xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision b89e420ae1290e425c29db875ec0c0546006eec7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Virtual Device Labels
29  * ---------------------
30  *
31  * The vdev label serves several distinct purposes:
32  *
33  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34  *	   identity within the pool.
35  *
36  * 	2. Verify that all the devices given in a configuration are present
37  *         within the pool.
38  *
39  * 	3. Determine the uberblock for the pool.
40  *
41  * 	4. In case of an import operation, determine the configuration of the
42  *         toplevel vdev of which it is a part.
43  *
44  * 	5. If an import operation cannot find all the devices in the pool,
45  *         provide enough information to the administrator to determine which
46  *         devices are missing.
47  *
48  * It is important to note that while the kernel is responsible for writing the
49  * label, it only consumes the information in the first three cases.  The
50  * latter information is only consumed in userland when determining the
51  * configuration to import a pool.
52  *
53  *
54  * Label Organization
55  * ------------------
56  *
57  * Before describing the contents of the label, it's important to understand how
58  * the labels are written and updated with respect to the uberblock.
59  *
60  * When the pool configuration is altered, either because it was newly created
61  * or a device was added, we want to update all the labels such that we can deal
62  * with fatal failure at any point.  To this end, each disk has two labels which
63  * are updated before and after the uberblock is synced.  Assuming we have
64  * labels and an uberblock with the following transaction groups:
65  *
66  *              L1          UB          L2
67  *           +------+    +------+    +------+
68  *           |      |    |      |    |      |
69  *           | t10  |    | t10  |    | t10  |
70  *           |      |    |      |    |      |
71  *           +------+    +------+    +------+
72  *
73  * In this stable state, the labels and the uberblock were all updated within
74  * the same transaction group (10).  Each label is mirrored and checksummed, so
75  * that we can detect when we fail partway through writing the label.
76  *
77  * In order to identify which labels are valid, the labels are written in the
78  * following manner:
79  *
80  * 	1. For each vdev, update 'L1' to the new label
81  * 	2. Update the uberblock
82  * 	3. For each vdev, update 'L2' to the new label
83  *
84  * Given arbitrary failure, we can determine the correct label to use based on
85  * the transaction group.  If we fail after updating L1 but before updating the
86  * UB, we will notice that L1's transaction group is greater than the uberblock,
87  * so L2 must be valid.  If we fail after writing the uberblock but before
88  * writing L2, we will notice that L2's transaction group is less than L1, and
89  * therefore L1 is valid.
90  *
91  * Another added complexity is that not every label is updated when the config
92  * is synced.  If we add a single device, we do not want to have to re-write
93  * every label for every device in the pool.  This means that both L1 and L2 may
94  * be older than the pool uberblock, because the necessary information is stored
95  * on another vdev.
96  *
97  *
98  * On-disk Format
99  * --------------
100  *
101  * The vdev label consists of two distinct parts, and is wrapped within the
102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103  * VTOC disk labels, but is otherwise ignored.
104  *
105  * The first half of the label is a packed nvlist which contains pool wide
106  * properties, per-vdev properties, and configuration information.  It is
107  * described in more detail below.
108  *
109  * The latter half of the label consists of a redundant array of uberblocks.
110  * These uberblocks are updated whenever a transaction group is committed,
111  * or when the configuration is updated.  When a pool is loaded, we scan each
112  * vdev for the 'best' uberblock.
113  *
114  *
115  * Configuration Information
116  * -------------------------
117  *
118  * The nvlist describing the pool and vdev contains the following elements:
119  *
120  * 	version		ZFS on-disk version
121  * 	name		Pool name
122  * 	state		Pool state
123  * 	txg		Transaction group in which this label was written
124  * 	pool_guid	Unique identifier for this pool
125  * 	vdev_tree	An nvlist describing vdev tree.
126  *	features_for_read
127  *			An nvlist of the features necessary for reading the MOS.
128  *
129  * Each leaf device label also contains the following:
130  *
131  * 	top_guid	Unique ID for top-level vdev in which this is contained
132  * 	guid		Unique ID for the leaf vdev
133  *
134  * The 'vs' configuration follows the format described in 'spa_config.c'.
135  */
136 
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/zio.h>
147 #include <sys/dsl_scan.h>
148 #include <sys/fs/zfs.h>
149 
150 /*
151  * Basic routines to read and write from a vdev label.
152  * Used throughout the rest of this file.
153  */
154 uint64_t
155 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156 {
157 	ASSERT(offset < sizeof (vdev_label_t));
158 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159 
160 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162 }
163 
164 /*
165  * Returns back the vdev label associated with the passed in offset.
166  */
167 int
168 vdev_label_number(uint64_t psize, uint64_t offset)
169 {
170 	int l;
171 
172 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
173 		offset -= psize - VDEV_LABEL_END_SIZE;
174 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175 	}
176 	l = offset / sizeof (vdev_label_t);
177 	return (l < VDEV_LABELS ? l : -1);
178 }
179 
180 static void
181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
182 	uint64_t size, zio_done_func_t *done, void *private, int flags)
183 {
184 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185 	    SCL_STATE_ALL);
186 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
187 
188 	zio_nowait(zio_read_phys(zio, vd,
189 	    vdev_label_offset(vd->vdev_psize, l, offset),
190 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
191 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
192 }
193 
194 static void
195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196 	uint64_t size, zio_done_func_t *done, void *private, int flags)
197 {
198 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200 	    (SCL_CONFIG | SCL_STATE) &&
201 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
203 
204 	zio_nowait(zio_write_phys(zio, vd,
205 	    vdev_label_offset(vd->vdev_psize, l, offset),
206 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
207 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208 }
209 
210 /*
211  * Generate the nvlist representing this vdev's config.
212  */
213 nvlist_t *
214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
215     vdev_config_flag_t flags)
216 {
217 	nvlist_t *nv = NULL;
218 
219 	nv = fnvlist_alloc();
220 
221 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
222 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
223 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
224 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
225 
226 	if (vd->vdev_path != NULL)
227 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
228 
229 	if (vd->vdev_devid != NULL)
230 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
231 
232 	if (vd->vdev_physpath != NULL)
233 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 		    vd->vdev_physpath);
235 
236 	if (vd->vdev_fru != NULL)
237 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
238 
239 	if (vd->vdev_nparity != 0) {
240 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
241 		    VDEV_TYPE_RAIDZ) == 0);
242 
243 		/*
244 		 * Make sure someone hasn't managed to sneak a fancy new vdev
245 		 * into a crufty old storage pool.
246 		 */
247 		ASSERT(vd->vdev_nparity == 1 ||
248 		    (vd->vdev_nparity <= 2 &&
249 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
250 		    (vd->vdev_nparity <= 3 &&
251 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
252 
253 		/*
254 		 * Note that we'll add the nparity tag even on storage pools
255 		 * that only support a single parity device -- older software
256 		 * will just ignore it.
257 		 */
258 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
259 	}
260 
261 	if (vd->vdev_wholedisk != -1ULL)
262 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
263 		    vd->vdev_wholedisk);
264 
265 	if (vd->vdev_not_present)
266 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
267 
268 	if (vd->vdev_isspare)
269 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
270 
271 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
272 	    vd == vd->vdev_top) {
273 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
274 		    vd->vdev_ms_array);
275 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
276 		    vd->vdev_ms_shift);
277 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
278 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
279 		    vd->vdev_asize);
280 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
281 		if (vd->vdev_removing)
282 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
283 			    vd->vdev_removing);
284 	}
285 
286 	if (vd->vdev_dtl_sm != NULL) {
287 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
288 		    space_map_object(vd->vdev_dtl_sm));
289 	}
290 
291 	if (vd->vdev_crtxg)
292 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
293 
294 	if (getstats) {
295 		vdev_stat_t vs;
296 		pool_scan_stat_t ps;
297 
298 		vdev_get_stats(vd, &vs);
299 		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
300 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
301 
302 		/* provide either current or previous scan information */
303 		if (spa_scan_get_stats(spa, &ps) == 0) {
304 			fnvlist_add_uint64_array(nv,
305 			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
306 			    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
307 		}
308 	}
309 
310 	if (!vd->vdev_ops->vdev_op_leaf) {
311 		nvlist_t **child;
312 		int c, idx;
313 
314 		ASSERT(!vd->vdev_ishole);
315 
316 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
317 		    KM_SLEEP);
318 
319 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
320 			vdev_t *cvd = vd->vdev_child[c];
321 
322 			/*
323 			 * If we're generating an nvlist of removing
324 			 * vdevs then skip over any device which is
325 			 * not being removed.
326 			 */
327 			if ((flags & VDEV_CONFIG_REMOVING) &&
328 			    !cvd->vdev_removing)
329 				continue;
330 
331 			child[idx++] = vdev_config_generate(spa, cvd,
332 			    getstats, flags);
333 		}
334 
335 		if (idx) {
336 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
337 			    child, idx);
338 		}
339 
340 		for (c = 0; c < idx; c++)
341 			nvlist_free(child[c]);
342 
343 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
344 
345 	} else {
346 		const char *aux = NULL;
347 
348 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
349 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
350 		if (vd->vdev_resilver_txg != 0)
351 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
352 			    vd->vdev_resilver_txg);
353 		if (vd->vdev_faulted)
354 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
355 		if (vd->vdev_degraded)
356 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
357 		if (vd->vdev_removed)
358 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
359 		if (vd->vdev_unspare)
360 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
361 		if (vd->vdev_ishole)
362 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
363 
364 		switch (vd->vdev_stat.vs_aux) {
365 		case VDEV_AUX_ERR_EXCEEDED:
366 			aux = "err_exceeded";
367 			break;
368 
369 		case VDEV_AUX_EXTERNAL:
370 			aux = "external";
371 			break;
372 		}
373 
374 		if (aux != NULL)
375 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
376 
377 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
378 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
379 			    vd->vdev_orig_guid);
380 		}
381 	}
382 
383 	return (nv);
384 }
385 
386 /*
387  * Generate a view of the top-level vdevs.  If we currently have holes
388  * in the namespace, then generate an array which contains a list of holey
389  * vdevs.  Additionally, add the number of top-level children that currently
390  * exist.
391  */
392 void
393 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
394 {
395 	vdev_t *rvd = spa->spa_root_vdev;
396 	uint64_t *array;
397 	uint_t c, idx;
398 
399 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
400 
401 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
402 		vdev_t *tvd = rvd->vdev_child[c];
403 
404 		if (tvd->vdev_ishole)
405 			array[idx++] = c;
406 	}
407 
408 	if (idx) {
409 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
410 		    array, idx) == 0);
411 	}
412 
413 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
414 	    rvd->vdev_children) == 0);
415 
416 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
417 }
418 
419 /*
420  * Returns the configuration from the label of the given vdev. For vdevs
421  * which don't have a txg value stored on their label (i.e. spares/cache)
422  * or have not been completely initialized (txg = 0) just return
423  * the configuration from the first valid label we find. Otherwise,
424  * find the most up-to-date label that does not exceed the specified
425  * 'txg' value.
426  */
427 nvlist_t *
428 vdev_label_read_config(vdev_t *vd, uint64_t txg)
429 {
430 	spa_t *spa = vd->vdev_spa;
431 	nvlist_t *config = NULL;
432 	vdev_phys_t *vp;
433 	zio_t *zio;
434 	uint64_t best_txg = 0;
435 	int error = 0;
436 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
437 	    ZIO_FLAG_SPECULATIVE;
438 
439 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
440 
441 	if (!vdev_readable(vd))
442 		return (NULL);
443 
444 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
445 
446 retry:
447 	for (int l = 0; l < VDEV_LABELS; l++) {
448 		nvlist_t *label = NULL;
449 
450 		zio = zio_root(spa, NULL, NULL, flags);
451 
452 		vdev_label_read(zio, vd, l, vp,
453 		    offsetof(vdev_label_t, vl_vdev_phys),
454 		    sizeof (vdev_phys_t), NULL, NULL, flags);
455 
456 		if (zio_wait(zio) == 0 &&
457 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
458 		    &label, 0) == 0) {
459 			uint64_t label_txg = 0;
460 
461 			/*
462 			 * Auxiliary vdevs won't have txg values in their
463 			 * labels and newly added vdevs may not have been
464 			 * completely initialized so just return the
465 			 * configuration from the first valid label we
466 			 * encounter.
467 			 */
468 			error = nvlist_lookup_uint64(label,
469 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
470 			if ((error || label_txg == 0) && !config) {
471 				config = label;
472 				break;
473 			} else if (label_txg <= txg && label_txg > best_txg) {
474 				best_txg = label_txg;
475 				nvlist_free(config);
476 				config = fnvlist_dup(label);
477 			}
478 		}
479 
480 		if (label != NULL) {
481 			nvlist_free(label);
482 			label = NULL;
483 		}
484 	}
485 
486 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
487 		flags |= ZIO_FLAG_TRYHARD;
488 		goto retry;
489 	}
490 
491 	zio_buf_free(vp, sizeof (vdev_phys_t));
492 
493 	return (config);
494 }
495 
496 /*
497  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
498  * in with the device guid if this spare is active elsewhere on the system.
499  */
500 static boolean_t
501 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
502     uint64_t *spare_guid, uint64_t *l2cache_guid)
503 {
504 	spa_t *spa = vd->vdev_spa;
505 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
506 	uint64_t vdtxg = 0;
507 	nvlist_t *label;
508 
509 	if (spare_guid)
510 		*spare_guid = 0ULL;
511 	if (l2cache_guid)
512 		*l2cache_guid = 0ULL;
513 
514 	/*
515 	 * Read the label, if any, and perform some basic sanity checks.
516 	 */
517 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
518 		return (B_FALSE);
519 
520 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
521 	    &vdtxg);
522 
523 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
524 	    &state) != 0 ||
525 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
526 	    &device_guid) != 0) {
527 		nvlist_free(label);
528 		return (B_FALSE);
529 	}
530 
531 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
532 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
533 	    &pool_guid) != 0 ||
534 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
535 	    &txg) != 0)) {
536 		nvlist_free(label);
537 		return (B_FALSE);
538 	}
539 
540 	nvlist_free(label);
541 
542 	/*
543 	 * Check to see if this device indeed belongs to the pool it claims to
544 	 * be a part of.  The only way this is allowed is if the device is a hot
545 	 * spare (which we check for later on).
546 	 */
547 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
548 	    !spa_guid_exists(pool_guid, device_guid) &&
549 	    !spa_spare_exists(device_guid, NULL, NULL) &&
550 	    !spa_l2cache_exists(device_guid, NULL))
551 		return (B_FALSE);
552 
553 	/*
554 	 * If the transaction group is zero, then this an initialized (but
555 	 * unused) label.  This is only an error if the create transaction
556 	 * on-disk is the same as the one we're using now, in which case the
557 	 * user has attempted to add the same vdev multiple times in the same
558 	 * transaction.
559 	 */
560 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
561 	    txg == 0 && vdtxg == crtxg)
562 		return (B_TRUE);
563 
564 	/*
565 	 * Check to see if this is a spare device.  We do an explicit check for
566 	 * spa_has_spare() here because it may be on our pending list of spares
567 	 * to add.  We also check if it is an l2cache device.
568 	 */
569 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
570 	    spa_has_spare(spa, device_guid)) {
571 		if (spare_guid)
572 			*spare_guid = device_guid;
573 
574 		switch (reason) {
575 		case VDEV_LABEL_CREATE:
576 		case VDEV_LABEL_L2CACHE:
577 			return (B_TRUE);
578 
579 		case VDEV_LABEL_REPLACE:
580 			return (!spa_has_spare(spa, device_guid) ||
581 			    spare_pool != 0ULL);
582 
583 		case VDEV_LABEL_SPARE:
584 			return (spa_has_spare(spa, device_guid));
585 		}
586 	}
587 
588 	/*
589 	 * Check to see if this is an l2cache device.
590 	 */
591 	if (spa_l2cache_exists(device_guid, NULL))
592 		return (B_TRUE);
593 
594 	/*
595 	 * We can't rely on a pool's state if it's been imported
596 	 * read-only.  Instead we look to see if the pools is marked
597 	 * read-only in the namespace and set the state to active.
598 	 */
599 	if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
600 	    spa_mode(spa) == FREAD)
601 		state = POOL_STATE_ACTIVE;
602 
603 	/*
604 	 * If the device is marked ACTIVE, then this device is in use by another
605 	 * pool on the system.
606 	 */
607 	return (state == POOL_STATE_ACTIVE);
608 }
609 
610 /*
611  * Initialize a vdev label.  We check to make sure each leaf device is not in
612  * use, and writable.  We put down an initial label which we will later
613  * overwrite with a complete label.  Note that it's important to do this
614  * sequentially, not in parallel, so that we catch cases of multiple use of the
615  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
616  * itself.
617  */
618 int
619 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
620 {
621 	spa_t *spa = vd->vdev_spa;
622 	nvlist_t *label;
623 	vdev_phys_t *vp;
624 	char *pad2;
625 	uberblock_t *ub;
626 	zio_t *zio;
627 	char *buf;
628 	size_t buflen;
629 	int error;
630 	uint64_t spare_guid, l2cache_guid;
631 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
632 
633 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
634 
635 	for (int c = 0; c < vd->vdev_children; c++)
636 		if ((error = vdev_label_init(vd->vdev_child[c],
637 		    crtxg, reason)) != 0)
638 			return (error);
639 
640 	/* Track the creation time for this vdev */
641 	vd->vdev_crtxg = crtxg;
642 
643 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
644 		return (0);
645 
646 	/*
647 	 * Dead vdevs cannot be initialized.
648 	 */
649 	if (vdev_is_dead(vd))
650 		return (SET_ERROR(EIO));
651 
652 	/*
653 	 * Determine if the vdev is in use.
654 	 */
655 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
656 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
657 		return (SET_ERROR(EBUSY));
658 
659 	/*
660 	 * If this is a request to add or replace a spare or l2cache device
661 	 * that is in use elsewhere on the system, then we must update the
662 	 * guid (which was initialized to a random value) to reflect the
663 	 * actual GUID (which is shared between multiple pools).
664 	 */
665 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
666 	    spare_guid != 0ULL) {
667 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
668 
669 		vd->vdev_guid += guid_delta;
670 
671 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
672 			pvd->vdev_guid_sum += guid_delta;
673 
674 		/*
675 		 * If this is a replacement, then we want to fallthrough to the
676 		 * rest of the code.  If we're adding a spare, then it's already
677 		 * labeled appropriately and we can just return.
678 		 */
679 		if (reason == VDEV_LABEL_SPARE)
680 			return (0);
681 		ASSERT(reason == VDEV_LABEL_REPLACE ||
682 		    reason == VDEV_LABEL_SPLIT);
683 	}
684 
685 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
686 	    l2cache_guid != 0ULL) {
687 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
688 
689 		vd->vdev_guid += guid_delta;
690 
691 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
692 			pvd->vdev_guid_sum += guid_delta;
693 
694 		/*
695 		 * If this is a replacement, then we want to fallthrough to the
696 		 * rest of the code.  If we're adding an l2cache, then it's
697 		 * already labeled appropriately and we can just return.
698 		 */
699 		if (reason == VDEV_LABEL_L2CACHE)
700 			return (0);
701 		ASSERT(reason == VDEV_LABEL_REPLACE);
702 	}
703 
704 	/*
705 	 * Initialize its label.
706 	 */
707 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
708 	bzero(vp, sizeof (vdev_phys_t));
709 
710 	/*
711 	 * Generate a label describing the pool and our top-level vdev.
712 	 * We mark it as being from txg 0 to indicate that it's not
713 	 * really part of an active pool just yet.  The labels will
714 	 * be written again with a meaningful txg by spa_sync().
715 	 */
716 	if (reason == VDEV_LABEL_SPARE ||
717 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
718 		/*
719 		 * For inactive hot spares, we generate a special label that
720 		 * identifies as a mutually shared hot spare.  We write the
721 		 * label if we are adding a hot spare, or if we are removing an
722 		 * active hot spare (in which case we want to revert the
723 		 * labels).
724 		 */
725 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
726 
727 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
728 		    spa_version(spa)) == 0);
729 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
730 		    POOL_STATE_SPARE) == 0);
731 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
732 		    vd->vdev_guid) == 0);
733 	} else if (reason == VDEV_LABEL_L2CACHE ||
734 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
735 		/*
736 		 * For level 2 ARC devices, add a special label.
737 		 */
738 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
739 
740 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
741 		    spa_version(spa)) == 0);
742 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
743 		    POOL_STATE_L2CACHE) == 0);
744 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
745 		    vd->vdev_guid) == 0);
746 	} else {
747 		uint64_t txg = 0ULL;
748 
749 		if (reason == VDEV_LABEL_SPLIT)
750 			txg = spa->spa_uberblock.ub_txg;
751 		label = spa_config_generate(spa, vd, txg, B_FALSE);
752 
753 		/*
754 		 * Add our creation time.  This allows us to detect multiple
755 		 * vdev uses as described above, and automatically expires if we
756 		 * fail.
757 		 */
758 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
759 		    crtxg) == 0);
760 	}
761 
762 	buf = vp->vp_nvlist;
763 	buflen = sizeof (vp->vp_nvlist);
764 
765 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
766 	if (error != 0) {
767 		nvlist_free(label);
768 		zio_buf_free(vp, sizeof (vdev_phys_t));
769 		/* EFAULT means nvlist_pack ran out of room */
770 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
771 	}
772 
773 	/*
774 	 * Initialize uberblock template.
775 	 */
776 	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
777 	bzero(ub, VDEV_UBERBLOCK_RING);
778 	*ub = spa->spa_uberblock;
779 	ub->ub_txg = 0;
780 
781 	/* Initialize the 2nd padding area. */
782 	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
783 	bzero(pad2, VDEV_PAD_SIZE);
784 
785 	/*
786 	 * Write everything in parallel.
787 	 */
788 retry:
789 	zio = zio_root(spa, NULL, NULL, flags);
790 
791 	for (int l = 0; l < VDEV_LABELS; l++) {
792 
793 		vdev_label_write(zio, vd, l, vp,
794 		    offsetof(vdev_label_t, vl_vdev_phys),
795 		    sizeof (vdev_phys_t), NULL, NULL, flags);
796 
797 		/*
798 		 * Skip the 1st padding area.
799 		 * Zero out the 2nd padding area where it might have
800 		 * left over data from previous filesystem format.
801 		 */
802 		vdev_label_write(zio, vd, l, pad2,
803 		    offsetof(vdev_label_t, vl_pad2),
804 		    VDEV_PAD_SIZE, NULL, NULL, flags);
805 
806 		vdev_label_write(zio, vd, l, ub,
807 		    offsetof(vdev_label_t, vl_uberblock),
808 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
809 	}
810 
811 	error = zio_wait(zio);
812 
813 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
814 		flags |= ZIO_FLAG_TRYHARD;
815 		goto retry;
816 	}
817 
818 	nvlist_free(label);
819 	zio_buf_free(pad2, VDEV_PAD_SIZE);
820 	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
821 	zio_buf_free(vp, sizeof (vdev_phys_t));
822 
823 	/*
824 	 * If this vdev hasn't been previously identified as a spare, then we
825 	 * mark it as such only if a) we are labeling it as a spare, or b) it
826 	 * exists as a spare elsewhere in the system.  Do the same for
827 	 * level 2 ARC devices.
828 	 */
829 	if (error == 0 && !vd->vdev_isspare &&
830 	    (reason == VDEV_LABEL_SPARE ||
831 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
832 		spa_spare_add(vd);
833 
834 	if (error == 0 && !vd->vdev_isl2cache &&
835 	    (reason == VDEV_LABEL_L2CACHE ||
836 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
837 		spa_l2cache_add(vd);
838 
839 	return (error);
840 }
841 
842 /*
843  * ==========================================================================
844  * uberblock load/sync
845  * ==========================================================================
846  */
847 
848 /*
849  * Consider the following situation: txg is safely synced to disk.  We've
850  * written the first uberblock for txg + 1, and then we lose power.  When we
851  * come back up, we fail to see the uberblock for txg + 1 because, say,
852  * it was on a mirrored device and the replica to which we wrote txg + 1
853  * is now offline.  If we then make some changes and sync txg + 1, and then
854  * the missing replica comes back, then for a few seconds we'll have two
855  * conflicting uberblocks on disk with the same txg.  The solution is simple:
856  * among uberblocks with equal txg, choose the one with the latest timestamp.
857  */
858 static int
859 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
860 {
861 	if (ub1->ub_txg < ub2->ub_txg)
862 		return (-1);
863 	if (ub1->ub_txg > ub2->ub_txg)
864 		return (1);
865 
866 	if (ub1->ub_timestamp < ub2->ub_timestamp)
867 		return (-1);
868 	if (ub1->ub_timestamp > ub2->ub_timestamp)
869 		return (1);
870 
871 	return (0);
872 }
873 
874 struct ubl_cbdata {
875 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
876 	vdev_t		*ubl_vd;	/* vdev associated with the above */
877 };
878 
879 static void
880 vdev_uberblock_load_done(zio_t *zio)
881 {
882 	vdev_t *vd = zio->io_vd;
883 	spa_t *spa = zio->io_spa;
884 	zio_t *rio = zio->io_private;
885 	uberblock_t *ub = zio->io_data;
886 	struct ubl_cbdata *cbp = rio->io_private;
887 
888 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
889 
890 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
891 		mutex_enter(&rio->io_lock);
892 		if (ub->ub_txg <= spa->spa_load_max_txg &&
893 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
894 			/*
895 			 * Keep track of the vdev in which this uberblock
896 			 * was found. We will use this information later
897 			 * to obtain the config nvlist associated with
898 			 * this uberblock.
899 			 */
900 			*cbp->ubl_ubbest = *ub;
901 			cbp->ubl_vd = vd;
902 		}
903 		mutex_exit(&rio->io_lock);
904 	}
905 
906 	zio_buf_free(zio->io_data, zio->io_size);
907 }
908 
909 static void
910 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
911     struct ubl_cbdata *cbp)
912 {
913 	for (int c = 0; c < vd->vdev_children; c++)
914 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
915 
916 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
917 		for (int l = 0; l < VDEV_LABELS; l++) {
918 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
919 				vdev_label_read(zio, vd, l,
920 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
921 				    VDEV_UBERBLOCK_OFFSET(vd, n),
922 				    VDEV_UBERBLOCK_SIZE(vd),
923 				    vdev_uberblock_load_done, zio, flags);
924 			}
925 		}
926 	}
927 }
928 
929 /*
930  * Reads the 'best' uberblock from disk along with its associated
931  * configuration. First, we read the uberblock array of each label of each
932  * vdev, keeping track of the uberblock with the highest txg in each array.
933  * Then, we read the configuration from the same vdev as the best uberblock.
934  */
935 void
936 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
937 {
938 	zio_t *zio;
939 	spa_t *spa = rvd->vdev_spa;
940 	struct ubl_cbdata cb;
941 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
942 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
943 
944 	ASSERT(ub);
945 	ASSERT(config);
946 
947 	bzero(ub, sizeof (uberblock_t));
948 	*config = NULL;
949 
950 	cb.ubl_ubbest = ub;
951 	cb.ubl_vd = NULL;
952 
953 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
954 	zio = zio_root(spa, NULL, &cb, flags);
955 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
956 	(void) zio_wait(zio);
957 
958 	/*
959 	 * It's possible that the best uberblock was discovered on a label
960 	 * that has a configuration which was written in a future txg.
961 	 * Search all labels on this vdev to find the configuration that
962 	 * matches the txg for our uberblock.
963 	 */
964 	if (cb.ubl_vd != NULL)
965 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
966 	spa_config_exit(spa, SCL_ALL, FTAG);
967 }
968 
969 /*
970  * On success, increment root zio's count of good writes.
971  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
972  */
973 static void
974 vdev_uberblock_sync_done(zio_t *zio)
975 {
976 	uint64_t *good_writes = zio->io_private;
977 
978 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
979 		atomic_add_64(good_writes, 1);
980 }
981 
982 /*
983  * Write the uberblock to all labels of all leaves of the specified vdev.
984  */
985 static void
986 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
987 {
988 	uberblock_t *ubbuf;
989 	int n;
990 
991 	for (int c = 0; c < vd->vdev_children; c++)
992 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
993 
994 	if (!vd->vdev_ops->vdev_op_leaf)
995 		return;
996 
997 	if (!vdev_writeable(vd))
998 		return;
999 
1000 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1001 
1002 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1003 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1004 	*ubbuf = *ub;
1005 
1006 	for (int l = 0; l < VDEV_LABELS; l++)
1007 		vdev_label_write(zio, vd, l, ubbuf,
1008 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1009 		    vdev_uberblock_sync_done, zio->io_private,
1010 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1011 
1012 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1013 }
1014 
1015 /* Sync the uberblocks to all vdevs in svd[] */
1016 int
1017 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1018 {
1019 	spa_t *spa = svd[0]->vdev_spa;
1020 	zio_t *zio;
1021 	uint64_t good_writes = 0;
1022 
1023 	zio = zio_root(spa, NULL, &good_writes, flags);
1024 
1025 	for (int v = 0; v < svdcount; v++)
1026 		vdev_uberblock_sync(zio, ub, svd[v], flags);
1027 
1028 	(void) zio_wait(zio);
1029 
1030 	/*
1031 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1032 	 * are no longer needed (because the new uberblocks and the even
1033 	 * labels are safely on disk), so it is safe to overwrite them.
1034 	 */
1035 	zio = zio_root(spa, NULL, NULL, flags);
1036 
1037 	for (int v = 0; v < svdcount; v++)
1038 		zio_flush(zio, svd[v]);
1039 
1040 	(void) zio_wait(zio);
1041 
1042 	return (good_writes >= 1 ? 0 : EIO);
1043 }
1044 
1045 /*
1046  * On success, increment the count of good writes for our top-level vdev.
1047  */
1048 static void
1049 vdev_label_sync_done(zio_t *zio)
1050 {
1051 	uint64_t *good_writes = zio->io_private;
1052 
1053 	if (zio->io_error == 0)
1054 		atomic_add_64(good_writes, 1);
1055 }
1056 
1057 /*
1058  * If there weren't enough good writes, indicate failure to the parent.
1059  */
1060 static void
1061 vdev_label_sync_top_done(zio_t *zio)
1062 {
1063 	uint64_t *good_writes = zio->io_private;
1064 
1065 	if (*good_writes == 0)
1066 		zio->io_error = SET_ERROR(EIO);
1067 
1068 	kmem_free(good_writes, sizeof (uint64_t));
1069 }
1070 
1071 /*
1072  * We ignore errors for log and cache devices, simply free the private data.
1073  */
1074 static void
1075 vdev_label_sync_ignore_done(zio_t *zio)
1076 {
1077 	kmem_free(zio->io_private, sizeof (uint64_t));
1078 }
1079 
1080 /*
1081  * Write all even or odd labels to all leaves of the specified vdev.
1082  */
1083 static void
1084 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1085 {
1086 	nvlist_t *label;
1087 	vdev_phys_t *vp;
1088 	char *buf;
1089 	size_t buflen;
1090 
1091 	for (int c = 0; c < vd->vdev_children; c++)
1092 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1093 
1094 	if (!vd->vdev_ops->vdev_op_leaf)
1095 		return;
1096 
1097 	if (!vdev_writeable(vd))
1098 		return;
1099 
1100 	/*
1101 	 * Generate a label describing the top-level config to which we belong.
1102 	 */
1103 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1104 
1105 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1106 	bzero(vp, sizeof (vdev_phys_t));
1107 
1108 	buf = vp->vp_nvlist;
1109 	buflen = sizeof (vp->vp_nvlist);
1110 
1111 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1112 		for (; l < VDEV_LABELS; l += 2) {
1113 			vdev_label_write(zio, vd, l, vp,
1114 			    offsetof(vdev_label_t, vl_vdev_phys),
1115 			    sizeof (vdev_phys_t),
1116 			    vdev_label_sync_done, zio->io_private,
1117 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1118 		}
1119 	}
1120 
1121 	zio_buf_free(vp, sizeof (vdev_phys_t));
1122 	nvlist_free(label);
1123 }
1124 
1125 int
1126 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1127 {
1128 	list_t *dl = &spa->spa_config_dirty_list;
1129 	vdev_t *vd;
1130 	zio_t *zio;
1131 	int error;
1132 
1133 	/*
1134 	 * Write the new labels to disk.
1135 	 */
1136 	zio = zio_root(spa, NULL, NULL, flags);
1137 
1138 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1139 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1140 		    KM_SLEEP);
1141 
1142 		ASSERT(!vd->vdev_ishole);
1143 
1144 		zio_t *vio = zio_null(zio, spa, NULL,
1145 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1146 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1147 		    good_writes, flags);
1148 		vdev_label_sync(vio, vd, l, txg, flags);
1149 		zio_nowait(vio);
1150 	}
1151 
1152 	error = zio_wait(zio);
1153 
1154 	/*
1155 	 * Flush the new labels to disk.
1156 	 */
1157 	zio = zio_root(spa, NULL, NULL, flags);
1158 
1159 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1160 		zio_flush(zio, vd);
1161 
1162 	(void) zio_wait(zio);
1163 
1164 	return (error);
1165 }
1166 
1167 /*
1168  * Sync the uberblock and any changes to the vdev configuration.
1169  *
1170  * The order of operations is carefully crafted to ensure that
1171  * if the system panics or loses power at any time, the state on disk
1172  * is still transactionally consistent.  The in-line comments below
1173  * describe the failure semantics at each stage.
1174  *
1175  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1176  * at any time, you can just call it again, and it will resume its work.
1177  */
1178 int
1179 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1180 {
1181 	spa_t *spa = svd[0]->vdev_spa;
1182 	uberblock_t *ub = &spa->spa_uberblock;
1183 	vdev_t *vd;
1184 	zio_t *zio;
1185 	int error;
1186 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1187 
1188 	/*
1189 	 * Normally, we don't want to try too hard to write every label and
1190 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1191 	 * sync process to block while we retry.  But if we can't write a
1192 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1193 	 * bailing out and declaring the pool faulted.
1194 	 */
1195 	if (tryhard)
1196 		flags |= ZIO_FLAG_TRYHARD;
1197 
1198 	ASSERT(ub->ub_txg <= txg);
1199 
1200 	/*
1201 	 * If this isn't a resync due to I/O errors,
1202 	 * and nothing changed in this transaction group,
1203 	 * and the vdev configuration hasn't changed,
1204 	 * then there's nothing to do.
1205 	 */
1206 	if (ub->ub_txg < txg &&
1207 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1208 	    list_is_empty(&spa->spa_config_dirty_list))
1209 		return (0);
1210 
1211 	if (txg > spa_freeze_txg(spa))
1212 		return (0);
1213 
1214 	ASSERT(txg <= spa->spa_final_txg);
1215 
1216 	/*
1217 	 * Flush the write cache of every disk that's been written to
1218 	 * in this transaction group.  This ensures that all blocks
1219 	 * written in this txg will be committed to stable storage
1220 	 * before any uberblock that references them.
1221 	 */
1222 	zio = zio_root(spa, NULL, NULL, flags);
1223 
1224 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1225 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1226 		zio_flush(zio, vd);
1227 
1228 	(void) zio_wait(zio);
1229 
1230 	/*
1231 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1232 	 * system dies in the middle of this process, that's OK: all of the
1233 	 * even labels that made it to disk will be newer than any uberblock,
1234 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1235 	 * which have not yet been touched, will still be valid.  We flush
1236 	 * the new labels to disk to ensure that all even-label updates
1237 	 * are committed to stable storage before the uberblock update.
1238 	 */
1239 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1240 		return (error);
1241 
1242 	/*
1243 	 * Sync the uberblocks to all vdevs in svd[].
1244 	 * If the system dies in the middle of this step, there are two cases
1245 	 * to consider, and the on-disk state is consistent either way:
1246 	 *
1247 	 * (1)	If none of the new uberblocks made it to disk, then the
1248 	 *	previous uberblock will be the newest, and the odd labels
1249 	 *	(which had not yet been touched) will be valid with respect
1250 	 *	to that uberblock.
1251 	 *
1252 	 * (2)	If one or more new uberblocks made it to disk, then they
1253 	 *	will be the newest, and the even labels (which had all
1254 	 *	been successfully committed) will be valid with respect
1255 	 *	to the new uberblocks.
1256 	 */
1257 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1258 		return (error);
1259 
1260 	/*
1261 	 * Sync out odd labels for every dirty vdev.  If the system dies
1262 	 * in the middle of this process, the even labels and the new
1263 	 * uberblocks will suffice to open the pool.  The next time
1264 	 * the pool is opened, the first thing we'll do -- before any
1265 	 * user data is modified -- is mark every vdev dirty so that
1266 	 * all labels will be brought up to date.  We flush the new labels
1267 	 * to disk to ensure that all odd-label updates are committed to
1268 	 * stable storage before the next transaction group begins.
1269 	 */
1270 	return (vdev_label_sync_list(spa, 1, txg, flags));
1271 }
1272