xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision c56b380c394069fe4abc1010960870ca8b2726a8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Virtual Device Labels
29  * ---------------------
30  *
31  * The vdev label serves several distinct purposes:
32  *
33  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34  *	   identity within the pool.
35  *
36  * 	2. Verify that all the devices given in a configuration are present
37  *         within the pool.
38  *
39  * 	3. Determine the uberblock for the pool.
40  *
41  * 	4. In case of an import operation, determine the configuration of the
42  *         toplevel vdev of which it is a part.
43  *
44  * 	5. If an import operation cannot find all the devices in the pool,
45  *         provide enough information to the administrator to determine which
46  *         devices are missing.
47  *
48  * It is important to note that while the kernel is responsible for writing the
49  * label, it only consumes the information in the first three cases.  The
50  * latter information is only consumed in userland when determining the
51  * configuration to import a pool.
52  *
53  *
54  * Label Organization
55  * ------------------
56  *
57  * Before describing the contents of the label, it's important to understand how
58  * the labels are written and updated with respect to the uberblock.
59  *
60  * When the pool configuration is altered, either because it was newly created
61  * or a device was added, we want to update all the labels such that we can deal
62  * with fatal failure at any point.  To this end, each disk has two labels which
63  * are updated before and after the uberblock is synced.  Assuming we have
64  * labels and an uberblock with the following transaction groups:
65  *
66  *              L1          UB          L2
67  *           +------+    +------+    +------+
68  *           |      |    |      |    |      |
69  *           | t10  |    | t10  |    | t10  |
70  *           |      |    |      |    |      |
71  *           +------+    +------+    +------+
72  *
73  * In this stable state, the labels and the uberblock were all updated within
74  * the same transaction group (10).  Each label is mirrored and checksummed, so
75  * that we can detect when we fail partway through writing the label.
76  *
77  * In order to identify which labels are valid, the labels are written in the
78  * following manner:
79  *
80  * 	1. For each vdev, update 'L1' to the new label
81  * 	2. Update the uberblock
82  * 	3. For each vdev, update 'L2' to the new label
83  *
84  * Given arbitrary failure, we can determine the correct label to use based on
85  * the transaction group.  If we fail after updating L1 but before updating the
86  * UB, we will notice that L1's transaction group is greater than the uberblock,
87  * so L2 must be valid.  If we fail after writing the uberblock but before
88  * writing L2, we will notice that L2's transaction group is less than L1, and
89  * therefore L1 is valid.
90  *
91  * Another added complexity is that not every label is updated when the config
92  * is synced.  If we add a single device, we do not want to have to re-write
93  * every label for every device in the pool.  This means that both L1 and L2 may
94  * be older than the pool uberblock, because the necessary information is stored
95  * on another vdev.
96  *
97  *
98  * On-disk Format
99  * --------------
100  *
101  * The vdev label consists of two distinct parts, and is wrapped within the
102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103  * VTOC disk labels, but is otherwise ignored.
104  *
105  * The first half of the label is a packed nvlist which contains pool wide
106  * properties, per-vdev properties, and configuration information.  It is
107  * described in more detail below.
108  *
109  * The latter half of the label consists of a redundant array of uberblocks.
110  * These uberblocks are updated whenever a transaction group is committed,
111  * or when the configuration is updated.  When a pool is loaded, we scan each
112  * vdev for the 'best' uberblock.
113  *
114  *
115  * Configuration Information
116  * -------------------------
117  *
118  * The nvlist describing the pool and vdev contains the following elements:
119  *
120  * 	version		ZFS on-disk version
121  * 	name		Pool name
122  * 	state		Pool state
123  * 	txg		Transaction group in which this label was written
124  * 	pool_guid	Unique identifier for this pool
125  * 	vdev_tree	An nvlist describing vdev tree.
126  *	features_for_read
127  *			An nvlist of the features necessary for reading the MOS.
128  *
129  * Each leaf device label also contains the following:
130  *
131  * 	top_guid	Unique ID for top-level vdev in which this is contained
132  * 	guid		Unique ID for the leaf vdev
133  *
134  * The 'vs' configuration follows the format described in 'spa_config.c'.
135  */
136 
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/zio.h>
147 #include <sys/dsl_scan.h>
148 #include <sys/fs/zfs.h>
149 
150 /*
151  * Basic routines to read and write from a vdev label.
152  * Used throughout the rest of this file.
153  */
154 uint64_t
155 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156 {
157 	ASSERT(offset < sizeof (vdev_label_t));
158 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159 
160 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162 }
163 
164 /*
165  * Returns back the vdev label associated with the passed in offset.
166  */
167 int
168 vdev_label_number(uint64_t psize, uint64_t offset)
169 {
170 	int l;
171 
172 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
173 		offset -= psize - VDEV_LABEL_END_SIZE;
174 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175 	}
176 	l = offset / sizeof (vdev_label_t);
177 	return (l < VDEV_LABELS ? l : -1);
178 }
179 
180 static void
181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
182 	uint64_t size, zio_done_func_t *done, void *private, int flags)
183 {
184 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185 	    SCL_STATE_ALL);
186 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
187 
188 	zio_nowait(zio_read_phys(zio, vd,
189 	    vdev_label_offset(vd->vdev_psize, l, offset),
190 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
191 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
192 }
193 
194 static void
195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196 	uint64_t size, zio_done_func_t *done, void *private, int flags)
197 {
198 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200 	    (SCL_CONFIG | SCL_STATE) &&
201 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
203 
204 	zio_nowait(zio_write_phys(zio, vd,
205 	    vdev_label_offset(vd->vdev_psize, l, offset),
206 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
207 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208 }
209 
210 /*
211  * Generate the nvlist representing this vdev's config.
212  */
213 nvlist_t *
214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
215     vdev_config_flag_t flags)
216 {
217 	nvlist_t *nv = NULL;
218 
219 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
220 
221 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
222 	    vd->vdev_ops->vdev_op_type) == 0);
223 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
224 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
225 		    == 0);
226 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
227 
228 	if (vd->vdev_path != NULL)
229 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
230 		    vd->vdev_path) == 0);
231 
232 	if (vd->vdev_devid != NULL)
233 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
234 		    vd->vdev_devid) == 0);
235 
236 	if (vd->vdev_physpath != NULL)
237 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
238 		    vd->vdev_physpath) == 0);
239 
240 	if (vd->vdev_fru != NULL)
241 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
242 		    vd->vdev_fru) == 0);
243 
244 	if (vd->vdev_nparity != 0) {
245 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
246 		    VDEV_TYPE_RAIDZ) == 0);
247 
248 		/*
249 		 * Make sure someone hasn't managed to sneak a fancy new vdev
250 		 * into a crufty old storage pool.
251 		 */
252 		ASSERT(vd->vdev_nparity == 1 ||
253 		    (vd->vdev_nparity <= 2 &&
254 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
255 		    (vd->vdev_nparity <= 3 &&
256 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
257 
258 		/*
259 		 * Note that we'll add the nparity tag even on storage pools
260 		 * that only support a single parity device -- older software
261 		 * will just ignore it.
262 		 */
263 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
264 		    vd->vdev_nparity) == 0);
265 	}
266 
267 	if (vd->vdev_wholedisk != -1ULL)
268 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
269 		    vd->vdev_wholedisk) == 0);
270 
271 	if (vd->vdev_not_present)
272 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
273 
274 	if (vd->vdev_isspare)
275 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
276 
277 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
278 	    vd == vd->vdev_top) {
279 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
280 		    vd->vdev_ms_array) == 0);
281 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
282 		    vd->vdev_ms_shift) == 0);
283 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
284 		    vd->vdev_ashift) == 0);
285 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
286 		    vd->vdev_asize) == 0);
287 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
288 		    vd->vdev_islog) == 0);
289 		if (vd->vdev_removing)
290 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
291 			    vd->vdev_removing) == 0);
292 	}
293 
294 	if (vd->vdev_dtl_smo.smo_object != 0)
295 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
296 		    vd->vdev_dtl_smo.smo_object) == 0);
297 
298 	if (vd->vdev_crtxg)
299 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
300 		    vd->vdev_crtxg) == 0);
301 
302 	if (getstats) {
303 		vdev_stat_t vs;
304 		pool_scan_stat_t ps;
305 
306 		vdev_get_stats(vd, &vs);
307 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
308 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
309 
310 		/* provide either current or previous scan information */
311 		if (spa_scan_get_stats(spa, &ps) == 0) {
312 			VERIFY(nvlist_add_uint64_array(nv,
313 			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
314 			    sizeof (pool_scan_stat_t) / sizeof (uint64_t))
315 			    == 0);
316 		}
317 	}
318 
319 	if (!vd->vdev_ops->vdev_op_leaf) {
320 		nvlist_t **child;
321 		int c, idx;
322 
323 		ASSERT(!vd->vdev_ishole);
324 
325 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
326 		    KM_SLEEP);
327 
328 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
329 			vdev_t *cvd = vd->vdev_child[c];
330 
331 			/*
332 			 * If we're generating an nvlist of removing
333 			 * vdevs then skip over any device which is
334 			 * not being removed.
335 			 */
336 			if ((flags & VDEV_CONFIG_REMOVING) &&
337 			    !cvd->vdev_removing)
338 				continue;
339 
340 			child[idx++] = vdev_config_generate(spa, cvd,
341 			    getstats, flags);
342 		}
343 
344 		if (idx) {
345 			VERIFY(nvlist_add_nvlist_array(nv,
346 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
347 		}
348 
349 		for (c = 0; c < idx; c++)
350 			nvlist_free(child[c]);
351 
352 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
353 
354 	} else {
355 		const char *aux = NULL;
356 
357 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
358 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
359 			    B_TRUE) == 0);
360 		if (vd->vdev_resilvering)
361 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING,
362 			    B_TRUE) == 0);
363 		if (vd->vdev_faulted)
364 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
365 			    B_TRUE) == 0);
366 		if (vd->vdev_degraded)
367 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
368 			    B_TRUE) == 0);
369 		if (vd->vdev_removed)
370 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
371 			    B_TRUE) == 0);
372 		if (vd->vdev_unspare)
373 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
374 			    B_TRUE) == 0);
375 		if (vd->vdev_ishole)
376 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
377 			    B_TRUE) == 0);
378 
379 		switch (vd->vdev_stat.vs_aux) {
380 		case VDEV_AUX_ERR_EXCEEDED:
381 			aux = "err_exceeded";
382 			break;
383 
384 		case VDEV_AUX_EXTERNAL:
385 			aux = "external";
386 			break;
387 		}
388 
389 		if (aux != NULL)
390 			VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
391 			    aux) == 0);
392 
393 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
394 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
395 			    vd->vdev_orig_guid) == 0);
396 		}
397 	}
398 
399 	return (nv);
400 }
401 
402 /*
403  * Generate a view of the top-level vdevs.  If we currently have holes
404  * in the namespace, then generate an array which contains a list of holey
405  * vdevs.  Additionally, add the number of top-level children that currently
406  * exist.
407  */
408 void
409 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
410 {
411 	vdev_t *rvd = spa->spa_root_vdev;
412 	uint64_t *array;
413 	uint_t c, idx;
414 
415 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
416 
417 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
418 		vdev_t *tvd = rvd->vdev_child[c];
419 
420 		if (tvd->vdev_ishole)
421 			array[idx++] = c;
422 	}
423 
424 	if (idx) {
425 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
426 		    array, idx) == 0);
427 	}
428 
429 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
430 	    rvd->vdev_children) == 0);
431 
432 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
433 }
434 
435 /*
436  * Returns the configuration from the label of the given vdev. For vdevs
437  * which don't have a txg value stored on their label (i.e. spares/cache)
438  * or have not been completely initialized (txg = 0) just return
439  * the configuration from the first valid label we find. Otherwise,
440  * find the most up-to-date label that does not exceed the specified
441  * 'txg' value.
442  */
443 nvlist_t *
444 vdev_label_read_config(vdev_t *vd, uint64_t txg)
445 {
446 	spa_t *spa = vd->vdev_spa;
447 	nvlist_t *config = NULL;
448 	vdev_phys_t *vp;
449 	zio_t *zio;
450 	uint64_t best_txg = 0;
451 	int error = 0;
452 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
453 	    ZIO_FLAG_SPECULATIVE;
454 
455 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
456 
457 	if (!vdev_readable(vd))
458 		return (NULL);
459 
460 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
461 
462 retry:
463 	for (int l = 0; l < VDEV_LABELS; l++) {
464 		nvlist_t *label = NULL;
465 
466 		zio = zio_root(spa, NULL, NULL, flags);
467 
468 		vdev_label_read(zio, vd, l, vp,
469 		    offsetof(vdev_label_t, vl_vdev_phys),
470 		    sizeof (vdev_phys_t), NULL, NULL, flags);
471 
472 		if (zio_wait(zio) == 0 &&
473 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
474 		    &label, 0) == 0) {
475 			uint64_t label_txg = 0;
476 
477 			/*
478 			 * Auxiliary vdevs won't have txg values in their
479 			 * labels and newly added vdevs may not have been
480 			 * completely initialized so just return the
481 			 * configuration from the first valid label we
482 			 * encounter.
483 			 */
484 			error = nvlist_lookup_uint64(label,
485 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
486 			if ((error || label_txg == 0) && !config) {
487 				config = label;
488 				break;
489 			} else if (label_txg <= txg && label_txg > best_txg) {
490 				best_txg = label_txg;
491 				nvlist_free(config);
492 				config = fnvlist_dup(label);
493 			}
494 		}
495 
496 		if (label != NULL) {
497 			nvlist_free(label);
498 			label = NULL;
499 		}
500 	}
501 
502 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
503 		flags |= ZIO_FLAG_TRYHARD;
504 		goto retry;
505 	}
506 
507 	zio_buf_free(vp, sizeof (vdev_phys_t));
508 
509 	return (config);
510 }
511 
512 /*
513  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
514  * in with the device guid if this spare is active elsewhere on the system.
515  */
516 static boolean_t
517 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
518     uint64_t *spare_guid, uint64_t *l2cache_guid)
519 {
520 	spa_t *spa = vd->vdev_spa;
521 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
522 	uint64_t vdtxg = 0;
523 	nvlist_t *label;
524 
525 	if (spare_guid)
526 		*spare_guid = 0ULL;
527 	if (l2cache_guid)
528 		*l2cache_guid = 0ULL;
529 
530 	/*
531 	 * Read the label, if any, and perform some basic sanity checks.
532 	 */
533 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
534 		return (B_FALSE);
535 
536 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
537 	    &vdtxg);
538 
539 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
540 	    &state) != 0 ||
541 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
542 	    &device_guid) != 0) {
543 		nvlist_free(label);
544 		return (B_FALSE);
545 	}
546 
547 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
548 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
549 	    &pool_guid) != 0 ||
550 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
551 	    &txg) != 0)) {
552 		nvlist_free(label);
553 		return (B_FALSE);
554 	}
555 
556 	nvlist_free(label);
557 
558 	/*
559 	 * Check to see if this device indeed belongs to the pool it claims to
560 	 * be a part of.  The only way this is allowed is if the device is a hot
561 	 * spare (which we check for later on).
562 	 */
563 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
564 	    !spa_guid_exists(pool_guid, device_guid) &&
565 	    !spa_spare_exists(device_guid, NULL, NULL) &&
566 	    !spa_l2cache_exists(device_guid, NULL))
567 		return (B_FALSE);
568 
569 	/*
570 	 * If the transaction group is zero, then this an initialized (but
571 	 * unused) label.  This is only an error if the create transaction
572 	 * on-disk is the same as the one we're using now, in which case the
573 	 * user has attempted to add the same vdev multiple times in the same
574 	 * transaction.
575 	 */
576 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
577 	    txg == 0 && vdtxg == crtxg)
578 		return (B_TRUE);
579 
580 	/*
581 	 * Check to see if this is a spare device.  We do an explicit check for
582 	 * spa_has_spare() here because it may be on our pending list of spares
583 	 * to add.  We also check if it is an l2cache device.
584 	 */
585 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
586 	    spa_has_spare(spa, device_guid)) {
587 		if (spare_guid)
588 			*spare_guid = device_guid;
589 
590 		switch (reason) {
591 		case VDEV_LABEL_CREATE:
592 		case VDEV_LABEL_L2CACHE:
593 			return (B_TRUE);
594 
595 		case VDEV_LABEL_REPLACE:
596 			return (!spa_has_spare(spa, device_guid) ||
597 			    spare_pool != 0ULL);
598 
599 		case VDEV_LABEL_SPARE:
600 			return (spa_has_spare(spa, device_guid));
601 		}
602 	}
603 
604 	/*
605 	 * Check to see if this is an l2cache device.
606 	 */
607 	if (spa_l2cache_exists(device_guid, NULL))
608 		return (B_TRUE);
609 
610 	/*
611 	 * We can't rely on a pool's state if it's been imported
612 	 * read-only.  Instead we look to see if the pools is marked
613 	 * read-only in the namespace and set the state to active.
614 	 */
615 	if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
616 	    spa_mode(spa) == FREAD)
617 		state = POOL_STATE_ACTIVE;
618 
619 	/*
620 	 * If the device is marked ACTIVE, then this device is in use by another
621 	 * pool on the system.
622 	 */
623 	return (state == POOL_STATE_ACTIVE);
624 }
625 
626 /*
627  * Initialize a vdev label.  We check to make sure each leaf device is not in
628  * use, and writable.  We put down an initial label which we will later
629  * overwrite with a complete label.  Note that it's important to do this
630  * sequentially, not in parallel, so that we catch cases of multiple use of the
631  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
632  * itself.
633  */
634 int
635 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
636 {
637 	spa_t *spa = vd->vdev_spa;
638 	nvlist_t *label;
639 	vdev_phys_t *vp;
640 	char *pad2;
641 	uberblock_t *ub;
642 	zio_t *zio;
643 	char *buf;
644 	size_t buflen;
645 	int error;
646 	uint64_t spare_guid, l2cache_guid;
647 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
648 
649 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
650 
651 	for (int c = 0; c < vd->vdev_children; c++)
652 		if ((error = vdev_label_init(vd->vdev_child[c],
653 		    crtxg, reason)) != 0)
654 			return (error);
655 
656 	/* Track the creation time for this vdev */
657 	vd->vdev_crtxg = crtxg;
658 
659 	if (!vd->vdev_ops->vdev_op_leaf)
660 		return (0);
661 
662 	/*
663 	 * Dead vdevs cannot be initialized.
664 	 */
665 	if (vdev_is_dead(vd))
666 		return (SET_ERROR(EIO));
667 
668 	/*
669 	 * Determine if the vdev is in use.
670 	 */
671 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
672 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
673 		return (SET_ERROR(EBUSY));
674 
675 	/*
676 	 * If this is a request to add or replace a spare or l2cache device
677 	 * that is in use elsewhere on the system, then we must update the
678 	 * guid (which was initialized to a random value) to reflect the
679 	 * actual GUID (which is shared between multiple pools).
680 	 */
681 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
682 	    spare_guid != 0ULL) {
683 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
684 
685 		vd->vdev_guid += guid_delta;
686 
687 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
688 			pvd->vdev_guid_sum += guid_delta;
689 
690 		/*
691 		 * If this is a replacement, then we want to fallthrough to the
692 		 * rest of the code.  If we're adding a spare, then it's already
693 		 * labeled appropriately and we can just return.
694 		 */
695 		if (reason == VDEV_LABEL_SPARE)
696 			return (0);
697 		ASSERT(reason == VDEV_LABEL_REPLACE ||
698 		    reason == VDEV_LABEL_SPLIT);
699 	}
700 
701 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
702 	    l2cache_guid != 0ULL) {
703 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
704 
705 		vd->vdev_guid += guid_delta;
706 
707 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
708 			pvd->vdev_guid_sum += guid_delta;
709 
710 		/*
711 		 * If this is a replacement, then we want to fallthrough to the
712 		 * rest of the code.  If we're adding an l2cache, then it's
713 		 * already labeled appropriately and we can just return.
714 		 */
715 		if (reason == VDEV_LABEL_L2CACHE)
716 			return (0);
717 		ASSERT(reason == VDEV_LABEL_REPLACE);
718 	}
719 
720 	/*
721 	 * Initialize its label.
722 	 */
723 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
724 	bzero(vp, sizeof (vdev_phys_t));
725 
726 	/*
727 	 * Generate a label describing the pool and our top-level vdev.
728 	 * We mark it as being from txg 0 to indicate that it's not
729 	 * really part of an active pool just yet.  The labels will
730 	 * be written again with a meaningful txg by spa_sync().
731 	 */
732 	if (reason == VDEV_LABEL_SPARE ||
733 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
734 		/*
735 		 * For inactive hot spares, we generate a special label that
736 		 * identifies as a mutually shared hot spare.  We write the
737 		 * label if we are adding a hot spare, or if we are removing an
738 		 * active hot spare (in which case we want to revert the
739 		 * labels).
740 		 */
741 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
742 
743 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
744 		    spa_version(spa)) == 0);
745 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
746 		    POOL_STATE_SPARE) == 0);
747 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
748 		    vd->vdev_guid) == 0);
749 	} else if (reason == VDEV_LABEL_L2CACHE ||
750 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
751 		/*
752 		 * For level 2 ARC devices, add a special label.
753 		 */
754 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
755 
756 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
757 		    spa_version(spa)) == 0);
758 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
759 		    POOL_STATE_L2CACHE) == 0);
760 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
761 		    vd->vdev_guid) == 0);
762 	} else {
763 		uint64_t txg = 0ULL;
764 
765 		if (reason == VDEV_LABEL_SPLIT)
766 			txg = spa->spa_uberblock.ub_txg;
767 		label = spa_config_generate(spa, vd, txg, B_FALSE);
768 
769 		/*
770 		 * Add our creation time.  This allows us to detect multiple
771 		 * vdev uses as described above, and automatically expires if we
772 		 * fail.
773 		 */
774 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
775 		    crtxg) == 0);
776 	}
777 
778 	buf = vp->vp_nvlist;
779 	buflen = sizeof (vp->vp_nvlist);
780 
781 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
782 	if (error != 0) {
783 		nvlist_free(label);
784 		zio_buf_free(vp, sizeof (vdev_phys_t));
785 		/* EFAULT means nvlist_pack ran out of room */
786 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
787 	}
788 
789 	/*
790 	 * Initialize uberblock template.
791 	 */
792 	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
793 	bzero(ub, VDEV_UBERBLOCK_RING);
794 	*ub = spa->spa_uberblock;
795 	ub->ub_txg = 0;
796 
797 	/* Initialize the 2nd padding area. */
798 	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
799 	bzero(pad2, VDEV_PAD_SIZE);
800 
801 	/*
802 	 * Write everything in parallel.
803 	 */
804 retry:
805 	zio = zio_root(spa, NULL, NULL, flags);
806 
807 	for (int l = 0; l < VDEV_LABELS; l++) {
808 
809 		vdev_label_write(zio, vd, l, vp,
810 		    offsetof(vdev_label_t, vl_vdev_phys),
811 		    sizeof (vdev_phys_t), NULL, NULL, flags);
812 
813 		/*
814 		 * Skip the 1st padding area.
815 		 * Zero out the 2nd padding area where it might have
816 		 * left over data from previous filesystem format.
817 		 */
818 		vdev_label_write(zio, vd, l, pad2,
819 		    offsetof(vdev_label_t, vl_pad2),
820 		    VDEV_PAD_SIZE, NULL, NULL, flags);
821 
822 		vdev_label_write(zio, vd, l, ub,
823 		    offsetof(vdev_label_t, vl_uberblock),
824 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
825 	}
826 
827 	error = zio_wait(zio);
828 
829 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
830 		flags |= ZIO_FLAG_TRYHARD;
831 		goto retry;
832 	}
833 
834 	nvlist_free(label);
835 	zio_buf_free(pad2, VDEV_PAD_SIZE);
836 	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
837 	zio_buf_free(vp, sizeof (vdev_phys_t));
838 
839 	/*
840 	 * If this vdev hasn't been previously identified as a spare, then we
841 	 * mark it as such only if a) we are labeling it as a spare, or b) it
842 	 * exists as a spare elsewhere in the system.  Do the same for
843 	 * level 2 ARC devices.
844 	 */
845 	if (error == 0 && !vd->vdev_isspare &&
846 	    (reason == VDEV_LABEL_SPARE ||
847 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
848 		spa_spare_add(vd);
849 
850 	if (error == 0 && !vd->vdev_isl2cache &&
851 	    (reason == VDEV_LABEL_L2CACHE ||
852 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
853 		spa_l2cache_add(vd);
854 
855 	return (error);
856 }
857 
858 /*
859  * ==========================================================================
860  * uberblock load/sync
861  * ==========================================================================
862  */
863 
864 /*
865  * Consider the following situation: txg is safely synced to disk.  We've
866  * written the first uberblock for txg + 1, and then we lose power.  When we
867  * come back up, we fail to see the uberblock for txg + 1 because, say,
868  * it was on a mirrored device and the replica to which we wrote txg + 1
869  * is now offline.  If we then make some changes and sync txg + 1, and then
870  * the missing replica comes back, then for a few seconds we'll have two
871  * conflicting uberblocks on disk with the same txg.  The solution is simple:
872  * among uberblocks with equal txg, choose the one with the latest timestamp.
873  */
874 static int
875 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
876 {
877 	if (ub1->ub_txg < ub2->ub_txg)
878 		return (-1);
879 	if (ub1->ub_txg > ub2->ub_txg)
880 		return (1);
881 
882 	if (ub1->ub_timestamp < ub2->ub_timestamp)
883 		return (-1);
884 	if (ub1->ub_timestamp > ub2->ub_timestamp)
885 		return (1);
886 
887 	return (0);
888 }
889 
890 struct ubl_cbdata {
891 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
892 	vdev_t		*ubl_vd;	/* vdev associated with the above */
893 };
894 
895 static void
896 vdev_uberblock_load_done(zio_t *zio)
897 {
898 	vdev_t *vd = zio->io_vd;
899 	spa_t *spa = zio->io_spa;
900 	zio_t *rio = zio->io_private;
901 	uberblock_t *ub = zio->io_data;
902 	struct ubl_cbdata *cbp = rio->io_private;
903 
904 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
905 
906 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
907 		mutex_enter(&rio->io_lock);
908 		if (ub->ub_txg <= spa->spa_load_max_txg &&
909 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
910 			/*
911 			 * Keep track of the vdev in which this uberblock
912 			 * was found. We will use this information later
913 			 * to obtain the config nvlist associated with
914 			 * this uberblock.
915 			 */
916 			*cbp->ubl_ubbest = *ub;
917 			cbp->ubl_vd = vd;
918 		}
919 		mutex_exit(&rio->io_lock);
920 	}
921 
922 	zio_buf_free(zio->io_data, zio->io_size);
923 }
924 
925 static void
926 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
927     struct ubl_cbdata *cbp)
928 {
929 	for (int c = 0; c < vd->vdev_children; c++)
930 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
931 
932 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
933 		for (int l = 0; l < VDEV_LABELS; l++) {
934 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
935 				vdev_label_read(zio, vd, l,
936 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
937 				    VDEV_UBERBLOCK_OFFSET(vd, n),
938 				    VDEV_UBERBLOCK_SIZE(vd),
939 				    vdev_uberblock_load_done, zio, flags);
940 			}
941 		}
942 	}
943 }
944 
945 /*
946  * Reads the 'best' uberblock from disk along with its associated
947  * configuration. First, we read the uberblock array of each label of each
948  * vdev, keeping track of the uberblock with the highest txg in each array.
949  * Then, we read the configuration from the same vdev as the best uberblock.
950  */
951 void
952 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
953 {
954 	zio_t *zio;
955 	spa_t *spa = rvd->vdev_spa;
956 	struct ubl_cbdata cb;
957 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
958 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
959 
960 	ASSERT(ub);
961 	ASSERT(config);
962 
963 	bzero(ub, sizeof (uberblock_t));
964 	*config = NULL;
965 
966 	cb.ubl_ubbest = ub;
967 	cb.ubl_vd = NULL;
968 
969 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
970 	zio = zio_root(spa, NULL, &cb, flags);
971 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
972 	(void) zio_wait(zio);
973 
974 	/*
975 	 * It's possible that the best uberblock was discovered on a label
976 	 * that has a configuration which was written in a future txg.
977 	 * Search all labels on this vdev to find the configuration that
978 	 * matches the txg for our uberblock.
979 	 */
980 	if (cb.ubl_vd != NULL)
981 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
982 	spa_config_exit(spa, SCL_ALL, FTAG);
983 }
984 
985 /*
986  * On success, increment root zio's count of good writes.
987  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
988  */
989 static void
990 vdev_uberblock_sync_done(zio_t *zio)
991 {
992 	uint64_t *good_writes = zio->io_private;
993 
994 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
995 		atomic_add_64(good_writes, 1);
996 }
997 
998 /*
999  * Write the uberblock to all labels of all leaves of the specified vdev.
1000  */
1001 static void
1002 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
1003 {
1004 	uberblock_t *ubbuf;
1005 	int n;
1006 
1007 	for (int c = 0; c < vd->vdev_children; c++)
1008 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1009 
1010 	if (!vd->vdev_ops->vdev_op_leaf)
1011 		return;
1012 
1013 	if (!vdev_writeable(vd))
1014 		return;
1015 
1016 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1017 
1018 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1019 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1020 	*ubbuf = *ub;
1021 
1022 	for (int l = 0; l < VDEV_LABELS; l++)
1023 		vdev_label_write(zio, vd, l, ubbuf,
1024 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1025 		    vdev_uberblock_sync_done, zio->io_private,
1026 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1027 
1028 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1029 }
1030 
1031 /* Sync the uberblocks to all vdevs in svd[] */
1032 int
1033 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1034 {
1035 	spa_t *spa = svd[0]->vdev_spa;
1036 	zio_t *zio;
1037 	uint64_t good_writes = 0;
1038 
1039 	zio = zio_root(spa, NULL, &good_writes, flags);
1040 
1041 	for (int v = 0; v < svdcount; v++)
1042 		vdev_uberblock_sync(zio, ub, svd[v], flags);
1043 
1044 	(void) zio_wait(zio);
1045 
1046 	/*
1047 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1048 	 * are no longer needed (because the new uberblocks and the even
1049 	 * labels are safely on disk), so it is safe to overwrite them.
1050 	 */
1051 	zio = zio_root(spa, NULL, NULL, flags);
1052 
1053 	for (int v = 0; v < svdcount; v++)
1054 		zio_flush(zio, svd[v]);
1055 
1056 	(void) zio_wait(zio);
1057 
1058 	return (good_writes >= 1 ? 0 : EIO);
1059 }
1060 
1061 /*
1062  * On success, increment the count of good writes for our top-level vdev.
1063  */
1064 static void
1065 vdev_label_sync_done(zio_t *zio)
1066 {
1067 	uint64_t *good_writes = zio->io_private;
1068 
1069 	if (zio->io_error == 0)
1070 		atomic_add_64(good_writes, 1);
1071 }
1072 
1073 /*
1074  * If there weren't enough good writes, indicate failure to the parent.
1075  */
1076 static void
1077 vdev_label_sync_top_done(zio_t *zio)
1078 {
1079 	uint64_t *good_writes = zio->io_private;
1080 
1081 	if (*good_writes == 0)
1082 		zio->io_error = SET_ERROR(EIO);
1083 
1084 	kmem_free(good_writes, sizeof (uint64_t));
1085 }
1086 
1087 /*
1088  * We ignore errors for log and cache devices, simply free the private data.
1089  */
1090 static void
1091 vdev_label_sync_ignore_done(zio_t *zio)
1092 {
1093 	kmem_free(zio->io_private, sizeof (uint64_t));
1094 }
1095 
1096 /*
1097  * Write all even or odd labels to all leaves of the specified vdev.
1098  */
1099 static void
1100 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1101 {
1102 	nvlist_t *label;
1103 	vdev_phys_t *vp;
1104 	char *buf;
1105 	size_t buflen;
1106 
1107 	for (int c = 0; c < vd->vdev_children; c++)
1108 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1109 
1110 	if (!vd->vdev_ops->vdev_op_leaf)
1111 		return;
1112 
1113 	if (!vdev_writeable(vd))
1114 		return;
1115 
1116 	/*
1117 	 * Generate a label describing the top-level config to which we belong.
1118 	 */
1119 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1120 
1121 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1122 	bzero(vp, sizeof (vdev_phys_t));
1123 
1124 	buf = vp->vp_nvlist;
1125 	buflen = sizeof (vp->vp_nvlist);
1126 
1127 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1128 		for (; l < VDEV_LABELS; l += 2) {
1129 			vdev_label_write(zio, vd, l, vp,
1130 			    offsetof(vdev_label_t, vl_vdev_phys),
1131 			    sizeof (vdev_phys_t),
1132 			    vdev_label_sync_done, zio->io_private,
1133 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1134 		}
1135 	}
1136 
1137 	zio_buf_free(vp, sizeof (vdev_phys_t));
1138 	nvlist_free(label);
1139 }
1140 
1141 int
1142 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1143 {
1144 	list_t *dl = &spa->spa_config_dirty_list;
1145 	vdev_t *vd;
1146 	zio_t *zio;
1147 	int error;
1148 
1149 	/*
1150 	 * Write the new labels to disk.
1151 	 */
1152 	zio = zio_root(spa, NULL, NULL, flags);
1153 
1154 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1155 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1156 		    KM_SLEEP);
1157 
1158 		ASSERT(!vd->vdev_ishole);
1159 
1160 		zio_t *vio = zio_null(zio, spa, NULL,
1161 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1162 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1163 		    good_writes, flags);
1164 		vdev_label_sync(vio, vd, l, txg, flags);
1165 		zio_nowait(vio);
1166 	}
1167 
1168 	error = zio_wait(zio);
1169 
1170 	/*
1171 	 * Flush the new labels to disk.
1172 	 */
1173 	zio = zio_root(spa, NULL, NULL, flags);
1174 
1175 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1176 		zio_flush(zio, vd);
1177 
1178 	(void) zio_wait(zio);
1179 
1180 	return (error);
1181 }
1182 
1183 /*
1184  * Sync the uberblock and any changes to the vdev configuration.
1185  *
1186  * The order of operations is carefully crafted to ensure that
1187  * if the system panics or loses power at any time, the state on disk
1188  * is still transactionally consistent.  The in-line comments below
1189  * describe the failure semantics at each stage.
1190  *
1191  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1192  * at any time, you can just call it again, and it will resume its work.
1193  */
1194 int
1195 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1196 {
1197 	spa_t *spa = svd[0]->vdev_spa;
1198 	uberblock_t *ub = &spa->spa_uberblock;
1199 	vdev_t *vd;
1200 	zio_t *zio;
1201 	int error;
1202 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1203 
1204 	/*
1205 	 * Normally, we don't want to try too hard to write every label and
1206 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1207 	 * sync process to block while we retry.  But if we can't write a
1208 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1209 	 * bailing out and declaring the pool faulted.
1210 	 */
1211 	if (tryhard)
1212 		flags |= ZIO_FLAG_TRYHARD;
1213 
1214 	ASSERT(ub->ub_txg <= txg);
1215 
1216 	/*
1217 	 * If this isn't a resync due to I/O errors,
1218 	 * and nothing changed in this transaction group,
1219 	 * and the vdev configuration hasn't changed,
1220 	 * then there's nothing to do.
1221 	 */
1222 	if (ub->ub_txg < txg &&
1223 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1224 	    list_is_empty(&spa->spa_config_dirty_list))
1225 		return (0);
1226 
1227 	if (txg > spa_freeze_txg(spa))
1228 		return (0);
1229 
1230 	ASSERT(txg <= spa->spa_final_txg);
1231 
1232 	/*
1233 	 * Flush the write cache of every disk that's been written to
1234 	 * in this transaction group.  This ensures that all blocks
1235 	 * written in this txg will be committed to stable storage
1236 	 * before any uberblock that references them.
1237 	 */
1238 	zio = zio_root(spa, NULL, NULL, flags);
1239 
1240 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1241 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1242 		zio_flush(zio, vd);
1243 
1244 	(void) zio_wait(zio);
1245 
1246 	/*
1247 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1248 	 * system dies in the middle of this process, that's OK: all of the
1249 	 * even labels that made it to disk will be newer than any uberblock,
1250 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1251 	 * which have not yet been touched, will still be valid.  We flush
1252 	 * the new labels to disk to ensure that all even-label updates
1253 	 * are committed to stable storage before the uberblock update.
1254 	 */
1255 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1256 		return (error);
1257 
1258 	/*
1259 	 * Sync the uberblocks to all vdevs in svd[].
1260 	 * If the system dies in the middle of this step, there are two cases
1261 	 * to consider, and the on-disk state is consistent either way:
1262 	 *
1263 	 * (1)	If none of the new uberblocks made it to disk, then the
1264 	 *	previous uberblock will be the newest, and the odd labels
1265 	 *	(which had not yet been touched) will be valid with respect
1266 	 *	to that uberblock.
1267 	 *
1268 	 * (2)	If one or more new uberblocks made it to disk, then they
1269 	 *	will be the newest, and the even labels (which had all
1270 	 *	been successfully committed) will be valid with respect
1271 	 *	to the new uberblocks.
1272 	 */
1273 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1274 		return (error);
1275 
1276 	/*
1277 	 * Sync out odd labels for every dirty vdev.  If the system dies
1278 	 * in the middle of this process, the even labels and the new
1279 	 * uberblocks will suffice to open the pool.  The next time
1280 	 * the pool is opened, the first thing we'll do -- before any
1281 	 * user data is modified -- is mark every vdev dirty so that
1282 	 * all labels will be brought up to date.  We flush the new labels
1283 	 * to disk to ensure that all odd-label updates are committed to
1284 	 * stable storage before the next transaction group begins.
1285 	 */
1286 	return (vdev_label_sync_list(spa, 1, txg, flags));
1287 }
1288