  * ------------------
58  *
59  * Before describing the contents of the label, it's important to understand how
60  * the labels are written and updated with respect to the uberblock.
61  *
62  * When the pool configuration is altered, either because it was newly created
63  * or a device was added, we want to update all the labels such that we can deal
64  * with fatal failure at any point.  To this end, each disk has two labels which
65  * are updated before and after the uberblock is synced.  Assuming we have
66  * labels and an uberblock with the following transaction groups:
67  *
68  *              L1          UB          L2
69  *           +------+    +------+    +------+
70  *           |      |    |      |    |      |
71  *           | t10  |    | t10  |    | t10  |
72  *           |      |    |      |    |      |
73  *           +------+    +------+    +------+
74  *
75  * In this stable state, the labels and the uberblock were all updated within
76  * the same transaction group (10).  Each label is mirrored and checksummed, so
77  * that we can detect when we fail partway through writing the label.
78  *
79  * In order to identify which labels are valid, the labels are written in the
80  * following manner:
81  *
82  *	1. For each vdev, update 'L1' to the new label
83  *	2. Update the uberblock
84  *	3. For each vdev, update 'L2' to the new label
85  *
86  * Given arbitrary failure, we can determine the correct label to use based on
87  * the transaction group.  If we fail after updating L1 but before updating the
88  * UB, we will notice that L1's transaction group is greater than the uberblock,
89  * so L2 must be valid.  If we fail after writing the uberblock but before
90  * writing L2, we will notice that L2's transaction group is less than L1, and
91  * therefore L1 is valid.
92  *
93  * Another added complexity is that not every label is updated when the config
94  * is synced.  If we add a single device, we do not want to have to re-write
95  * every label for every device in the pool.  This means that both L1 and L2 may
96  * be older than the pool uberblock, because the necessary information is stored
97  * on another vdev.
98  *
99  *
100  * On-disk Format
101  * --------------
102  *
103  * The vdev label consists of two distinct parts, and is wrapped within the
104  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
105  * VTOC disk labels, but is otherwise ignored.
106  *
107  * The first half of the label is a packed nvlist which contains pool wide
108  * properties, per-vdev properties, and configuration information.  It is
109  * described in more detail below.
110  *
111  * The latter half of the label consists of a redundant array of uberblocks.
112  * These uberblocks are updated whenever a transaction group is committed,
113  * or when the configuration is updated.  When a pool is loaded, we scan each
114  * vdev for the 'best' uberblock.
115  *
116  *
117  * Configuration Information
118  * -------------------------
119  *
120  * The nvlist describing the pool and vdev contains the following elements:
121  *
122  *	version		ZFS on-disk version
123  *	name		Pool name
124  *	state		Pool state
125  *	txg		Transaction group in which this label was written
126  *	pool_guid	Unique identifier for this pool
127  *	vdev_tree	An nvlist describing vdev tree.
128  *	features_for_read
129  *			An nvlist of the features necessary for reading the MOS.
130  *
131  * Each leaf device label also contains the following:
132  *
133  *	top_guid	Unique ID for top-level vdev in which this is contained
134  *	guid		Unique ID for the leaf vdev
135  *
136  * The 'vs' configuration follows the format described in 'spa_config.c'.
137  */
138 
139 #include <sys/zfs_context.h>
140 #include <sys/spa.h>
141 #include <sys/spa_impl.h>
142 #include <sys/dmu.h>
143 #include <sys/zap.h>
144 #include <sys/vdev.h>
145 #include <sys/vdev_impl.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
153 #include <sys/byteorder.h>
154 #include <sys/zfs_bootenv.h>
155 
156 /*
157  * Basic routines to read and write from a vdev label.
158  * Used throughout the rest of this file.
159  */
160 uint64_t
161 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
162 {
163 	ASSERT(offset < sizeof (vdev_label_t));
164 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
165 
166 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
167 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
168 }
169 
170 /*
171  * Returns back the vdev label associated with the passed in offset.
172  */
173 int
174 vdev_label_number(uint64_t psize, uint64_t offset)
175 {
176 	int l;
177 
178 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
179 		offset -= psize - VDEV_LABEL_END_SIZE;
180 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
181 	}
182 	l = offset / sizeof (vdev_label_t);
183 	return (l < VDEV_LABELS ? l : -1);
184 }
185 
186 static void
187 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
188     uint64_t size, zio_done_func_t *done, void *private, int flags)
189 {
190 	ASSERT(
191 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
192 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
193 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
194 
195 	zio_nowait(zio_read_phys(zio, vd,
196 	    vdev_label_offset(vd->vdev_psize, l, offset),
197 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
198 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
199 }
200 
201 void
202 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
203     uint64_t size, zio_done_func_t *done, void *private, int flags)
204 {
205 	ASSERT(
206 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
207 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
208 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
209 
210 	zio_nowait(zio_write_phys(zio, vd,
211 	    vdev_label_offset(vd->vdev_psize, l, offset),
212 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
213 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
214 }
215 
216 /*
217  * Generate the nvlist representing this vdev's stats
218  */
219 void
220 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
221 {
222 	nvlist_t *nvx;
223 	vdev_stat_t *vs;
224 	vdev_stat_ex_t *vsx;
225 
226 	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
227 	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
228 
229 	vdev_get_stats_ex(vd, vs, vsx);
230 	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
231 	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
232 
233 	/*
234 	 * Add extended stats into a special extended stats nvlist.  This keeps
235 	 * all the extended stats nicely grouped together.  The extended stats
236 	 * nvlist is then added to the main nvlist.
237 	 */
238 	nvx = fnvlist_alloc();
239 
240 	/* ZIOs in flight to disk */
241 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
242 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
243 
244 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
245 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
246 
247 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
248 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
249 
250 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
251 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
252 
253 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
254 	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
255 
256 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
257 	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
258 
259 	/* ZIOs pending */
260 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
261 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
262 
263 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
264 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
265 
266 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
267 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
268 
269 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
270 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
271 
272 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
273 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
274 
275 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
276 	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
277 
278 	/* Histograms */
279 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
280 	    vsx->vsx_total_histo[ZIO_TYPE_READ],
281 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
282 
283 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
284 	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
285 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
286 
287 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
288 	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
289 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
290 
291 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
292 	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
293 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
294 
295 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
296 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
297 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
298 
299 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
300 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
301 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
302 
303 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
304 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
305 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
306 
307 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
308 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
309 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
310 
311 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
312 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
313 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
314 
315 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
316 	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
317 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
318 
319 	/* Request sizes */
320 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
321 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
322 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
323 
324 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
325 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
326 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
327 
328 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
329 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
330 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
331 
332 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
333 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
334 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
335 
336 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
337 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
338 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
339 
340 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
341 	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
342 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
343 
344 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
345 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
346 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
347 
348 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
349 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
350 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
351 
352 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
353 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
354 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
355 
356 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
357 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
358 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
359 
360 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
361 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
362 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
363 
364 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
365 	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
366 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
367 
368 	/* IO delays */
369 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
370 
371 	/* Add extended stats nvlist to main nvlist */
372 	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
373 
374 	nvlist_free(nvx);
375 	kmem_free(vs, sizeof (*vs));
376 	kmem_free(vsx, sizeof (*vsx));
377 }
378 
379 static void
380 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
381 {
382 	spa_t *spa = vd->vdev_spa;
383 
384 	if (vd != spa->spa_root_vdev)
385 		return;
386 
387 	/* provide either current or previous scan information */
388 	pool_scan_stat_t ps;
389 	if (spa_scan_get_stats(spa, &ps) == 0) {
390 		fnvlist_add_uint64_array(nvl,
391 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
392 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
393 	}
394 
395 	pool_removal_stat_t prs;
396 	if (spa_removal_get_stats(spa, &prs) == 0) {
397 		fnvlist_add_uint64_array(nvl,
398 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
399 		    sizeof (prs) / sizeof (uint64_t));
400 	}
401 
402 	pool_checkpoint_stat_t pcs;
403 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
404 		fnvlist_add_uint64_array(nvl,
405 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
406 		    sizeof (pcs) / sizeof (uint64_t));
407 	}
408 }
409 
410 /*
411  * Generate the nvlist representing this vdev's config.
412  */
413 nvlist_t *
414 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
415     vdev_config_flag_t flags)
416 {
417 	nvlist_t *nv = NULL;
418 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
419 
420 	nv = fnvlist_alloc();
421 
422 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
423 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
424 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
425 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
426 
427 	if (vd->vdev_path != NULL)
428 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
429 
430 	if (vd->vdev_devid != NULL)
431 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
432 
433 	if (vd->vdev_physpath != NULL)
434 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
435 		    vd->vdev_physpath);
436 
437 	if (vd->vdev_fru != NULL)
438 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
439 
440 	if (vd->vdev_nparity != 0) {
441 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
442 		    VDEV_TYPE_RAIDZ) == 0);
443 
444 		/*
445 		 * Make sure someone hasn't managed to sneak a fancy new vdev
446 		 * into a crufty old storage pool.
447 		 */
448 		ASSERT(vd->vdev_nparity == 1 ||
449 		    (vd->vdev_nparity <= 2 &&
450 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
451 		    (vd->vdev_nparity <= 3 &&
452 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
453 
454 		/*
455 		 * Note that we'll add the nparity tag even on storage pools
456 		 * that only support a single parity device -- older software
457 		 * will just ignore it.
458 		 */
459 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
460 	}
461 
462 	if (vd->vdev_wholedisk != -1ULL)
463 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
464 		    vd->vdev_wholedisk);
465 
466 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
467 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
468 
469 	if (vd->vdev_isspare)
470 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
471 
472 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
473 	    vd == vd->vdev_top) {
474 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
475 		    vd->vdev_ms_array);
476 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
477 		    vd->vdev_ms_shift);
478 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
479 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
480 		    vd->vdev_asize);
481 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
482 		if (vd->vdev_removing) {
483 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
484 			    vd->vdev_removing);
485 		}
486 
487 		/* zpool command expects alloc class data */
488 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
489 			const char *bias = NULL;
490 
491 			switch (vd->vdev_alloc_bias) {
492 			case VDEV_BIAS_LOG:
493 				bias = VDEV_ALLOC_BIAS_LOG;
494 				break;
495 			case VDEV_BIAS_SPECIAL:
496 				bias = VDEV_ALLOC_BIAS_SPECIAL;
497 				break;
498 			case VDEV_BIAS_DEDUP:
499 				bias = VDEV_ALLOC_BIAS_DEDUP;
500 				break;
501 			default:
502 				ASSERT3U(vd->vdev_alloc_bias, ==,
503 				    VDEV_BIAS_NONE);
504 			}
505 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
506 			    bias);
507 		}
508 	}
509 
510 	if (vd->vdev_dtl_sm != NULL) {
511 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
512 		    space_map_object(vd->vdev_dtl_sm));
513 	}
514 
515 	if (vic->vic_mapping_object != 0) {
516 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
517 		    vic->vic_mapping_object);
518 	}
519 
520 	if (vic->vic_births_object != 0) {
521 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
522 		    vic->vic_births_object);
523 	}
524 
525 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
526 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
527 		    vic->vic_prev_indirect_vdev);
528 	}
529 
530 	if (vd->vdev_crtxg)
531 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
532 
533 	if (flags & VDEV_CONFIG_MOS) {
534 		if (vd->vdev_leaf_zap != 0) {
535 			ASSERT(vd->vdev_ops->vdev_op_leaf);
536 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
537 			    vd->vdev_leaf_zap);
538 		}
539 
540 		if (vd->vdev_top_zap != 0) {
541 			ASSERT(vd == vd->vdev_top);
542 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
543 			    vd->vdev_top_zap);
544 		}
545 
546 		if (vd->vdev_resilver_deferred) {
547 			ASSERT(vd->vdev_ops->vdev_op_leaf);
548 			ASSERT(spa->spa_resilver_deferred);
549 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
550 		}
551 	}
552 
553 	if (getstats) {
554 		vdev_config_generate_stats(vd, nv);
555 
556 		root_vdev_actions_getprogress(vd, nv);
557 
558 		/*
559 		 * Note: this can be called from open context
560 		 * (spa_get_stats()), so we need the rwlock to prevent
561 		 * the mapping from being changed by condensing.
562 		 */
563 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
564 		if (vd->vdev_indirect_mapping != NULL) {
565 			ASSERT(vd->vdev_indirect_births != NULL);
566 			vdev_indirect_mapping_t *vim =
567 			    vd->vdev_indirect_mapping;
568 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
569 			    vdev_indirect_mapping_size(vim));
570 		}
571 		rw_exit(&vd->vdev_indirect_rwlock);
572 		if (vd->vdev_mg != NULL &&
573 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
574 			/*
575 			 * Compute approximately how much memory would be used
576 			 * for the indirect mapping if this device were to
577 			 * be removed.
578 			 *
579 			 * Note: If the frag metric is invalid, then not
580 			 * enough metaslabs have been converted to have
581 			 * histograms.
582 			 */
583 			uint64_t seg_count = 0;
584 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
585 
586 			/*
587 			 * There are the same number of allocated segments
588 			 * as free segments, so we will have at least one
589 			 * entry per free segment.  However, small free
590 			 * segments (smaller than vdev_removal_max_span)
591 			 * will be combined with adjacent allocated segments
592 			 * as a single mapping.
593 			 */
594 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
595 				if (1ULL << (i + 1) < vdev_removal_max_span) {
596 					to_alloc +=
597 					    vd->vdev_mg->mg_histogram[i] <<
598 					    i + 1;
599 				} else {
600 					seg_count +=
601 					    vd->vdev_mg->mg_histogram[i];
602 				}
603 			}
604 
605 			/*
606 			 * The maximum length of a mapping is
607 			 * zfs_remove_max_segment, so we need at least one entry
608 			 * per zfs_remove_max_segment of allocated data.
609 			 */
610 			seg_count += to_alloc / zfs_remove_max_segment;
611 
612 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
613 			    seg_count *
614 			    sizeof (vdev_indirect_mapping_entry_phys_t));
615 		}
616 	}
617 
618 	if (!vd->vdev_ops->vdev_op_leaf) {
619 		nvlist_t **child;
620 		int c, idx;
621 
622 		ASSERT(!vd->vdev_ishole);
623 
624 		/*
625 		 * Indirect vdevs store the remnants of a removed vdev;
626 		 * they have no direct children, but are not leaf devices.
627 		 * The content of an indirect device is stored elsewhere
628 		 * in the pool.  We can avoid a pointless zero-length alloc
629 		 * and return early here.
630 		 */
631 		if (vd->vdev_children == 0)
632 			return (nv);
633 
634 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
635 		    KM_SLEEP);
636 
637 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
638 			vdev_t *cvd = vd->vdev_child[c];
639 
640 			/*
641 			 * If we're generating an nvlist of removing
642 			 * vdevs then skip over any device which is
643 			 * not being removed.
644 			 */
645 			if ((flags & VDEV_CONFIG_REMOVING) &&
646 			    !cvd->vdev_removing)
647 				continue;
648 
649 			child[idx++] = vdev_config_generate(spa, cvd,
650 			    getstats, flags);
651 		}
652 
653 		if (idx) {
654 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
655 			    child, idx);
656 		}
657 
658 		for (c = 0; c < idx; c++)
659 			nvlist_free(child[c]);
660 
661 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
662 
663 	} else {
664 		const char *aux = NULL;
665 
666 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
667 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
668 		if (vd->vdev_resilver_txg != 0)
669 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
670 			    vd->vdev_resilver_txg);
671 		if (vd->vdev_faulted)
672 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
673 		if (vd->vdev_degraded)
674 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
675 		if (vd->vdev_removed)
676 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
677 		if (vd->vdev_unspare)
678 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
679 		if (vd->vdev_ishole)
680 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
681 
682 		switch (vd->vdev_stat.vs_aux) {
683 		case VDEV_AUX_ERR_EXCEEDED:
684 			aux = "err_exceeded";
685 			break;
686 
687 		case VDEV_AUX_EXTERNAL:
688 			aux = "external";
689 			break;
690 		}
691 
692 		if (aux != NULL)
693 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
694 
695 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
696 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
697 			    vd->vdev_orig_guid);
698 		}
699 	}
700 
701 	return (nv);
702 }
703 
704 /*
705  * Generate a view of the top-level vdevs.  If we currently have holes
706  * in the namespace, then generate an array which contains a list of holey
707  * vdevs.  Additionally, add the number of top-level children that currently
708  * exist.
709  */
710 void
711 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
712 {
713 	vdev_t *rvd = spa->spa_root_vdev;
714 	uint64_t *array;
715 	uint_t c, idx;
716 
717 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
718 
719 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
720 		vdev_t *tvd = rvd->vdev_child[c];
721 
722 		if (tvd->vdev_ishole) {
723 			array[idx++] = c;
724 		}
725 	}
726 
727 	if (idx) {
728 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
729 		    array, idx) == 0);
730 	}
731 
732 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
733 	    rvd->vdev_children) == 0);
734 
735 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
736 }
737 
738 /*
739  * Returns the configuration from the label of the given vdev. For vdevs
740  * which don't have a txg value stored on their label (i.e. spares/cache)
741  * or have not been completely initialized (txg = 0) just return
742  * the configuration from the first valid label we find. Otherwise,
743  * find the most up-to-date label that does not exceed the specified
744  * 'txg' value.
745  */
746 nvlist_t *
747 vdev_label_read_config(vdev_t *vd, uint64_t txg)
748 {
749 	spa_t *spa = vd->vdev_spa;
750 	nvlist_t *config = NULL;
751 	vdev_phys_t *vp;
752 	abd_t *vp_abd;
753 	zio_t *zio;
754 	uint64_t best_txg = 0;
755 	uint64_t label_txg = 0;
756 	int error = 0;
757 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
758 	    ZIO_FLAG_SPECULATIVE;
759 
760 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
761 
762 	if (!vdev_readable(vd))
763 		return (NULL);
764 
765 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
766 	vp = abd_to_buf(vp_abd);
767 
768 retry:
769 	for (int l = 0; l < VDEV_LABELS; l++) {
770 		nvlist_t *label = NULL;
771 
772 		zio = zio_root(spa, NULL, NULL, flags);
773 
774 		vdev_label_read(zio, vd, l, vp_abd,
775 		    offsetof(vdev_label_t, vl_vdev_phys),
776 		    sizeof (vdev_phys_t), NULL, NULL, flags);
777 
778 		if (zio_wait(zio) == 0 &&
779 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
780 		    &label, 0) == 0) {
781 			/*
782 			 * Auxiliary vdevs won't have txg values in their
783 			 * labels and newly added vdevs may not have been
784 			 * completely initialized so just return the
785 			 * configuration from the first valid label we
786 			 * encounter.
787 			 */
788 			error = nvlist_lookup_uint64(label,
789 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
790 			if ((error || label_txg == 0) && !config) {
791 				config = label;
792 				break;
793 			} else if (label_txg <= txg && label_txg > best_txg) {
794 				best_txg = label_txg;
795 				nvlist_free(config);
796 				config = fnvlist_dup(label);
797 			}
798 		}
799 
800 		if (label != NULL) {
801 			nvlist_free(label);
802 			label = NULL;
803 		}
804 	}
805 
806 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
807 		flags |= ZIO_FLAG_TRYHARD;
808 		goto retry;
809 	}
810 
811 	/*
812 	 * We found a valid label but it didn't pass txg restrictions.
813 	 */
814 	if (config == NULL && label_txg != 0) {
815 		vdev_dbgmsg(vd, "label discarded as txg is too large "
816 		    "(%llu > %llu)", (u_longlong_t)label_txg,
817 		    (u_longlong_t)txg);
818 	}
819 
820 	abd_free(vp_abd);
821 
822 	return (config);
823 }
824 
825 /*
826  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
827  * in with the device guid if this spare is active elsewhere on the system.
828  */
829 static boolean_t
830 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
831     uint64_t *spare_guid, uint64_t *l2cache_guid)
832 {
833 	spa_t *spa = vd->vdev_spa;
834 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
835 	uint64_t vdtxg = 0;
836 	nvlist_t *label;
837 
838 	if (spare_guid)
839 		*spare_guid = 0ULL;
840 	if (l2cache_guid)
841 		*l2cache_guid = 0ULL;
842 
843 	/*
844 	 * Read the label, if any, and perform some basic sanity checks.
845 	 */
846 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
847 		return (B_FALSE);
848 
849 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
850 	    &vdtxg);
851 
852 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
853 	    &state) != 0 ||
854 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
855 	    &device_guid) != 0) {
856 		nvlist_free(label);
857 		return (B_FALSE);
858 	}
859 
860 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
861 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
862 	    &pool_guid) != 0 ||
863 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
864 	    &txg) != 0)) {
865 		nvlist_free(label);
866 		return (B_FALSE);
867 	}
868 
869 	nvlist_free(label);
870 
871 	/*
872 	 * Check to see if this device indeed belongs to the pool it claims to
873 	 * be a part of.  The only way this is allowed is if the device is a hot
874 	 * spare (which we check for later on).
875 	 */
876 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
877 	    !spa_guid_exists(pool_guid, device_guid) &&
878 	    !spa_spare_exists(device_guid, NULL, NULL) &&
879 	    !spa_l2cache_exists(device_guid, NULL))
880 		return (B_FALSE);
881 
882 	/*
883 	 * If the transaction group is zero, then this an initialized (but
884 	 * unused) label.  This is only an error if the create transaction
885 	 * on-disk is the same as the one we're using now, in which case the
886 	 * user has attempted to add the same vdev multiple times in the same
887 	 * transaction.
888 	 */
889 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
890 	    txg == 0 && vdtxg == crtxg)
891 		return (B_TRUE);
892 
893 	/*
894 	 * Check to see if this is a spare device.  We do an explicit check for
895 	 * spa_has_spare() here because it may be on our pending list of spares
896 	 * to add.  We also check if it is an l2cache device.
897 	 */
898 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
899 	    spa_has_spare(spa, device_guid)) {
900 		if (spare_guid)
901 			*spare_guid = device_guid;
902 
903 		switch (reason) {
904 		case VDEV_LABEL_CREATE:
905 		case VDEV_LABEL_L2CACHE:
906 			return (B_TRUE);
907 
908 		case VDEV_LABEL_REPLACE:
909 			return (!spa_has_spare(spa, device_guid) ||
910 			    spare_pool != 0ULL);
911 
912 		case VDEV_LABEL_SPARE:
913 			return (spa_has_spare(spa, device_guid));
914 		}
915 	}
916 
917 	/*
918 	 * Check to see if this is an l2cache device.
919 	 */
920 	if (spa_l2cache_exists(device_guid, NULL))
921 		return (B_TRUE);
922 
923 	/*
924 	 * We can't rely on a pool's state if it's been imported
925 	 * read-only.  Instead we look to see if the pools is marked
926 	 * read-only in the namespace and set the state to active.
927 	 */
928 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
929 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
930 	    spa_mode(spa) == FREAD)
931 		state = POOL_STATE_ACTIVE;
932 
933 	/*
934 	 * If the device is marked ACTIVE, then this device is in use by another
935 	 * pool on the system.
936 	 */
937 	return (state == POOL_STATE_ACTIVE);
938 }
939 
940 /*
941  * Initialize a vdev label.  We check to make sure each leaf device is not in
942  * use, and writable.  We put down an initial label which we will later
943  * overwrite with a complete label.  Note that it's important to do this
944  * sequentially, not in parallel, so that we catch cases of multiple use of the
945  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
946  * itself.
947  */
948 int
949 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
950 {
951 	spa_t *spa = vd->vdev_spa;
952 	nvlist_t *label;
953 	vdev_phys_t *vp;
954 	abd_t *vp_abd;
955 	abd_t *bootenv;
956 	uberblock_t *ub;
957 	abd_t *ub_abd;
958 	zio_t *zio;
959 	char *buf;
960 	size_t buflen;
961 	int error;
962 	uint64_t spare_guid = 0, l2cache_guid;
963 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
964 
965 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
966 
967 	for (int c = 0; c < vd->vdev_children; c++)
968 		if ((error = vdev_label_init(vd->vdev_child[c],
969 		    crtxg, reason)) != 0)
970 			return (error);
971 
972 	/* Track the creation time for this vdev */
973 	vd->vdev_crtxg = crtxg;
974 
975 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
976 		return (0);
977 
978 	/*
979 	 * Dead vdevs cannot be initialized.
980 	 */
981 	if (vdev_is_dead(vd))
982 		return (SET_ERROR(EIO));
983 
984 	/*
985 	 * Determine if the vdev is in use.
986 	 */
987 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
988 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
989 		return (SET_ERROR(EBUSY));
990 
991 	/*
992 	 * If this is a request to add or replace a spare or l2cache device
993 	 * that is in use elsewhere on the system, then we must update the
994 	 * guid (which was initialized to a random value) to reflect the
995 	 * actual GUID (which is shared between multiple pools).
996 	 */
997 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
998 	    spare_guid != 0ULL) {
999 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
1000 
1001 		vd->vdev_guid += guid_delta;
1002 
1003 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1004 			pvd->vdev_guid_sum += guid_delta;
1005 
1006 		/*
1007 		 * If this is a replacement, then we want to fallthrough to the
1008 		 * rest of the code.  If we're adding a spare, then it's already
1009 		 * labeled appropriately and we can just return.
1010 		 */
1011 		if (reason == VDEV_LABEL_SPARE)
1012 			return (0);
1013 		ASSERT(reason == VDEV_LABEL_REPLACE ||
1014 		    reason == VDEV_LABEL_SPLIT);
1015 	}
1016 
1017 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1018 	    l2cache_guid != 0ULL) {
1019 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1020 
1021 		vd->vdev_guid += guid_delta;
1022 
1023 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1024 			pvd->vdev_guid_sum += guid_delta;
1025 
1026 		/*
1027 		 * If this is a replacement, then we want to fallthrough to the
1028 		 * rest of the code.  If we're adding an l2cache, then it's
1029 		 * already labeled appropriately and we can just return.
1030 		 */
1031 		if (reason == VDEV_LABEL_L2CACHE)
1032 			return (0);
1033 		ASSERT(reason == VDEV_LABEL_REPLACE);
1034 	}
1035 
1036 	/*
1037 	 * Initialize its label.
1038 	 */
1039 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1040 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1041 	vp = abd_to_buf(vp_abd);
1042 
1043 	/*
1044 	 * Generate a label describing the pool and our top-level vdev.
1045 	 * We mark it as being from txg 0 to indicate that it's not
1046 	 * really part of an active pool just yet.  The labels will
1047 	 * be written again with a meaningful txg by spa_sync().
1048 	 */
1049 	if (reason == VDEV_LABEL_SPARE ||
1050 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1051 		/*
1052 		 * For inactive hot spares, we generate a special label that
1053 		 * identifies as a mutually shared hot spare.  We write the
1054 		 * label if we are adding a hot spare, or if we are removing an
1055 		 * active hot spare (in which case we want to revert the
1056 		 * labels).
1057 		 */
1058 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1059 
1060 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1061 		    spa_version(spa)) == 0);
1062 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1063 		    POOL_STATE_SPARE) == 0);
1064 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1065 		    vd->vdev_guid) == 0);
1066 	} else if (reason == VDEV_LABEL_L2CACHE ||
1067 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1068 		/*
1069 		 * For level 2 ARC devices, add a special label.
1070 		 */
1071 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1072 
1073 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1074 		    spa_version(spa)) == 0);
1075 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1076 		    POOL_STATE_L2CACHE) == 0);
1077 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1078 		    vd->vdev_guid) == 0);
1079 	} else {
1080 		uint64_t txg = 0ULL;
1081 
1082 		if (reason == VDEV_LABEL_SPLIT)
1083 			txg = spa->spa_uberblock.ub_txg;
1084 		label = spa_config_generate(spa, vd, txg, B_FALSE);
1085 
1086 		/*
1087 		 * Add our creation time.  This allows us to detect multiple
1088 		 * vdev uses as described above, and automatically expires if we
1089 		 * fail.
1090 		 */
1091 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1092 		    crtxg) == 0);
1093 	}
1094 
1095 	buf = vp->vp_nvlist;
1096 	buflen = sizeof (vp->vp_nvlist);
1097 
1098 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1099 	if (error != 0) {
1100 		nvlist_free(label);
1101 		abd_free(vp_abd);
1102 		/* EFAULT means nvlist_pack ran out of room */
1103 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
1104 	}
1105 
1106 	/*
1107 	 * Initialize uberblock template.
1108 	 */
1109 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1110 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1111 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1112 	ub = abd_to_buf(ub_abd);
1113 	ub->ub_txg = 0;
1114 
1115 	/* Initialize the 2nd padding area. */
1116 	bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1117 	abd_zero(bootenv, VDEV_PAD_SIZE);
1118 
1119 	/*
1120 	 * Write everything in parallel.
1121 	 */
1122 retry:
1123 	zio = zio_root(spa, NULL, NULL, flags);
1124 
1125 	for (int l = 0; l < VDEV_LABELS; l++) {
1126 
1127 		vdev_label_write(zio, vd, l, vp_abd,
1128 		    offsetof(vdev_label_t, vl_vdev_phys),
1129 		    sizeof (vdev_phys_t), NULL, NULL, flags);
1130 
1131 		/*
1132 		 * Skip the 1st padding area.
1133 		 * Zero out the 2nd padding area where it might have
1134 		 * left over data from previous filesystem format.
1135 		 */
1136 		vdev_label_write(zio, vd, l, bootenv,
1137 		    offsetof(vdev_label_t, vl_be),
1138 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1139 
1140 		vdev_label_write(zio, vd, l, ub_abd,
1141 		    offsetof(vdev_label_t, vl_uberblock),
1142 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1143 	}
1144 
1145 	error = zio_wait(zio);
1146 
1147 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1148 		flags |= ZIO_FLAG_TRYHARD;
1149 		goto retry;
1150 	}
1151 
1152 	nvlist_free(label);
1153 	abd_free(bootenv);
1154 	abd_free(ub_abd);
1155 	abd_free(vp_abd);
1156 
1157 	/*
1158 	 * If this vdev hasn't been previously identified as a spare, then we
1159 	 * mark it as such only if a) we are labeling it as a spare, or b) it
1160 	 * exists as a spare elsewhere in the system.  Do the same for
1161 	 * level 2 ARC devices.
1162 	 */
1163 	if (error == 0 && !vd->vdev_isspare &&
1164 	    (reason == VDEV_LABEL_SPARE ||
1165 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1166 		spa_spare_add(vd);
1167 
1168 	if (error == 0 && !vd->vdev_isl2cache &&
1169 	    (reason == VDEV_LABEL_L2CACHE ||
1170 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1171 		spa_l2cache_add(vd);
1172 
1173 	return (error);
1174 }
1175 
1176 /*
1177  * Done callback for vdev_label_read_bootenv_impl. If this is the first
1178  * callback to finish, store our abd in the callback pointer. Otherwise, we
1179  * just free our abd and return.
1180  */
1181 static void
1182 vdev_label_read_bootenv_done(zio_t *zio)
1183 {
1184 	zio_t *rio = zio->io_private;
1185 	abd_t **cbp = rio->io_private;
1186 
1187 	ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1188 
1189 	if (zio->io_error == 0) {
1190 		mutex_enter(&rio->io_lock);
1191 		if (*cbp == NULL) {
1192 			/* Will free this buffer in vdev_label_read_bootenv. */
1193 			*cbp = zio->io_abd;
1194 		} else {
1195 			abd_free(zio->io_abd);
1196 		}
1197 		mutex_exit(&rio->io_lock);
1198 	} else {
1199 		abd_free(zio->io_abd);
1200 	}
1201 }
1202 
1203 static void
1204 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1205 {
1206 	for (int c = 0; c < vd->vdev_children; c++)
1207 		vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1208 
1209 	/*
1210 	 * We just use the first label that has a correct checksum; the
1211 	 * bootloader should have rewritten them all to be the same on boot,
1212 	 * and any changes we made since boot have been the same across all
1213 	 * labels.
1214 	 */
1215 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1216 		for (int l = 0; l < VDEV_LABELS; l++) {
1217 			vdev_label_read(zio, vd, l,
1218 			    abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1219 			    offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1220 			    vdev_label_read_bootenv_done, zio, flags);
1221 		}
1222 	}
1223 }
1224 
1225 int
1226 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
1227 {
1228 	nvlist_t *config;
1229 	spa_t *spa = rvd->vdev_spa;
1230 	abd_t *abd = NULL;
1231 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1232 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1233 
1234 	ASSERT(bootenv);
1235 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1236 
1237 	zio_t *zio = zio_root(spa, NULL, &abd, flags);
1238 	vdev_label_read_bootenv_impl(zio, rvd, flags);
1239 	int err = zio_wait(zio);
1240 
1241 	if (abd != NULL) {
1242 		char *buf;
1243 		vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1244 
1245 		vbe->vbe_version = ntohll(vbe->vbe_version);
1246 		switch (vbe->vbe_version) {
1247 		case VB_RAW:
1248 			/*
1249 			 * if we have textual data in vbe_bootenv, create nvlist
1250 			 * with key "envmap".
1251 			 */
1252 			fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1253 			vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1254 			fnvlist_add_string(bootenv, GRUB_ENVMAP,
1255 			    vbe->vbe_bootenv);
1256 			break;
1257 
1258 		case VB_NVLIST:
1259 			err = nvlist_unpack(vbe->vbe_bootenv,
1260 			    sizeof (vbe->vbe_bootenv), &config, 0);
1261 			if (err == 0) {
1262 				fnvlist_merge(bootenv, config);
1263 				nvlist_free(config);
1264 				break;
1265 			}
1266 			/* FALLTHROUGH */
1267 		default:
1268 			/* Check for FreeBSD zfs bootonce command string */
1269 			buf = abd_to_buf(abd);
1270 			if (*buf == '\0') {
1271 				fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1272 				    VB_NVLIST);
1273 				break;
1274 			}
1275 			fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
1276 		}
1277 
1278 		/*
1279 		 * abd was allocated in vdev_label_read_bootenv_impl()
1280 		 */
1281 		abd_free(abd);
1282 		/*
1283 		 * If we managed to read any successfully,
1284 		 * return success.
1285 		 */
1286 		return (0);
1287 	}
1288 	return (err);
1289 }
1290 
1291 int
1292 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
1293 {
1294 	zio_t *zio;
1295 	spa_t *spa = vd->vdev_spa;
1296 	vdev_boot_envblock_t *bootenv;
1297 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1298 	int error;
1299 	size_t nvsize;
1300 	char *nvbuf;
1301 
1302 	error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1303 	if (error != 0)
1304 		return (SET_ERROR(error));
1305 
1306 	if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
1307 		return (SET_ERROR(E2BIG));
1308 	}
1309 
1310 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1311 
1312 	error = ENXIO;
1313 	for (int c = 0; c < vd->vdev_children; c++) {
1314 		int child_err;
1315 
1316 		child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
1317 		/*
1318 		 * As long as any of the disks managed to write all of their
1319 		 * labels successfully, return success.
1320 		 */
1321 		if (child_err == 0)
1322 			error = child_err;
1323 	}
1324 
1325 	if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1326 	    !vdev_writeable(vd)) {
1327 		return (error);
1328 	}
1329 	ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1330 	abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1331 	abd_zero(abd, VDEV_PAD_SIZE);
1332 
1333 	bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1334 	nvbuf = bootenv->vbe_bootenv;
1335 	nvsize = sizeof (bootenv->vbe_bootenv);
1336 
1337 	bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1338 	switch (bootenv->vbe_version) {
1339 	case VB_RAW:
1340 		if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) {
1341 			(void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize);
1342 		}
1343 		error = 0;
1344 		break;
1345 
1346 	case VB_NVLIST:
1347 		error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1348 		    KM_SLEEP);
1349 		break;
1350 
1351 	default:
1352 		error = EINVAL;
1353 		break;
1354 	}
1355 
1356 	if (error == 0) {
1357 		bootenv->vbe_version = htonll(bootenv->vbe_version);
1358 		abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1359 	} else {
1360 		abd_free(abd);
1361 		return (SET_ERROR(error));
1362 	}
1363 
1364 retry:
1365 	zio = zio_root(spa, NULL, NULL, flags);
1366 	for (int l = 0; l < VDEV_LABELS; l++) {
1367 		vdev_label_write(zio, vd, l, abd,
1368 		    offsetof(vdev_label_t, vl_be),
1369 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1370 	}
1371 
1372 	error = zio_wait(zio);
1373 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1374 		flags |= ZIO_FLAG_TRYHARD;
1375 		goto retry;
1376 	}
1377 
1378 	abd_free(abd);
1379 	return (error);
1380 }
1381 
1382 /*
1383  * ==========================================================================
1384  * uberblock load/sync
1385  * ==========================================================================
1386  */
1387 
1388 /*
1389  * Consider the following situation: txg is safely synced to disk.  We've
1390  * written the first uberblock for txg + 1, and then we lose power.  When we
1391  * come back up, we fail to see the uberblock for txg + 1 because, say,
1392  * it was on a mirrored device and the replica to which we wrote txg + 1
1393  * is now offline.  If we then make some changes and sync txg + 1, and then
1394  * the missing replica comes back, then for a few seconds we'll have two
1395  * conflicting uberblocks on disk with the same txg.  The solution is simple:
1396  * among uberblocks with equal txg, choose the one with the latest timestamp.
1397  */
1398 static int
1399 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1400 {
1401 	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1402 
1403 	if (likely(cmp))
1404 		return (cmp);
1405 
1406 	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1407 	if (likely(cmp))
1408 		return (cmp);
1409 
1410 	/*
1411 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1412 	 * ZFS, e.g. zfsonlinux >= 0.7.
1413 	 *
1414 	 * If one ub has MMP and the other does not, they were written by
1415 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1416 	 * a 0 value.
1417 	 *
1418 	 * Since timestamp and txg are the same if we get this far, either is
1419 	 * acceptable for importing the pool.
1420 	 */
1421 	unsigned int seq1 = 0;
1422 	unsigned int seq2 = 0;
1423 
1424 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1425 		seq1 = MMP_SEQ(ub1);
1426 
1427 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1428 		seq2 = MMP_SEQ(ub2);
1429 
1430 	return (TREE_CMP(seq1, seq2));
1431 }
1432 
1433 struct ubl_cbdata {
1434 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1435 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1436 };
1437 
1438 static void
1439 vdev_uberblock_load_done(zio_t *zio)
1440 {
1441 	vdev_t *vd = zio->io_vd;
1442 	spa_t *spa = zio->io_spa;
1443 	zio_t *rio = zio->io_private;
1444 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1445 	struct ubl_cbdata *cbp = rio->io_private;
1446 
1447 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1448 
1449 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1450 		mutex_enter(&rio->io_lock);
1451 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1452 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1453 			/*
1454 			 * Keep track of the vdev in which this uberblock
1455 			 * was found. We will use this information later
1456 			 * to obtain the config nvlist associated with
1457 			 * this uberblock.
1458 			 */
1459 			*cbp->ubl_ubbest = *ub;
1460 			cbp->ubl_vd = vd;
1461 		}
1462 		mutex_exit(&rio->io_lock);
1463 	}
1464 
1465 	abd_free(zio->io_abd);
1466 }
1467 
1468 static void
1469 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1470     struct ubl_cbdata *cbp)
1471 {
1472 	for (int c = 0; c < vd->vdev_children; c++)
1473 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1474 
1475 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1476 		for (int l = 0; l < VDEV_LABELS; l++) {
1477 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1478 				vdev_label_read(zio, vd, l,
1479 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1480 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1481 				    VDEV_UBERBLOCK_SIZE(vd),
1482 				    vdev_uberblock_load_done, zio, flags);
1483 			}
1484 		}
1485 	}
1486 }
1487 
1488 /*
1489  * Reads the 'best' uberblock from disk along with its associated
1490  * configuration. First, we read the uberblock array of each label of each
1491  * vdev, keeping track of the uberblock with the highest txg in each array.
1492  * Then, we read the configuration from the same vdev as the best uberblock.
1493  */
1494 void
1495 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1496 {
1497 	zio_t *zio;
1498 	spa_t *spa = rvd->vdev_spa;
1499 	struct ubl_cbdata cb;
1500 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1501 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1502 
1503 	ASSERT(ub);
1504 	ASSERT(config);
1505 
1506 	bzero(ub, sizeof (uberblock_t));
1507 	*config = NULL;
1508 
1509 	cb.ubl_ubbest = ub;
1510 	cb.ubl_vd = NULL;
1511 
1512 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1513 	zio = zio_root(spa, NULL, &cb, flags);
1514 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1515 	(void) zio_wait(zio);
1516 
1517 	/*
1518 	 * It's possible that the best uberblock was discovered on a label
1519 	 * that has a configuration which was written in a future txg.
1520 	 * Search all labels on this vdev to find the configuration that
1521 	 * matches the txg for our uberblock.
1522 	 */
1523 	if (cb.ubl_vd != NULL) {
1524 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1525 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1526 
1527 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1528 		if (*config == NULL && spa->spa_extreme_rewind) {
1529 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1530 			    "Trying again without txg restrictions.");
1531 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1532 		}
1533 		if (*config == NULL) {
1534 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1535 		}
1536 	}
1537 	spa_config_exit(spa, SCL_ALL, FTAG);
1538 }
1539 
1540 /*
1541  * On success, increment root zio's count of good writes.
1542  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1543  */
1544 static void
1545 vdev_uberblock_sync_done(zio_t *zio)
1546 {
1547 	uint64_t *good_writes = zio->io_private;
1548 
1549 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1550 		atomic_inc_64(good_writes);
1551 }
1552 
1553 /*
1554  * Write the uberblock to all labels of all leaves of the specified vdev.
1555  */
1556 static void
1557 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1558     uberblock_t *ub, vdev_t *vd, int flags)
1559 {
1560 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1561 		vdev_uberblock_sync(zio, good_writes,
1562 		    ub, vd->vdev_child[c], flags);
1563 	}
1564 
1565 	if (!vd->vdev_ops->vdev_op_leaf)
1566 		return;
1567 
1568 	if (!vdev_writeable(vd))
1569 		return;
1570 
1571 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1572 	int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1573 
1574 	/* Copy the uberblock_t into the ABD */
1575 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1576 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1577 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1578 
1579 	for (int l = 0; l < VDEV_LABELS; l++)
1580 		vdev_label_write(zio, vd, l, ub_abd,
1581 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1582 		    vdev_uberblock_sync_done, good_writes,
1583 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1584 
1585 	abd_free(ub_abd);
1586 }
1587 
1588 /* Sync the uberblocks to all vdevs in svd[] */
1589 int
1590 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1591 {
1592 	spa_t *spa = svd[0]->vdev_spa;
1593 	zio_t *zio;
1594 	uint64_t good_writes = 0;
1595 
1596 	zio = zio_root(spa, NULL, NULL, flags);
1597 
1598 	for (int v = 0; v < svdcount; v++)
1599 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1600 
1601 	(void) zio_wait(zio);
1602 
1603 	/*
1604 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1605 	 * are no longer needed (because the new uberblocks and the even
1606 	 * labels are safely on disk), so it is safe to overwrite them.
1607 	 */
1608 	zio = zio_root(spa, NULL, NULL, flags);
1609 
1610 	for (int v = 0; v < svdcount; v++) {
1611 		if (vdev_writeable(svd[v])) {
1612 			zio_flush(zio, svd[v]);
1613 		}
1614 	}
1615 
1616 	(void) zio_wait(zio);
1617 
1618 	return (good_writes >= 1 ? 0 : EIO);
1619 }
1620 
1621 /*
1622  * On success, increment the count of good writes for our top-level vdev.
1623  */
1624 static void
1625 vdev_label_sync_done(zio_t *zio)
1626 {
1627 	uint64_t *good_writes = zio->io_private;
1628 
1629 	if (zio->io_error == 0)
1630 		atomic_inc_64(good_writes);
1631 }
1632 
1633 /*
1634  * If there weren't enough good writes, indicate failure to the parent.
1635  */
1636 static void
1637 vdev_label_sync_top_done(zio_t *zio)
1638 {
1639 	uint64_t *good_writes = zio->io_private;
1640 
1641 	if (*good_writes == 0)
1642 		zio->io_error = SET_ERROR(EIO);
1643 
1644 	kmem_free(good_writes, sizeof (uint64_t));
1645 }
1646 
1647 /*
1648  * We ignore errors for log and cache devices, simply free the private data.
1649  */
1650 static void
1651 vdev_label_sync_ignore_done(zio_t *zio)
1652 {
1653 	kmem_free(zio->io_private, sizeof (uint64_t));
1654 }
1655 
1656 /*
1657  * Write all even or odd labels to all leaves of the specified vdev.
1658  */
1659 static void
1660 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1661     vdev_t *vd, int l, uint64_t txg, int flags)
1662 {
1663 	nvlist_t *label;
1664 	vdev_phys_t *vp;
1665 	abd_t *vp_abd;
1666 	char *buf;
1667 	size_t buflen;
1668 
1669 	for (int c = 0; c < vd->vdev_children; c++) {
1670 		vdev_label_sync(zio, good_writes,
1671 		    vd->vdev_child[c], l, txg, flags);
1672 	}
1673 
1674 	if (!vd->vdev_ops->vdev_op_leaf)
1675 		return;
1676 
1677 	if (!vdev_writeable(vd))
1678 		return;
1679 
1680 	/*
1681 	 * Generate a label describing the top-level config to which we belong.
1682 	 */
1683 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1684 
1685 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1686 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1687 	vp = abd_to_buf(vp_abd);
1688 
1689 	buf = vp->vp_nvlist;
1690 	buflen = sizeof (vp->vp_nvlist);
1691 
1692 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1693 		for (; l < VDEV_LABELS; l += 2) {
1694 			vdev_label_write(zio, vd, l, vp_abd,
1695 			    offsetof(vdev_label_t, vl_vdev_phys),
1696 			    sizeof (vdev_phys_t),
1697 			    vdev_label_sync_done, good_writes,
1698 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1699 		}
1700 	}
1701 
1702 	abd_free(vp_abd);
1703 	nvlist_free(label);
1704 }
1705 
1706 int
1707 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1708 {
1709 	list_t *dl = &spa->spa_config_dirty_list;
1710 	vdev_t *vd;
1711 	zio_t *zio;
1712 	int error;
1713 
1714 	/*
1715 	 * Write the new labels to disk.
1716 	 */
1717 	zio = zio_root(spa, NULL, NULL, flags);
1718 
1719 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1720 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1721 		    KM_SLEEP);
1722 
1723 		ASSERT(!vd->vdev_ishole);
1724 
1725 		zio_t *vio = zio_null(zio, spa, NULL,
1726 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1727 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1728 		    good_writes, flags);
1729 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1730 		zio_nowait(vio);
1731 	}
1732 
1733 	error = zio_wait(zio);
1734 
1735 	/*
1736 	 * Flush the new labels to disk.
1737 	 */
1738 	zio = zio_root(spa, NULL, NULL, flags);
1739 
1740 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1741 		zio_flush(zio, vd);
1742 
1743 	(void) zio_wait(zio);
1744 
1745 	return (error);
1746 }
1747 
1748 /*
1749  * Sync the uberblock and any changes to the vdev configuration.
1750  *
1751  * The order of operations is carefully crafted to ensure that
1752  * if the system panics or loses power at any time, the state on disk
1753  * is still transactionally consistent.  The in-line comments below
1754  * describe the failure semantics at each stage.
1755  *
1756  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1757  * at any time, you can just call it again, and it will resume its work.
1758  */
1759 int
1760 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1761 {
1762 	spa_t *spa = svd[0]->vdev_spa;
1763 	uberblock_t *ub = &spa->spa_uberblock;
1764 	int error = 0;
1765 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1766 
1767 	ASSERT(svdcount != 0);
1768 retry:
1769 	/*
1770 	 * Normally, we don't want to try too hard to write every label and
1771 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1772 	 * sync process to block while we retry.  But if we can't write a
1773 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1774 	 * bailing out and declaring the pool faulted.
1775 	 */
1776 	if (error != 0) {
1777 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1778 			return (error);
1779 		flags |= ZIO_FLAG_TRYHARD;
1780 	}
1781 
1782 	ASSERT(ub->ub_txg <= txg);
1783 
1784 	/*
1785 	 * If this isn't a resync due to I/O errors,
1786 	 * and nothing changed in this transaction group,
1787 	 * and the vdev configuration hasn't changed,
1788 	 * then there's nothing to do.
1789 	 */
1790 	if (ub->ub_txg < txg) {
1791 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1792 		    txg, spa->spa_mmp.mmp_delay);
1793 
1794 		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1795 			return (0);
1796 	}
1797 
1798 	if (txg > spa_freeze_txg(spa))
1799 		return (0);
1800 
1801 	ASSERT(txg <= spa->spa_final_txg);
1802 
1803 	/*
1804 	 * Flush the write cache of every disk that's been written to
1805 	 * in this transaction group.  This ensures that all blocks
1806 	 * written in this txg will be committed to stable storage
1807 	 * before any uberblock that references them.
1808 	 */
1809 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1810 
1811 	for (vdev_t *vd =
1812 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1813 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1814 		zio_flush(zio, vd);
1815 
1816 	(void) zio_wait(zio);
1817 
1818 	/*
1819 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1820 	 * system dies in the middle of this process, that's OK: all of the
1821 	 * even labels that made it to disk will be newer than any uberblock,
1822 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1823 	 * which have not yet been touched, will still be valid.  We flush
1824 	 * the new labels to disk to ensure that all even-label updates
1825 	 * are committed to stable storage before the uberblock update.
1826 	 */
1827 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1828 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1829 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1830 			    "for pool '%s' when syncing out the even labels "
1831 			    "of dirty vdevs", error, spa_name(spa));
1832 		}
1833 		goto retry;
1834 	}
1835 
1836 	/*
1837 	 * Sync the uberblocks to all vdevs in svd[].
1838 	 * If the system dies in the middle of this step, there are two cases
1839 	 * to consider, and the on-disk state is consistent either way:
1840 	 *
1841 	 * (1)	If none of the new uberblocks made it to disk, then the
1842 	 *	previous uberblock will be the newest, and the odd labels
1843 	 *	(which had not yet been touched) will be valid with respect
1844 	 *	to that uberblock.
1845 	 *
1846 	 * (2)	If one or more new uberblocks made it to disk, then they
1847 	 *	will be the newest, and the even labels (which had all
1848 	 *	been successfully committed) will be valid with respect
1849 	 *	to the new uberblocks.
1850 	 */
1851 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1852 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1853 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1854 			    "%d for pool '%s'", error, spa_name(spa));
1855 		}
1856 		goto retry;
1857 	}
1858 
1859 	if (spa_multihost(spa))
1860 		mmp_update_uberblock(spa, ub);
1861 
1862 	/*
1863 	 * Sync out odd labels for every dirty vdev.  If the system dies
1864 	 * in the middle of this process, the even labels and the new
1865 	 * uberblocks will suffice to open the pool.  The next time
1866 	 * the pool is opened, the first thing we'll do -- before any
1867 	 * user data is modified -- is mark every vdev dirty so that
1868 	 * all labels will be brought up to date.  We flush the new labels
1869 	 * to disk to ensure that all odd-label updates are committed to
1870 	 * stable storage before the next transaction group begins.
1871 	 */
1872 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1873 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1874 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1875 			    "for pool '%s' when syncing out the odd labels of "
1876 			    "dirty vdevs", error, spa_name(spa));
1877 		}
1878 		goto retry;
1879 	}
1880 
1881 	return (0);
1882 }
1883