xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision c9ffe217655ce62448bdb45d6f113f43b4dfcc54)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright 2020 Joyent, Inc.
27  */
28 
29 /*
30  * Virtual Device Labels
31  * ---------------------
32  *
33  * The vdev label serves several distinct purposes:
34  *
35  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
36  *	   identity within the pool.
37  *
38  *	2. Verify that all the devices given in a configuration are present
39  *         within the pool.
40  *
41  *	3. Determine the uberblock for the pool.
42  *
43  *	4. In case of an import operation, determine the configuration of the
44  *         toplevel vdev of which it is a part.
45  *
46  *	5. If an import operation cannot find all the devices in the pool,
47  *         provide enough information to the administrator to determine which
48  *         devices are missing.
49  *
50  * It is important to note that while the kernel is responsible for writing the
51  * label, it only consumes the information in the first three cases.  The
52  * latter information is only consumed in userland when determining the
53  * configuration to import a pool.
54  *
55  *
56  * Label Organization
57  * ------------------
58  *
59  * Before describing the contents of the label, it's important to understand how
60  * the labels are written and updated with respect to the uberblock.
61  *
62  * When the pool configuration is altered, either because it was newly created
63  * or a device was added, we want to update all the labels such that we can deal
64  * with fatal failure at any point.  To this end, each disk has two labels which
65  * are updated before and after the uberblock is synced.  Assuming we have
66  * labels and an uberblock with the following transaction groups:
67  *
68  *              L1          UB          L2
69  *           +------+    +------+    +------+
70  *           |      |    |      |    |      |
71  *           | t10  |    | t10  |    | t10  |
72  *           |      |    |      |    |      |
73  *           +------+    +------+    +------+
74  *
75  * In this stable state, the labels and the uberblock were all updated within
76  * the same transaction group (10).  Each label is mirrored and checksummed, so
77  * that we can detect when we fail partway through writing the label.
78  *
79  * In order to identify which labels are valid, the labels are written in the
80  * following manner:
81  *
82  *	1. For each vdev, update 'L1' to the new label
83  *	2. Update the uberblock
84  *	3. For each vdev, update 'L2' to the new label
85  *
86  * Given arbitrary failure, we can determine the correct label to use based on
87  * the transaction group.  If we fail after updating L1 but before updating the
88  * UB, we will notice that L1's transaction group is greater than the uberblock,
89  * so L2 must be valid.  If we fail after writing the uberblock but before
90  * writing L2, we will notice that L2's transaction group is less than L1, and
91  * therefore L1 is valid.
92  *
93  * Another added complexity is that not every label is updated when the config
94  * is synced.  If we add a single device, we do not want to have to re-write
95  * every label for every device in the pool.  This means that both L1 and L2 may
96  * be older than the pool uberblock, because the necessary information is stored
97  * on another vdev.
98  *
99  *
100  * On-disk Format
101  * --------------
102  *
103  * The vdev label consists of two distinct parts, and is wrapped within the
104  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
105  * VTOC disk labels, but is otherwise ignored.
106  *
107  * The first half of the label is a packed nvlist which contains pool wide
108  * properties, per-vdev properties, and configuration information.  It is
109  * described in more detail below.
110  *
111  * The latter half of the label consists of a redundant array of uberblocks.
112  * These uberblocks are updated whenever a transaction group is committed,
113  * or when the configuration is updated.  When a pool is loaded, we scan each
114  * vdev for the 'best' uberblock.
115  *
116  *
117  * Configuration Information
118  * -------------------------
119  *
120  * The nvlist describing the pool and vdev contains the following elements:
121  *
122  *	version		ZFS on-disk version
123  *	name		Pool name
124  *	state		Pool state
125  *	txg		Transaction group in which this label was written
126  *	pool_guid	Unique identifier for this pool
127  *	vdev_tree	An nvlist describing vdev tree.
128  *	features_for_read
129  *			An nvlist of the features necessary for reading the MOS.
130  *
131  * Each leaf device label also contains the following:
132  *
133  *	top_guid	Unique ID for top-level vdev in which this is contained
134  *	guid		Unique ID for the leaf vdev
135  *
136  * The 'vs' configuration follows the format described in 'spa_config.c'.
137  */
138 
139 #include <sys/zfs_context.h>
140 #include <sys/spa.h>
141 #include <sys/spa_impl.h>
142 #include <sys/dmu.h>
143 #include <sys/zap.h>
144 #include <sys/vdev.h>
145 #include <sys/vdev_impl.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
153 
154 /*
155  * Basic routines to read and write from a vdev label.
156  * Used throughout the rest of this file.
157  */
158 uint64_t
159 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
160 {
161 	ASSERT(offset < sizeof (vdev_label_t));
162 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
163 
164 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
165 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
166 }
167 
168 /*
169  * Returns back the vdev label associated with the passed in offset.
170  */
171 int
172 vdev_label_number(uint64_t psize, uint64_t offset)
173 {
174 	int l;
175 
176 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
177 		offset -= psize - VDEV_LABEL_END_SIZE;
178 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
179 	}
180 	l = offset / sizeof (vdev_label_t);
181 	return (l < VDEV_LABELS ? l : -1);
182 }
183 
184 static void
185 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
186     uint64_t size, zio_done_func_t *done, void *private, int flags)
187 {
188 	ASSERT(
189 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
190 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
191 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
192 
193 	zio_nowait(zio_read_phys(zio, vd,
194 	    vdev_label_offset(vd->vdev_psize, l, offset),
195 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
196 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
197 }
198 
199 void
200 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
201     uint64_t size, zio_done_func_t *done, void *private, int flags)
202 {
203 	ASSERT(
204 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
205 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
206 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
207 
208 	zio_nowait(zio_write_phys(zio, vd,
209 	    vdev_label_offset(vd->vdev_psize, l, offset),
210 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
211 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
212 }
213 
214 /*
215  * Generate the nvlist representing this vdev's stats
216  */
217 void
218 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
219 {
220 	nvlist_t *nvx;
221 	vdev_stat_t *vs;
222 	vdev_stat_ex_t *vsx;
223 
224 	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
225 	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
226 
227 	vdev_get_stats_ex(vd, vs, vsx);
228 	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
229 	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
230 
231 	/*
232 	 * Add extended stats into a special extended stats nvlist.  This keeps
233 	 * all the extended stats nicely grouped together.  The extended stats
234 	 * nvlist is then added to the main nvlist.
235 	 */
236 	nvx = fnvlist_alloc();
237 
238 	/* ZIOs in flight to disk */
239 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
240 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
241 
242 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
243 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
244 
245 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
246 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
247 
248 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
249 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
250 
251 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
252 	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
253 
254 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
255 	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
256 
257 	/* ZIOs pending */
258 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
259 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
260 
261 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
262 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
263 
264 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
265 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
266 
267 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
268 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
269 
270 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
271 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
272 
273 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
274 	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
275 
276 	/* Histograms */
277 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
278 	    vsx->vsx_total_histo[ZIO_TYPE_READ],
279 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
280 
281 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
282 	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
283 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
284 
285 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
286 	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
287 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
288 
289 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
290 	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
291 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
292 
293 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
294 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
295 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
296 
297 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
298 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
299 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
300 
301 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
302 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
303 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
304 
305 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
306 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
307 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
308 
309 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
310 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
311 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
312 
313 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
314 	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
315 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
316 
317 	/* Request sizes */
318 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
319 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
320 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
321 
322 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
323 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
324 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
325 
326 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
327 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
328 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
329 
330 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
331 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
332 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
333 
334 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
335 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
336 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
337 
338 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
339 	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
340 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
341 
342 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
343 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
344 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
345 
346 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
347 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
348 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
349 
350 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
351 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
352 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
353 
354 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
355 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
356 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
357 
358 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
359 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
360 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
361 
362 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
363 	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
364 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
365 
366 	/* IO delays */
367 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
368 
369 	/* Add extended stats nvlist to main nvlist */
370 	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
371 
372 	nvlist_free(nvx);
373 	kmem_free(vs, sizeof (*vs));
374 	kmem_free(vsx, sizeof (*vsx));
375 }
376 
377 static void
378 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
379 {
380 	spa_t *spa = vd->vdev_spa;
381 
382 	if (vd != spa->spa_root_vdev)
383 		return;
384 
385 	/* provide either current or previous scan information */
386 	pool_scan_stat_t ps;
387 	if (spa_scan_get_stats(spa, &ps) == 0) {
388 		fnvlist_add_uint64_array(nvl,
389 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
390 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
391 	}
392 
393 	pool_removal_stat_t prs;
394 	if (spa_removal_get_stats(spa, &prs) == 0) {
395 		fnvlist_add_uint64_array(nvl,
396 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
397 		    sizeof (prs) / sizeof (uint64_t));
398 	}
399 
400 	pool_checkpoint_stat_t pcs;
401 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
402 		fnvlist_add_uint64_array(nvl,
403 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
404 		    sizeof (pcs) / sizeof (uint64_t));
405 	}
406 }
407 
408 /*
409  * Generate the nvlist representing this vdev's config.
410  */
411 nvlist_t *
412 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
413     vdev_config_flag_t flags)
414 {
415 	nvlist_t *nv = NULL;
416 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
417 
418 	nv = fnvlist_alloc();
419 
420 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
421 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
422 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
423 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
424 
425 	if (vd->vdev_path != NULL)
426 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
427 
428 	if (vd->vdev_devid != NULL)
429 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
430 
431 	if (vd->vdev_physpath != NULL)
432 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
433 		    vd->vdev_physpath);
434 
435 	if (vd->vdev_fru != NULL)
436 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
437 
438 	if (vd->vdev_nparity != 0) {
439 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
440 		    VDEV_TYPE_RAIDZ) == 0);
441 
442 		/*
443 		 * Make sure someone hasn't managed to sneak a fancy new vdev
444 		 * into a crufty old storage pool.
445 		 */
446 		ASSERT(vd->vdev_nparity == 1 ||
447 		    (vd->vdev_nparity <= 2 &&
448 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
449 		    (vd->vdev_nparity <= 3 &&
450 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
451 
452 		/*
453 		 * Note that we'll add the nparity tag even on storage pools
454 		 * that only support a single parity device -- older software
455 		 * will just ignore it.
456 		 */
457 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
458 	}
459 
460 	if (vd->vdev_wholedisk != -1ULL)
461 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462 		    vd->vdev_wholedisk);
463 
464 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
465 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
466 
467 	if (vd->vdev_isspare)
468 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
469 
470 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
471 	    vd == vd->vdev_top) {
472 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
473 		    vd->vdev_ms_array);
474 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
475 		    vd->vdev_ms_shift);
476 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
477 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
478 		    vd->vdev_asize);
479 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
480 		if (vd->vdev_removing) {
481 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
482 			    vd->vdev_removing);
483 		}
484 
485 		/* zpool command expects alloc class data */
486 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
487 			const char *bias = NULL;
488 
489 			switch (vd->vdev_alloc_bias) {
490 			case VDEV_BIAS_LOG:
491 				bias = VDEV_ALLOC_BIAS_LOG;
492 				break;
493 			case VDEV_BIAS_SPECIAL:
494 				bias = VDEV_ALLOC_BIAS_SPECIAL;
495 				break;
496 			case VDEV_BIAS_DEDUP:
497 				bias = VDEV_ALLOC_BIAS_DEDUP;
498 				break;
499 			default:
500 				ASSERT3U(vd->vdev_alloc_bias, ==,
501 				    VDEV_BIAS_NONE);
502 			}
503 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
504 			    bias);
505 		}
506 	}
507 
508 	if (vd->vdev_dtl_sm != NULL) {
509 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
510 		    space_map_object(vd->vdev_dtl_sm));
511 	}
512 
513 	if (vic->vic_mapping_object != 0) {
514 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
515 		    vic->vic_mapping_object);
516 	}
517 
518 	if (vic->vic_births_object != 0) {
519 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
520 		    vic->vic_births_object);
521 	}
522 
523 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
524 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
525 		    vic->vic_prev_indirect_vdev);
526 	}
527 
528 	if (vd->vdev_crtxg)
529 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
530 
531 	if (flags & VDEV_CONFIG_MOS) {
532 		if (vd->vdev_leaf_zap != 0) {
533 			ASSERT(vd->vdev_ops->vdev_op_leaf);
534 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
535 			    vd->vdev_leaf_zap);
536 		}
537 
538 		if (vd->vdev_top_zap != 0) {
539 			ASSERT(vd == vd->vdev_top);
540 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
541 			    vd->vdev_top_zap);
542 		}
543 
544 		if (vd->vdev_resilver_deferred) {
545 			ASSERT(vd->vdev_ops->vdev_op_leaf);
546 			ASSERT(spa->spa_resilver_deferred);
547 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
548 		}
549 	}
550 
551 	if (getstats) {
552 		vdev_config_generate_stats(vd, nv);
553 
554 		root_vdev_actions_getprogress(vd, nv);
555 
556 		/*
557 		 * Note: this can be called from open context
558 		 * (spa_get_stats()), so we need the rwlock to prevent
559 		 * the mapping from being changed by condensing.
560 		 */
561 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
562 		if (vd->vdev_indirect_mapping != NULL) {
563 			ASSERT(vd->vdev_indirect_births != NULL);
564 			vdev_indirect_mapping_t *vim =
565 			    vd->vdev_indirect_mapping;
566 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
567 			    vdev_indirect_mapping_size(vim));
568 		}
569 		rw_exit(&vd->vdev_indirect_rwlock);
570 		if (vd->vdev_mg != NULL &&
571 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
572 			/*
573 			 * Compute approximately how much memory would be used
574 			 * for the indirect mapping if this device were to
575 			 * be removed.
576 			 *
577 			 * Note: If the frag metric is invalid, then not
578 			 * enough metaslabs have been converted to have
579 			 * histograms.
580 			 */
581 			uint64_t seg_count = 0;
582 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
583 
584 			/*
585 			 * There are the same number of allocated segments
586 			 * as free segments, so we will have at least one
587 			 * entry per free segment.  However, small free
588 			 * segments (smaller than vdev_removal_max_span)
589 			 * will be combined with adjacent allocated segments
590 			 * as a single mapping.
591 			 */
592 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
593 				if (1ULL << (i + 1) < vdev_removal_max_span) {
594 					to_alloc +=
595 					    vd->vdev_mg->mg_histogram[i] <<
596 					    i + 1;
597 				} else {
598 					seg_count +=
599 					    vd->vdev_mg->mg_histogram[i];
600 				}
601 			}
602 
603 			/*
604 			 * The maximum length of a mapping is
605 			 * zfs_remove_max_segment, so we need at least one entry
606 			 * per zfs_remove_max_segment of allocated data.
607 			 */
608 			seg_count += to_alloc / zfs_remove_max_segment;
609 
610 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
611 			    seg_count *
612 			    sizeof (vdev_indirect_mapping_entry_phys_t));
613 		}
614 	}
615 
616 	if (!vd->vdev_ops->vdev_op_leaf) {
617 		nvlist_t **child;
618 		int c, idx;
619 
620 		ASSERT(!vd->vdev_ishole);
621 
622 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
623 		    KM_SLEEP);
624 
625 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
626 			vdev_t *cvd = vd->vdev_child[c];
627 
628 			/*
629 			 * If we're generating an nvlist of removing
630 			 * vdevs then skip over any device which is
631 			 * not being removed.
632 			 */
633 			if ((flags & VDEV_CONFIG_REMOVING) &&
634 			    !cvd->vdev_removing)
635 				continue;
636 
637 			child[idx++] = vdev_config_generate(spa, cvd,
638 			    getstats, flags);
639 		}
640 
641 		if (idx) {
642 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
643 			    child, idx);
644 		}
645 
646 		for (c = 0; c < idx; c++)
647 			nvlist_free(child[c]);
648 
649 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
650 
651 	} else {
652 		const char *aux = NULL;
653 
654 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
655 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
656 		if (vd->vdev_resilver_txg != 0)
657 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
658 			    vd->vdev_resilver_txg);
659 		if (vd->vdev_faulted)
660 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
661 		if (vd->vdev_degraded)
662 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
663 		if (vd->vdev_removed)
664 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
665 		if (vd->vdev_unspare)
666 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
667 		if (vd->vdev_ishole)
668 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
669 
670 		switch (vd->vdev_stat.vs_aux) {
671 		case VDEV_AUX_ERR_EXCEEDED:
672 			aux = "err_exceeded";
673 			break;
674 
675 		case VDEV_AUX_EXTERNAL:
676 			aux = "external";
677 			break;
678 		}
679 
680 		if (aux != NULL)
681 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
682 
683 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
684 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
685 			    vd->vdev_orig_guid);
686 		}
687 	}
688 
689 	return (nv);
690 }
691 
692 /*
693  * Generate a view of the top-level vdevs.  If we currently have holes
694  * in the namespace, then generate an array which contains a list of holey
695  * vdevs.  Additionally, add the number of top-level children that currently
696  * exist.
697  */
698 void
699 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
700 {
701 	vdev_t *rvd = spa->spa_root_vdev;
702 	uint64_t *array;
703 	uint_t c, idx;
704 
705 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
706 
707 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
708 		vdev_t *tvd = rvd->vdev_child[c];
709 
710 		if (tvd->vdev_ishole) {
711 			array[idx++] = c;
712 		}
713 	}
714 
715 	if (idx) {
716 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
717 		    array, idx) == 0);
718 	}
719 
720 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
721 	    rvd->vdev_children) == 0);
722 
723 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
724 }
725 
726 /*
727  * Returns the configuration from the label of the given vdev. For vdevs
728  * which don't have a txg value stored on their label (i.e. spares/cache)
729  * or have not been completely initialized (txg = 0) just return
730  * the configuration from the first valid label we find. Otherwise,
731  * find the most up-to-date label that does not exceed the specified
732  * 'txg' value.
733  */
734 nvlist_t *
735 vdev_label_read_config(vdev_t *vd, uint64_t txg)
736 {
737 	spa_t *spa = vd->vdev_spa;
738 	nvlist_t *config = NULL;
739 	vdev_phys_t *vp;
740 	abd_t *vp_abd;
741 	zio_t *zio;
742 	uint64_t best_txg = 0;
743 	uint64_t label_txg = 0;
744 	int error = 0;
745 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
746 	    ZIO_FLAG_SPECULATIVE;
747 
748 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
749 
750 	if (!vdev_readable(vd))
751 		return (NULL);
752 
753 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
754 	vp = abd_to_buf(vp_abd);
755 
756 retry:
757 	for (int l = 0; l < VDEV_LABELS; l++) {
758 		nvlist_t *label = NULL;
759 
760 		zio = zio_root(spa, NULL, NULL, flags);
761 
762 		vdev_label_read(zio, vd, l, vp_abd,
763 		    offsetof(vdev_label_t, vl_vdev_phys),
764 		    sizeof (vdev_phys_t), NULL, NULL, flags);
765 
766 		if (zio_wait(zio) == 0 &&
767 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
768 		    &label, 0) == 0) {
769 			/*
770 			 * Auxiliary vdevs won't have txg values in their
771 			 * labels and newly added vdevs may not have been
772 			 * completely initialized so just return the
773 			 * configuration from the first valid label we
774 			 * encounter.
775 			 */
776 			error = nvlist_lookup_uint64(label,
777 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
778 			if ((error || label_txg == 0) && !config) {
779 				config = label;
780 				break;
781 			} else if (label_txg <= txg && label_txg > best_txg) {
782 				best_txg = label_txg;
783 				nvlist_free(config);
784 				config = fnvlist_dup(label);
785 			}
786 		}
787 
788 		if (label != NULL) {
789 			nvlist_free(label);
790 			label = NULL;
791 		}
792 	}
793 
794 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
795 		flags |= ZIO_FLAG_TRYHARD;
796 		goto retry;
797 	}
798 
799 	/*
800 	 * We found a valid label but it didn't pass txg restrictions.
801 	 */
802 	if (config == NULL && label_txg != 0) {
803 		vdev_dbgmsg(vd, "label discarded as txg is too large "
804 		    "(%llu > %llu)", (u_longlong_t)label_txg,
805 		    (u_longlong_t)txg);
806 	}
807 
808 	abd_free(vp_abd);
809 
810 	return (config);
811 }
812 
813 /*
814  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
815  * in with the device guid if this spare is active elsewhere on the system.
816  */
817 static boolean_t
818 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
819     uint64_t *spare_guid, uint64_t *l2cache_guid)
820 {
821 	spa_t *spa = vd->vdev_spa;
822 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
823 	uint64_t vdtxg = 0;
824 	nvlist_t *label;
825 
826 	if (spare_guid)
827 		*spare_guid = 0ULL;
828 	if (l2cache_guid)
829 		*l2cache_guid = 0ULL;
830 
831 	/*
832 	 * Read the label, if any, and perform some basic sanity checks.
833 	 */
834 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
835 		return (B_FALSE);
836 
837 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
838 	    &vdtxg);
839 
840 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
841 	    &state) != 0 ||
842 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
843 	    &device_guid) != 0) {
844 		nvlist_free(label);
845 		return (B_FALSE);
846 	}
847 
848 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
849 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
850 	    &pool_guid) != 0 ||
851 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
852 	    &txg) != 0)) {
853 		nvlist_free(label);
854 		return (B_FALSE);
855 	}
856 
857 	nvlist_free(label);
858 
859 	/*
860 	 * Check to see if this device indeed belongs to the pool it claims to
861 	 * be a part of.  The only way this is allowed is if the device is a hot
862 	 * spare (which we check for later on).
863 	 */
864 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
865 	    !spa_guid_exists(pool_guid, device_guid) &&
866 	    !spa_spare_exists(device_guid, NULL, NULL) &&
867 	    !spa_l2cache_exists(device_guid, NULL))
868 		return (B_FALSE);
869 
870 	/*
871 	 * If the transaction group is zero, then this an initialized (but
872 	 * unused) label.  This is only an error if the create transaction
873 	 * on-disk is the same as the one we're using now, in which case the
874 	 * user has attempted to add the same vdev multiple times in the same
875 	 * transaction.
876 	 */
877 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
878 	    txg == 0 && vdtxg == crtxg)
879 		return (B_TRUE);
880 
881 	/*
882 	 * Check to see if this is a spare device.  We do an explicit check for
883 	 * spa_has_spare() here because it may be on our pending list of spares
884 	 * to add.  We also check if it is an l2cache device.
885 	 */
886 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
887 	    spa_has_spare(spa, device_guid)) {
888 		if (spare_guid)
889 			*spare_guid = device_guid;
890 
891 		switch (reason) {
892 		case VDEV_LABEL_CREATE:
893 		case VDEV_LABEL_L2CACHE:
894 			return (B_TRUE);
895 
896 		case VDEV_LABEL_REPLACE:
897 			return (!spa_has_spare(spa, device_guid) ||
898 			    spare_pool != 0ULL);
899 
900 		case VDEV_LABEL_SPARE:
901 			return (spa_has_spare(spa, device_guid));
902 		}
903 	}
904 
905 	/*
906 	 * Check to see if this is an l2cache device.
907 	 */
908 	if (spa_l2cache_exists(device_guid, NULL))
909 		return (B_TRUE);
910 
911 	/*
912 	 * We can't rely on a pool's state if it's been imported
913 	 * read-only.  Instead we look to see if the pools is marked
914 	 * read-only in the namespace and set the state to active.
915 	 */
916 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
917 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
918 	    spa_mode(spa) == FREAD)
919 		state = POOL_STATE_ACTIVE;
920 
921 	/*
922 	 * If the device is marked ACTIVE, then this device is in use by another
923 	 * pool on the system.
924 	 */
925 	return (state == POOL_STATE_ACTIVE);
926 }
927 
928 /*
929  * Initialize a vdev label.  We check to make sure each leaf device is not in
930  * use, and writable.  We put down an initial label which we will later
931  * overwrite with a complete label.  Note that it's important to do this
932  * sequentially, not in parallel, so that we catch cases of multiple use of the
933  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
934  * itself.
935  */
936 int
937 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
938 {
939 	spa_t *spa = vd->vdev_spa;
940 	nvlist_t *label;
941 	vdev_phys_t *vp;
942 	abd_t *vp_abd;
943 	abd_t *pad2;
944 	uberblock_t *ub;
945 	abd_t *ub_abd;
946 	zio_t *zio;
947 	char *buf;
948 	size_t buflen;
949 	int error;
950 	uint64_t spare_guid, l2cache_guid;
951 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
952 
953 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
954 
955 	for (int c = 0; c < vd->vdev_children; c++)
956 		if ((error = vdev_label_init(vd->vdev_child[c],
957 		    crtxg, reason)) != 0)
958 			return (error);
959 
960 	/* Track the creation time for this vdev */
961 	vd->vdev_crtxg = crtxg;
962 
963 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
964 		return (0);
965 
966 	/*
967 	 * Dead vdevs cannot be initialized.
968 	 */
969 	if (vdev_is_dead(vd))
970 		return (SET_ERROR(EIO));
971 
972 	/*
973 	 * Determine if the vdev is in use.
974 	 */
975 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
976 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
977 		return (SET_ERROR(EBUSY));
978 
979 	/*
980 	 * If this is a request to add or replace a spare or l2cache device
981 	 * that is in use elsewhere on the system, then we must update the
982 	 * guid (which was initialized to a random value) to reflect the
983 	 * actual GUID (which is shared between multiple pools).
984 	 */
985 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
986 	    spare_guid != 0ULL) {
987 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
988 
989 		vd->vdev_guid += guid_delta;
990 
991 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
992 			pvd->vdev_guid_sum += guid_delta;
993 
994 		/*
995 		 * If this is a replacement, then we want to fallthrough to the
996 		 * rest of the code.  If we're adding a spare, then it's already
997 		 * labeled appropriately and we can just return.
998 		 */
999 		if (reason == VDEV_LABEL_SPARE)
1000 			return (0);
1001 		ASSERT(reason == VDEV_LABEL_REPLACE ||
1002 		    reason == VDEV_LABEL_SPLIT);
1003 	}
1004 
1005 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1006 	    l2cache_guid != 0ULL) {
1007 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1008 
1009 		vd->vdev_guid += guid_delta;
1010 
1011 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1012 			pvd->vdev_guid_sum += guid_delta;
1013 
1014 		/*
1015 		 * If this is a replacement, then we want to fallthrough to the
1016 		 * rest of the code.  If we're adding an l2cache, then it's
1017 		 * already labeled appropriately and we can just return.
1018 		 */
1019 		if (reason == VDEV_LABEL_L2CACHE)
1020 			return (0);
1021 		ASSERT(reason == VDEV_LABEL_REPLACE);
1022 	}
1023 
1024 	/*
1025 	 * Initialize its label.
1026 	 */
1027 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1028 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1029 	vp = abd_to_buf(vp_abd);
1030 
1031 	/*
1032 	 * Generate a label describing the pool and our top-level vdev.
1033 	 * We mark it as being from txg 0 to indicate that it's not
1034 	 * really part of an active pool just yet.  The labels will
1035 	 * be written again with a meaningful txg by spa_sync().
1036 	 */
1037 	if (reason == VDEV_LABEL_SPARE ||
1038 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1039 		/*
1040 		 * For inactive hot spares, we generate a special label that
1041 		 * identifies as a mutually shared hot spare.  We write the
1042 		 * label if we are adding a hot spare, or if we are removing an
1043 		 * active hot spare (in which case we want to revert the
1044 		 * labels).
1045 		 */
1046 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1047 
1048 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1049 		    spa_version(spa)) == 0);
1050 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1051 		    POOL_STATE_SPARE) == 0);
1052 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1053 		    vd->vdev_guid) == 0);
1054 	} else if (reason == VDEV_LABEL_L2CACHE ||
1055 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1056 		/*
1057 		 * For level 2 ARC devices, add a special label.
1058 		 */
1059 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1060 
1061 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1062 		    spa_version(spa)) == 0);
1063 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1064 		    POOL_STATE_L2CACHE) == 0);
1065 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1066 		    vd->vdev_guid) == 0);
1067 	} else {
1068 		uint64_t txg = 0ULL;
1069 
1070 		if (reason == VDEV_LABEL_SPLIT)
1071 			txg = spa->spa_uberblock.ub_txg;
1072 		label = spa_config_generate(spa, vd, txg, B_FALSE);
1073 
1074 		/*
1075 		 * Add our creation time.  This allows us to detect multiple
1076 		 * vdev uses as described above, and automatically expires if we
1077 		 * fail.
1078 		 */
1079 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1080 		    crtxg) == 0);
1081 	}
1082 
1083 	buf = vp->vp_nvlist;
1084 	buflen = sizeof (vp->vp_nvlist);
1085 
1086 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1087 	if (error != 0) {
1088 		nvlist_free(label);
1089 		abd_free(vp_abd);
1090 		/* EFAULT means nvlist_pack ran out of room */
1091 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
1092 	}
1093 
1094 	/*
1095 	 * Initialize uberblock template.
1096 	 */
1097 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1098 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1099 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1100 	ub = abd_to_buf(ub_abd);
1101 	ub->ub_txg = 0;
1102 
1103 	/* Initialize the 2nd padding area. */
1104 	pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1105 	abd_zero(pad2, VDEV_PAD_SIZE);
1106 
1107 	/*
1108 	 * Write everything in parallel.
1109 	 */
1110 retry:
1111 	zio = zio_root(spa, NULL, NULL, flags);
1112 
1113 	for (int l = 0; l < VDEV_LABELS; l++) {
1114 
1115 		vdev_label_write(zio, vd, l, vp_abd,
1116 		    offsetof(vdev_label_t, vl_vdev_phys),
1117 		    sizeof (vdev_phys_t), NULL, NULL, flags);
1118 
1119 		/*
1120 		 * Skip the 1st padding area.
1121 		 * Zero out the 2nd padding area where it might have
1122 		 * left over data from previous filesystem format.
1123 		 */
1124 		vdev_label_write(zio, vd, l, pad2,
1125 		    offsetof(vdev_label_t, vl_pad2),
1126 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1127 
1128 		vdev_label_write(zio, vd, l, ub_abd,
1129 		    offsetof(vdev_label_t, vl_uberblock),
1130 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1131 	}
1132 
1133 	error = zio_wait(zio);
1134 
1135 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1136 		flags |= ZIO_FLAG_TRYHARD;
1137 		goto retry;
1138 	}
1139 
1140 	nvlist_free(label);
1141 	abd_free(pad2);
1142 	abd_free(ub_abd);
1143 	abd_free(vp_abd);
1144 
1145 	/*
1146 	 * If this vdev hasn't been previously identified as a spare, then we
1147 	 * mark it as such only if a) we are labeling it as a spare, or b) it
1148 	 * exists as a spare elsewhere in the system.  Do the same for
1149 	 * level 2 ARC devices.
1150 	 */
1151 	if (error == 0 && !vd->vdev_isspare &&
1152 	    (reason == VDEV_LABEL_SPARE ||
1153 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1154 		spa_spare_add(vd);
1155 
1156 	if (error == 0 && !vd->vdev_isl2cache &&
1157 	    (reason == VDEV_LABEL_L2CACHE ||
1158 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1159 		spa_l2cache_add(vd);
1160 
1161 	return (error);
1162 }
1163 
1164 /*
1165  * ==========================================================================
1166  * uberblock load/sync
1167  * ==========================================================================
1168  */
1169 
1170 /*
1171  * Consider the following situation: txg is safely synced to disk.  We've
1172  * written the first uberblock for txg + 1, and then we lose power.  When we
1173  * come back up, we fail to see the uberblock for txg + 1 because, say,
1174  * it was on a mirrored device and the replica to which we wrote txg + 1
1175  * is now offline.  If we then make some changes and sync txg + 1, and then
1176  * the missing replica comes back, then for a few seconds we'll have two
1177  * conflicting uberblocks on disk with the same txg.  The solution is simple:
1178  * among uberblocks with equal txg, choose the one with the latest timestamp.
1179  */
1180 static int
1181 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1182 {
1183 	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1184 
1185 	if (likely(cmp))
1186 		return (cmp);
1187 
1188 	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1189 	if (likely(cmp))
1190 		return (cmp);
1191 
1192 	/*
1193 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1194 	 * ZFS, e.g. zfsonlinux >= 0.7.
1195 	 *
1196 	 * If one ub has MMP and the other does not, they were written by
1197 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1198 	 * a 0 value.
1199 	 *
1200 	 * Since timestamp and txg are the same if we get this far, either is
1201 	 * acceptable for importing the pool.
1202 	 */
1203 	unsigned int seq1 = 0;
1204 	unsigned int seq2 = 0;
1205 
1206 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1207 		seq1 = MMP_SEQ(ub1);
1208 
1209 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1210 		seq2 = MMP_SEQ(ub2);
1211 
1212 	return (TREE_CMP(seq1, seq2));
1213 }
1214 
1215 struct ubl_cbdata {
1216 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1217 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1218 };
1219 
1220 static void
1221 vdev_uberblock_load_done(zio_t *zio)
1222 {
1223 	vdev_t *vd = zio->io_vd;
1224 	spa_t *spa = zio->io_spa;
1225 	zio_t *rio = zio->io_private;
1226 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1227 	struct ubl_cbdata *cbp = rio->io_private;
1228 
1229 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1230 
1231 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1232 		mutex_enter(&rio->io_lock);
1233 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1234 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1235 			/*
1236 			 * Keep track of the vdev in which this uberblock
1237 			 * was found. We will use this information later
1238 			 * to obtain the config nvlist associated with
1239 			 * this uberblock.
1240 			 */
1241 			*cbp->ubl_ubbest = *ub;
1242 			cbp->ubl_vd = vd;
1243 		}
1244 		mutex_exit(&rio->io_lock);
1245 	}
1246 
1247 	abd_free(zio->io_abd);
1248 }
1249 
1250 static void
1251 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1252     struct ubl_cbdata *cbp)
1253 {
1254 	for (int c = 0; c < vd->vdev_children; c++)
1255 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1256 
1257 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1258 		for (int l = 0; l < VDEV_LABELS; l++) {
1259 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1260 				vdev_label_read(zio, vd, l,
1261 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1262 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1263 				    VDEV_UBERBLOCK_SIZE(vd),
1264 				    vdev_uberblock_load_done, zio, flags);
1265 			}
1266 		}
1267 	}
1268 }
1269 
1270 /*
1271  * Reads the 'best' uberblock from disk along with its associated
1272  * configuration. First, we read the uberblock array of each label of each
1273  * vdev, keeping track of the uberblock with the highest txg in each array.
1274  * Then, we read the configuration from the same vdev as the best uberblock.
1275  */
1276 void
1277 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1278 {
1279 	zio_t *zio;
1280 	spa_t *spa = rvd->vdev_spa;
1281 	struct ubl_cbdata cb;
1282 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1283 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1284 
1285 	ASSERT(ub);
1286 	ASSERT(config);
1287 
1288 	bzero(ub, sizeof (uberblock_t));
1289 	*config = NULL;
1290 
1291 	cb.ubl_ubbest = ub;
1292 	cb.ubl_vd = NULL;
1293 
1294 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1295 	zio = zio_root(spa, NULL, &cb, flags);
1296 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1297 	(void) zio_wait(zio);
1298 
1299 	/*
1300 	 * It's possible that the best uberblock was discovered on a label
1301 	 * that has a configuration which was written in a future txg.
1302 	 * Search all labels on this vdev to find the configuration that
1303 	 * matches the txg for our uberblock.
1304 	 */
1305 	if (cb.ubl_vd != NULL) {
1306 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1307 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1308 
1309 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1310 		if (*config == NULL && spa->spa_extreme_rewind) {
1311 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1312 			    "Trying again without txg restrictions.");
1313 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1314 		}
1315 		if (*config == NULL) {
1316 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1317 		}
1318 	}
1319 	spa_config_exit(spa, SCL_ALL, FTAG);
1320 }
1321 
1322 /*
1323  * On success, increment root zio's count of good writes.
1324  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1325  */
1326 static void
1327 vdev_uberblock_sync_done(zio_t *zio)
1328 {
1329 	uint64_t *good_writes = zio->io_private;
1330 
1331 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1332 		atomic_inc_64(good_writes);
1333 }
1334 
1335 /*
1336  * Write the uberblock to all labels of all leaves of the specified vdev.
1337  */
1338 static void
1339 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1340     uberblock_t *ub, vdev_t *vd, int flags)
1341 {
1342 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1343 		vdev_uberblock_sync(zio, good_writes,
1344 		    ub, vd->vdev_child[c], flags);
1345 	}
1346 
1347 	if (!vd->vdev_ops->vdev_op_leaf)
1348 		return;
1349 
1350 	if (!vdev_writeable(vd))
1351 		return;
1352 
1353 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1354 	int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1355 
1356 	/* Copy the uberblock_t into the ABD */
1357 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1358 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1359 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1360 
1361 	for (int l = 0; l < VDEV_LABELS; l++)
1362 		vdev_label_write(zio, vd, l, ub_abd,
1363 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1364 		    vdev_uberblock_sync_done, good_writes,
1365 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1366 
1367 	abd_free(ub_abd);
1368 }
1369 
1370 /* Sync the uberblocks to all vdevs in svd[] */
1371 int
1372 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1373 {
1374 	spa_t *spa = svd[0]->vdev_spa;
1375 	zio_t *zio;
1376 	uint64_t good_writes = 0;
1377 
1378 	zio = zio_root(spa, NULL, NULL, flags);
1379 
1380 	for (int v = 0; v < svdcount; v++)
1381 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1382 
1383 	(void) zio_wait(zio);
1384 
1385 	/*
1386 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1387 	 * are no longer needed (because the new uberblocks and the even
1388 	 * labels are safely on disk), so it is safe to overwrite them.
1389 	 */
1390 	zio = zio_root(spa, NULL, NULL, flags);
1391 
1392 	for (int v = 0; v < svdcount; v++) {
1393 		if (vdev_writeable(svd[v])) {
1394 			zio_flush(zio, svd[v]);
1395 		}
1396 	}
1397 
1398 	(void) zio_wait(zio);
1399 
1400 	return (good_writes >= 1 ? 0 : EIO);
1401 }
1402 
1403 /*
1404  * On success, increment the count of good writes for our top-level vdev.
1405  */
1406 static void
1407 vdev_label_sync_done(zio_t *zio)
1408 {
1409 	uint64_t *good_writes = zio->io_private;
1410 
1411 	if (zio->io_error == 0)
1412 		atomic_inc_64(good_writes);
1413 }
1414 
1415 /*
1416  * If there weren't enough good writes, indicate failure to the parent.
1417  */
1418 static void
1419 vdev_label_sync_top_done(zio_t *zio)
1420 {
1421 	uint64_t *good_writes = zio->io_private;
1422 
1423 	if (*good_writes == 0)
1424 		zio->io_error = SET_ERROR(EIO);
1425 
1426 	kmem_free(good_writes, sizeof (uint64_t));
1427 }
1428 
1429 /*
1430  * We ignore errors for log and cache devices, simply free the private data.
1431  */
1432 static void
1433 vdev_label_sync_ignore_done(zio_t *zio)
1434 {
1435 	kmem_free(zio->io_private, sizeof (uint64_t));
1436 }
1437 
1438 /*
1439  * Write all even or odd labels to all leaves of the specified vdev.
1440  */
1441 static void
1442 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1443     vdev_t *vd, int l, uint64_t txg, int flags)
1444 {
1445 	nvlist_t *label;
1446 	vdev_phys_t *vp;
1447 	abd_t *vp_abd;
1448 	char *buf;
1449 	size_t buflen;
1450 
1451 	for (int c = 0; c < vd->vdev_children; c++) {
1452 		vdev_label_sync(zio, good_writes,
1453 		    vd->vdev_child[c], l, txg, flags);
1454 	}
1455 
1456 	if (!vd->vdev_ops->vdev_op_leaf)
1457 		return;
1458 
1459 	if (!vdev_writeable(vd))
1460 		return;
1461 
1462 	/*
1463 	 * Generate a label describing the top-level config to which we belong.
1464 	 */
1465 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1466 
1467 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1468 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1469 	vp = abd_to_buf(vp_abd);
1470 
1471 	buf = vp->vp_nvlist;
1472 	buflen = sizeof (vp->vp_nvlist);
1473 
1474 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1475 		for (; l < VDEV_LABELS; l += 2) {
1476 			vdev_label_write(zio, vd, l, vp_abd,
1477 			    offsetof(vdev_label_t, vl_vdev_phys),
1478 			    sizeof (vdev_phys_t),
1479 			    vdev_label_sync_done, good_writes,
1480 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1481 		}
1482 	}
1483 
1484 	abd_free(vp_abd);
1485 	nvlist_free(label);
1486 }
1487 
1488 int
1489 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1490 {
1491 	list_t *dl = &spa->spa_config_dirty_list;
1492 	vdev_t *vd;
1493 	zio_t *zio;
1494 	int error;
1495 
1496 	/*
1497 	 * Write the new labels to disk.
1498 	 */
1499 	zio = zio_root(spa, NULL, NULL, flags);
1500 
1501 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1502 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1503 		    KM_SLEEP);
1504 
1505 		ASSERT(!vd->vdev_ishole);
1506 
1507 		zio_t *vio = zio_null(zio, spa, NULL,
1508 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1509 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1510 		    good_writes, flags);
1511 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1512 		zio_nowait(vio);
1513 	}
1514 
1515 	error = zio_wait(zio);
1516 
1517 	/*
1518 	 * Flush the new labels to disk.
1519 	 */
1520 	zio = zio_root(spa, NULL, NULL, flags);
1521 
1522 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1523 		zio_flush(zio, vd);
1524 
1525 	(void) zio_wait(zio);
1526 
1527 	return (error);
1528 }
1529 
1530 /*
1531  * Sync the uberblock and any changes to the vdev configuration.
1532  *
1533  * The order of operations is carefully crafted to ensure that
1534  * if the system panics or loses power at any time, the state on disk
1535  * is still transactionally consistent.  The in-line comments below
1536  * describe the failure semantics at each stage.
1537  *
1538  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1539  * at any time, you can just call it again, and it will resume its work.
1540  */
1541 int
1542 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1543 {
1544 	spa_t *spa = svd[0]->vdev_spa;
1545 	uberblock_t *ub = &spa->spa_uberblock;
1546 	int error = 0;
1547 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1548 
1549 	ASSERT(svdcount != 0);
1550 retry:
1551 	/*
1552 	 * Normally, we don't want to try too hard to write every label and
1553 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1554 	 * sync process to block while we retry.  But if we can't write a
1555 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1556 	 * bailing out and declaring the pool faulted.
1557 	 */
1558 	if (error != 0) {
1559 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1560 			return (error);
1561 		flags |= ZIO_FLAG_TRYHARD;
1562 	}
1563 
1564 	ASSERT(ub->ub_txg <= txg);
1565 
1566 	/*
1567 	 * If this isn't a resync due to I/O errors,
1568 	 * and nothing changed in this transaction group,
1569 	 * and the vdev configuration hasn't changed,
1570 	 * then there's nothing to do.
1571 	 */
1572 	if (ub->ub_txg < txg) {
1573 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1574 		    txg, spa->spa_mmp.mmp_delay);
1575 
1576 		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1577 			return (0);
1578 	}
1579 
1580 	if (txg > spa_freeze_txg(spa))
1581 		return (0);
1582 
1583 	ASSERT(txg <= spa->spa_final_txg);
1584 
1585 	/*
1586 	 * Flush the write cache of every disk that's been written to
1587 	 * in this transaction group.  This ensures that all blocks
1588 	 * written in this txg will be committed to stable storage
1589 	 * before any uberblock that references them.
1590 	 */
1591 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1592 
1593 	for (vdev_t *vd =
1594 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1595 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1596 		zio_flush(zio, vd);
1597 
1598 	(void) zio_wait(zio);
1599 
1600 	/*
1601 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1602 	 * system dies in the middle of this process, that's OK: all of the
1603 	 * even labels that made it to disk will be newer than any uberblock,
1604 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1605 	 * which have not yet been touched, will still be valid.  We flush
1606 	 * the new labels to disk to ensure that all even-label updates
1607 	 * are committed to stable storage before the uberblock update.
1608 	 */
1609 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1610 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1611 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1612 			    "for pool '%s' when syncing out the even labels "
1613 			    "of dirty vdevs", error, spa_name(spa));
1614 		}
1615 		goto retry;
1616 	}
1617 
1618 	/*
1619 	 * Sync the uberblocks to all vdevs in svd[].
1620 	 * If the system dies in the middle of this step, there are two cases
1621 	 * to consider, and the on-disk state is consistent either way:
1622 	 *
1623 	 * (1)	If none of the new uberblocks made it to disk, then the
1624 	 *	previous uberblock will be the newest, and the odd labels
1625 	 *	(which had not yet been touched) will be valid with respect
1626 	 *	to that uberblock.
1627 	 *
1628 	 * (2)	If one or more new uberblocks made it to disk, then they
1629 	 *	will be the newest, and the even labels (which had all
1630 	 *	been successfully committed) will be valid with respect
1631 	 *	to the new uberblocks.
1632 	 */
1633 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1634 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1635 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1636 			    "%d for pool '%s'", error, spa_name(spa));
1637 		}
1638 		goto retry;
1639 	}
1640 
1641 	if (spa_multihost(spa))
1642 		mmp_update_uberblock(spa, ub);
1643 
1644 	/*
1645 	 * Sync out odd labels for every dirty vdev.  If the system dies
1646 	 * in the middle of this process, the even labels and the new
1647 	 * uberblocks will suffice to open the pool.  The next time
1648 	 * the pool is opened, the first thing we'll do -- before any
1649 	 * user data is modified -- is mark every vdev dirty so that
1650 	 * all labels will be brought up to date.  We flush the new labels
1651 	 * to disk to ensure that all odd-label updates are committed to
1652 	 * stable storage before the next transaction group begins.
1653 	 */
1654 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1655 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1656 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1657 			    "for pool '%s' when syncing out the odd labels of "
1658 			    "dirty vdevs", error, spa_name(spa));
1659 		}
1660 		goto retry;
1661 	}
1662 
1663 	return (0);
1664 }
1665