xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision ad135b5d644628e791c3188a6ecbd9c257961ef8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Virtual Device Labels
29  * ---------------------
30  *
31  * The vdev label serves several distinct purposes:
32  *
33  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34  *	   identity within the pool.
35  *
36  * 	2. Verify that all the devices given in a configuration are present
37  *         within the pool.
38  *
39  * 	3. Determine the uberblock for the pool.
40  *
41  * 	4. In case of an import operation, determine the configuration of the
42  *         toplevel vdev of which it is a part.
43  *
44  * 	5. If an import operation cannot find all the devices in the pool,
45  *         provide enough information to the administrator to determine which
46  *         devices are missing.
47  *
48  * It is important to note that while the kernel is responsible for writing the
49  * label, it only consumes the information in the first three cases.  The
50  * latter information is only consumed in userland when determining the
51  * configuration to import a pool.
52  *
53  *
54  * Label Organization
55  * ------------------
56  *
57  * Before describing the contents of the label, it's important to understand how
58  * the labels are written and updated with respect to the uberblock.
59  *
60  * When the pool configuration is altered, either because it was newly created
61  * or a device was added, we want to update all the labels such that we can deal
62  * with fatal failure at any point.  To this end, each disk has two labels which
63  * are updated before and after the uberblock is synced.  Assuming we have
64  * labels and an uberblock with the following transaction groups:
65  *
66  *              L1          UB          L2
67  *           +------+    +------+    +------+
68  *           |      |    |      |    |      |
69  *           | t10  |    | t10  |    | t10  |
70  *           |      |    |      |    |      |
71  *           +------+    +------+    +------+
72  *
73  * In this stable state, the labels and the uberblock were all updated within
74  * the same transaction group (10).  Each label is mirrored and checksummed, so
75  * that we can detect when we fail partway through writing the label.
76  *
77  * In order to identify which labels are valid, the labels are written in the
78  * following manner:
79  *
80  * 	1. For each vdev, update 'L1' to the new label
81  * 	2. Update the uberblock
82  * 	3. For each vdev, update 'L2' to the new label
83  *
84  * Given arbitrary failure, we can determine the correct label to use based on
85  * the transaction group.  If we fail after updating L1 but before updating the
86  * UB, we will notice that L1's transaction group is greater than the uberblock,
87  * so L2 must be valid.  If we fail after writing the uberblock but before
88  * writing L2, we will notice that L2's transaction group is less than L1, and
89  * therefore L1 is valid.
90  *
91  * Another added complexity is that not every label is updated when the config
92  * is synced.  If we add a single device, we do not want to have to re-write
93  * every label for every device in the pool.  This means that both L1 and L2 may
94  * be older than the pool uberblock, because the necessary information is stored
95  * on another vdev.
96  *
97  *
98  * On-disk Format
99  * --------------
100  *
101  * The vdev label consists of two distinct parts, and is wrapped within the
102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103  * VTOC disk labels, but is otherwise ignored.
104  *
105  * The first half of the label is a packed nvlist which contains pool wide
106  * properties, per-vdev properties, and configuration information.  It is
107  * described in more detail below.
108  *
109  * The latter half of the label consists of a redundant array of uberblocks.
110  * These uberblocks are updated whenever a transaction group is committed,
111  * or when the configuration is updated.  When a pool is loaded, we scan each
112  * vdev for the 'best' uberblock.
113  *
114  *
115  * Configuration Information
116  * -------------------------
117  *
118  * The nvlist describing the pool and vdev contains the following elements:
119  *
120  * 	version		ZFS on-disk version
121  * 	name		Pool name
122  * 	state		Pool state
123  * 	txg		Transaction group in which this label was written
124  * 	pool_guid	Unique identifier for this pool
125  * 	vdev_tree	An nvlist describing vdev tree.
126  *	features_for_read
127  *			An nvlist of the features necessary for reading the MOS.
128  *
129  * Each leaf device label also contains the following:
130  *
131  * 	top_guid	Unique ID for top-level vdev in which this is contained
132  * 	guid		Unique ID for the leaf vdev
133  *
134  * The 'vs' configuration follows the format described in 'spa_config.c'.
135  */
136 
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/zio.h>
147 #include <sys/dsl_scan.h>
148 #include <sys/fs/zfs.h>
149 
150 /*
151  * Basic routines to read and write from a vdev label.
152  * Used throughout the rest of this file.
153  */
154 uint64_t
155 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156 {
157 	ASSERT(offset < sizeof (vdev_label_t));
158 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159 
160 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162 }
163 
164 /*
165  * Returns back the vdev label associated with the passed in offset.
166  */
167 int
168 vdev_label_number(uint64_t psize, uint64_t offset)
169 {
170 	int l;
171 
172 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
173 		offset -= psize - VDEV_LABEL_END_SIZE;
174 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175 	}
176 	l = offset / sizeof (vdev_label_t);
177 	return (l < VDEV_LABELS ? l : -1);
178 }
179 
180 static void
181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
182 	uint64_t size, zio_done_func_t *done, void *private, int flags)
183 {
184 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185 	    SCL_STATE_ALL);
186 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
187 
188 	zio_nowait(zio_read_phys(zio, vd,
189 	    vdev_label_offset(vd->vdev_psize, l, offset),
190 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
191 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
192 }
193 
194 static void
195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196 	uint64_t size, zio_done_func_t *done, void *private, int flags)
197 {
198 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200 	    (SCL_CONFIG | SCL_STATE) &&
201 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
203 
204 	zio_nowait(zio_write_phys(zio, vd,
205 	    vdev_label_offset(vd->vdev_psize, l, offset),
206 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
207 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208 }
209 
210 /*
211  * Generate the nvlist representing this vdev's config.
212  */
213 nvlist_t *
214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
215     vdev_config_flag_t flags)
216 {
217 	nvlist_t *nv = NULL;
218 
219 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
220 
221 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
222 	    vd->vdev_ops->vdev_op_type) == 0);
223 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
224 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
225 		    == 0);
226 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
227 
228 	if (vd->vdev_path != NULL)
229 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
230 		    vd->vdev_path) == 0);
231 
232 	if (vd->vdev_devid != NULL)
233 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
234 		    vd->vdev_devid) == 0);
235 
236 	if (vd->vdev_physpath != NULL)
237 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
238 		    vd->vdev_physpath) == 0);
239 
240 	if (vd->vdev_fru != NULL)
241 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
242 		    vd->vdev_fru) == 0);
243 
244 	if (vd->vdev_nparity != 0) {
245 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
246 		    VDEV_TYPE_RAIDZ) == 0);
247 
248 		/*
249 		 * Make sure someone hasn't managed to sneak a fancy new vdev
250 		 * into a crufty old storage pool.
251 		 */
252 		ASSERT(vd->vdev_nparity == 1 ||
253 		    (vd->vdev_nparity <= 2 &&
254 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
255 		    (vd->vdev_nparity <= 3 &&
256 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
257 
258 		/*
259 		 * Note that we'll add the nparity tag even on storage pools
260 		 * that only support a single parity device -- older software
261 		 * will just ignore it.
262 		 */
263 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
264 		    vd->vdev_nparity) == 0);
265 	}
266 
267 	if (vd->vdev_wholedisk != -1ULL)
268 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
269 		    vd->vdev_wholedisk) == 0);
270 
271 	if (vd->vdev_not_present)
272 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
273 
274 	if (vd->vdev_isspare)
275 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
276 
277 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
278 	    vd == vd->vdev_top) {
279 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
280 		    vd->vdev_ms_array) == 0);
281 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
282 		    vd->vdev_ms_shift) == 0);
283 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
284 		    vd->vdev_ashift) == 0);
285 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
286 		    vd->vdev_asize) == 0);
287 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
288 		    vd->vdev_islog) == 0);
289 		if (vd->vdev_removing)
290 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
291 			    vd->vdev_removing) == 0);
292 	}
293 
294 	if (vd->vdev_dtl_smo.smo_object != 0)
295 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
296 		    vd->vdev_dtl_smo.smo_object) == 0);
297 
298 	if (vd->vdev_crtxg)
299 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
300 		    vd->vdev_crtxg) == 0);
301 
302 	if (getstats) {
303 		vdev_stat_t vs;
304 		pool_scan_stat_t ps;
305 
306 		vdev_get_stats(vd, &vs);
307 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
308 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
309 
310 		/* provide either current or previous scan information */
311 		if (spa_scan_get_stats(spa, &ps) == 0) {
312 			VERIFY(nvlist_add_uint64_array(nv,
313 			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
314 			    sizeof (pool_scan_stat_t) / sizeof (uint64_t))
315 			    == 0);
316 		}
317 	}
318 
319 	if (!vd->vdev_ops->vdev_op_leaf) {
320 		nvlist_t **child;
321 		int c, idx;
322 
323 		ASSERT(!vd->vdev_ishole);
324 
325 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
326 		    KM_SLEEP);
327 
328 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
329 			vdev_t *cvd = vd->vdev_child[c];
330 
331 			/*
332 			 * If we're generating an nvlist of removing
333 			 * vdevs then skip over any device which is
334 			 * not being removed.
335 			 */
336 			if ((flags & VDEV_CONFIG_REMOVING) &&
337 			    !cvd->vdev_removing)
338 				continue;
339 
340 			child[idx++] = vdev_config_generate(spa, cvd,
341 			    getstats, flags);
342 		}
343 
344 		if (idx) {
345 			VERIFY(nvlist_add_nvlist_array(nv,
346 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
347 		}
348 
349 		for (c = 0; c < idx; c++)
350 			nvlist_free(child[c]);
351 
352 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
353 
354 	} else {
355 		const char *aux = NULL;
356 
357 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
358 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
359 			    B_TRUE) == 0);
360 		if (vd->vdev_resilvering)
361 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING,
362 			    B_TRUE) == 0);
363 		if (vd->vdev_faulted)
364 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
365 			    B_TRUE) == 0);
366 		if (vd->vdev_degraded)
367 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
368 			    B_TRUE) == 0);
369 		if (vd->vdev_removed)
370 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
371 			    B_TRUE) == 0);
372 		if (vd->vdev_unspare)
373 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
374 			    B_TRUE) == 0);
375 		if (vd->vdev_ishole)
376 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
377 			    B_TRUE) == 0);
378 
379 		switch (vd->vdev_stat.vs_aux) {
380 		case VDEV_AUX_ERR_EXCEEDED:
381 			aux = "err_exceeded";
382 			break;
383 
384 		case VDEV_AUX_EXTERNAL:
385 			aux = "external";
386 			break;
387 		}
388 
389 		if (aux != NULL)
390 			VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
391 			    aux) == 0);
392 
393 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
394 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
395 			    vd->vdev_orig_guid) == 0);
396 		}
397 	}
398 
399 	return (nv);
400 }
401 
402 /*
403  * Generate a view of the top-level vdevs.  If we currently have holes
404  * in the namespace, then generate an array which contains a list of holey
405  * vdevs.  Additionally, add the number of top-level children that currently
406  * exist.
407  */
408 void
409 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
410 {
411 	vdev_t *rvd = spa->spa_root_vdev;
412 	uint64_t *array;
413 	uint_t c, idx;
414 
415 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
416 
417 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
418 		vdev_t *tvd = rvd->vdev_child[c];
419 
420 		if (tvd->vdev_ishole)
421 			array[idx++] = c;
422 	}
423 
424 	if (idx) {
425 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
426 		    array, idx) == 0);
427 	}
428 
429 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
430 	    rvd->vdev_children) == 0);
431 
432 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
433 }
434 
435 /*
436  * Returns the configuration from the label of the given vdev. If 'label' is
437  * VDEV_BEST_LABEL, each label of the vdev will be read until a valid
438  * configuration is found; otherwise, only the specified label will be read.
439  */
440 nvlist_t *
441 vdev_label_read_config(vdev_t *vd, int label)
442 {
443 	spa_t *spa = vd->vdev_spa;
444 	nvlist_t *config = NULL;
445 	vdev_phys_t *vp;
446 	zio_t *zio;
447 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
448 	    ZIO_FLAG_SPECULATIVE;
449 
450 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
451 
452 	if (!vdev_readable(vd))
453 		return (NULL);
454 
455 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
456 
457 retry:
458 	for (int l = 0; l < VDEV_LABELS; l++) {
459 		if (label >= 0 && label < VDEV_LABELS && label != l)
460 			continue;
461 
462 		zio = zio_root(spa, NULL, NULL, flags);
463 
464 		vdev_label_read(zio, vd, l, vp,
465 		    offsetof(vdev_label_t, vl_vdev_phys),
466 		    sizeof (vdev_phys_t), NULL, NULL, flags);
467 
468 		if (zio_wait(zio) == 0 &&
469 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
470 		    &config, 0) == 0)
471 			break;
472 
473 		if (config != NULL) {
474 			nvlist_free(config);
475 			config = NULL;
476 		}
477 	}
478 
479 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
480 		flags |= ZIO_FLAG_TRYHARD;
481 		goto retry;
482 	}
483 
484 	zio_buf_free(vp, sizeof (vdev_phys_t));
485 
486 	return (config);
487 }
488 
489 /*
490  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
491  * in with the device guid if this spare is active elsewhere on the system.
492  */
493 static boolean_t
494 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
495     uint64_t *spare_guid, uint64_t *l2cache_guid)
496 {
497 	spa_t *spa = vd->vdev_spa;
498 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
499 	uint64_t vdtxg = 0;
500 	nvlist_t *label;
501 
502 	if (spare_guid)
503 		*spare_guid = 0ULL;
504 	if (l2cache_guid)
505 		*l2cache_guid = 0ULL;
506 
507 	/*
508 	 * Read the label, if any, and perform some basic sanity checks.
509 	 */
510 	if ((label = vdev_label_read_config(vd, VDEV_BEST_LABEL)) == NULL)
511 		return (B_FALSE);
512 
513 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
514 	    &vdtxg);
515 
516 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
517 	    &state) != 0 ||
518 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
519 	    &device_guid) != 0) {
520 		nvlist_free(label);
521 		return (B_FALSE);
522 	}
523 
524 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
525 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
526 	    &pool_guid) != 0 ||
527 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
528 	    &txg) != 0)) {
529 		nvlist_free(label);
530 		return (B_FALSE);
531 	}
532 
533 	nvlist_free(label);
534 
535 	/*
536 	 * Check to see if this device indeed belongs to the pool it claims to
537 	 * be a part of.  The only way this is allowed is if the device is a hot
538 	 * spare (which we check for later on).
539 	 */
540 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
541 	    !spa_guid_exists(pool_guid, device_guid) &&
542 	    !spa_spare_exists(device_guid, NULL, NULL) &&
543 	    !spa_l2cache_exists(device_guid, NULL))
544 		return (B_FALSE);
545 
546 	/*
547 	 * If the transaction group is zero, then this an initialized (but
548 	 * unused) label.  This is only an error if the create transaction
549 	 * on-disk is the same as the one we're using now, in which case the
550 	 * user has attempted to add the same vdev multiple times in the same
551 	 * transaction.
552 	 */
553 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
554 	    txg == 0 && vdtxg == crtxg)
555 		return (B_TRUE);
556 
557 	/*
558 	 * Check to see if this is a spare device.  We do an explicit check for
559 	 * spa_has_spare() here because it may be on our pending list of spares
560 	 * to add.  We also check if it is an l2cache device.
561 	 */
562 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
563 	    spa_has_spare(spa, device_guid)) {
564 		if (spare_guid)
565 			*spare_guid = device_guid;
566 
567 		switch (reason) {
568 		case VDEV_LABEL_CREATE:
569 		case VDEV_LABEL_L2CACHE:
570 			return (B_TRUE);
571 
572 		case VDEV_LABEL_REPLACE:
573 			return (!spa_has_spare(spa, device_guid) ||
574 			    spare_pool != 0ULL);
575 
576 		case VDEV_LABEL_SPARE:
577 			return (spa_has_spare(spa, device_guid));
578 		}
579 	}
580 
581 	/*
582 	 * Check to see if this is an l2cache device.
583 	 */
584 	if (spa_l2cache_exists(device_guid, NULL))
585 		return (B_TRUE);
586 
587 	/*
588 	 * We can't rely on a pool's state if it's been imported
589 	 * read-only.  Instead we look to see if the pools is marked
590 	 * read-only in the namespace and set the state to active.
591 	 */
592 	if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
593 	    spa_mode(spa) == FREAD)
594 		state = POOL_STATE_ACTIVE;
595 
596 	/*
597 	 * If the device is marked ACTIVE, then this device is in use by another
598 	 * pool on the system.
599 	 */
600 	return (state == POOL_STATE_ACTIVE);
601 }
602 
603 /*
604  * Initialize a vdev label.  We check to make sure each leaf device is not in
605  * use, and writable.  We put down an initial label which we will later
606  * overwrite with a complete label.  Note that it's important to do this
607  * sequentially, not in parallel, so that we catch cases of multiple use of the
608  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
609  * itself.
610  */
611 int
612 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
613 {
614 	spa_t *spa = vd->vdev_spa;
615 	nvlist_t *label;
616 	vdev_phys_t *vp;
617 	char *pad2;
618 	uberblock_t *ub;
619 	zio_t *zio;
620 	char *buf;
621 	size_t buflen;
622 	int error;
623 	uint64_t spare_guid, l2cache_guid;
624 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
625 
626 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
627 
628 	for (int c = 0; c < vd->vdev_children; c++)
629 		if ((error = vdev_label_init(vd->vdev_child[c],
630 		    crtxg, reason)) != 0)
631 			return (error);
632 
633 	/* Track the creation time for this vdev */
634 	vd->vdev_crtxg = crtxg;
635 
636 	if (!vd->vdev_ops->vdev_op_leaf)
637 		return (0);
638 
639 	/*
640 	 * Dead vdevs cannot be initialized.
641 	 */
642 	if (vdev_is_dead(vd))
643 		return (EIO);
644 
645 	/*
646 	 * Determine if the vdev is in use.
647 	 */
648 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
649 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
650 		return (EBUSY);
651 
652 	/*
653 	 * If this is a request to add or replace a spare or l2cache device
654 	 * that is in use elsewhere on the system, then we must update the
655 	 * guid (which was initialized to a random value) to reflect the
656 	 * actual GUID (which is shared between multiple pools).
657 	 */
658 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
659 	    spare_guid != 0ULL) {
660 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
661 
662 		vd->vdev_guid += guid_delta;
663 
664 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
665 			pvd->vdev_guid_sum += guid_delta;
666 
667 		/*
668 		 * If this is a replacement, then we want to fallthrough to the
669 		 * rest of the code.  If we're adding a spare, then it's already
670 		 * labeled appropriately and we can just return.
671 		 */
672 		if (reason == VDEV_LABEL_SPARE)
673 			return (0);
674 		ASSERT(reason == VDEV_LABEL_REPLACE ||
675 		    reason == VDEV_LABEL_SPLIT);
676 	}
677 
678 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
679 	    l2cache_guid != 0ULL) {
680 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
681 
682 		vd->vdev_guid += guid_delta;
683 
684 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
685 			pvd->vdev_guid_sum += guid_delta;
686 
687 		/*
688 		 * If this is a replacement, then we want to fallthrough to the
689 		 * rest of the code.  If we're adding an l2cache, then it's
690 		 * already labeled appropriately and we can just return.
691 		 */
692 		if (reason == VDEV_LABEL_L2CACHE)
693 			return (0);
694 		ASSERT(reason == VDEV_LABEL_REPLACE);
695 	}
696 
697 	/*
698 	 * Initialize its label.
699 	 */
700 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
701 	bzero(vp, sizeof (vdev_phys_t));
702 
703 	/*
704 	 * Generate a label describing the pool and our top-level vdev.
705 	 * We mark it as being from txg 0 to indicate that it's not
706 	 * really part of an active pool just yet.  The labels will
707 	 * be written again with a meaningful txg by spa_sync().
708 	 */
709 	if (reason == VDEV_LABEL_SPARE ||
710 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
711 		/*
712 		 * For inactive hot spares, we generate a special label that
713 		 * identifies as a mutually shared hot spare.  We write the
714 		 * label if we are adding a hot spare, or if we are removing an
715 		 * active hot spare (in which case we want to revert the
716 		 * labels).
717 		 */
718 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
719 
720 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
721 		    spa_version(spa)) == 0);
722 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
723 		    POOL_STATE_SPARE) == 0);
724 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
725 		    vd->vdev_guid) == 0);
726 	} else if (reason == VDEV_LABEL_L2CACHE ||
727 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
728 		/*
729 		 * For level 2 ARC devices, add a special label.
730 		 */
731 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
732 
733 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
734 		    spa_version(spa)) == 0);
735 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
736 		    POOL_STATE_L2CACHE) == 0);
737 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
738 		    vd->vdev_guid) == 0);
739 	} else {
740 		uint64_t txg = 0ULL;
741 
742 		if (reason == VDEV_LABEL_SPLIT)
743 			txg = spa->spa_uberblock.ub_txg;
744 		label = spa_config_generate(spa, vd, txg, B_FALSE);
745 
746 		/*
747 		 * Add our creation time.  This allows us to detect multiple
748 		 * vdev uses as described above, and automatically expires if we
749 		 * fail.
750 		 */
751 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
752 		    crtxg) == 0);
753 	}
754 
755 	buf = vp->vp_nvlist;
756 	buflen = sizeof (vp->vp_nvlist);
757 
758 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
759 	if (error != 0) {
760 		nvlist_free(label);
761 		zio_buf_free(vp, sizeof (vdev_phys_t));
762 		/* EFAULT means nvlist_pack ran out of room */
763 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
764 	}
765 
766 	/*
767 	 * Initialize uberblock template.
768 	 */
769 	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
770 	bzero(ub, VDEV_UBERBLOCK_RING);
771 	*ub = spa->spa_uberblock;
772 	ub->ub_txg = 0;
773 
774 	/* Initialize the 2nd padding area. */
775 	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
776 	bzero(pad2, VDEV_PAD_SIZE);
777 
778 	/*
779 	 * Write everything in parallel.
780 	 */
781 retry:
782 	zio = zio_root(spa, NULL, NULL, flags);
783 
784 	for (int l = 0; l < VDEV_LABELS; l++) {
785 
786 		vdev_label_write(zio, vd, l, vp,
787 		    offsetof(vdev_label_t, vl_vdev_phys),
788 		    sizeof (vdev_phys_t), NULL, NULL, flags);
789 
790 		/*
791 		 * Skip the 1st padding area.
792 		 * Zero out the 2nd padding area where it might have
793 		 * left over data from previous filesystem format.
794 		 */
795 		vdev_label_write(zio, vd, l, pad2,
796 		    offsetof(vdev_label_t, vl_pad2),
797 		    VDEV_PAD_SIZE, NULL, NULL, flags);
798 
799 		vdev_label_write(zio, vd, l, ub,
800 		    offsetof(vdev_label_t, vl_uberblock),
801 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
802 	}
803 
804 	error = zio_wait(zio);
805 
806 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
807 		flags |= ZIO_FLAG_TRYHARD;
808 		goto retry;
809 	}
810 
811 	nvlist_free(label);
812 	zio_buf_free(pad2, VDEV_PAD_SIZE);
813 	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
814 	zio_buf_free(vp, sizeof (vdev_phys_t));
815 
816 	/*
817 	 * If this vdev hasn't been previously identified as a spare, then we
818 	 * mark it as such only if a) we are labeling it as a spare, or b) it
819 	 * exists as a spare elsewhere in the system.  Do the same for
820 	 * level 2 ARC devices.
821 	 */
822 	if (error == 0 && !vd->vdev_isspare &&
823 	    (reason == VDEV_LABEL_SPARE ||
824 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
825 		spa_spare_add(vd);
826 
827 	if (error == 0 && !vd->vdev_isl2cache &&
828 	    (reason == VDEV_LABEL_L2CACHE ||
829 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
830 		spa_l2cache_add(vd);
831 
832 	return (error);
833 }
834 
835 /*
836  * ==========================================================================
837  * uberblock load/sync
838  * ==========================================================================
839  */
840 
841 /*
842  * Consider the following situation: txg is safely synced to disk.  We've
843  * written the first uberblock for txg + 1, and then we lose power.  When we
844  * come back up, we fail to see the uberblock for txg + 1 because, say,
845  * it was on a mirrored device and the replica to which we wrote txg + 1
846  * is now offline.  If we then make some changes and sync txg + 1, and then
847  * the missing replica comes back, then for a few seconds we'll have two
848  * conflicting uberblocks on disk with the same txg.  The solution is simple:
849  * among uberblocks with equal txg, choose the one with the latest timestamp.
850  */
851 static int
852 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
853 {
854 	if (ub1->ub_txg < ub2->ub_txg)
855 		return (-1);
856 	if (ub1->ub_txg > ub2->ub_txg)
857 		return (1);
858 
859 	if (ub1->ub_timestamp < ub2->ub_timestamp)
860 		return (-1);
861 	if (ub1->ub_timestamp > ub2->ub_timestamp)
862 		return (1);
863 
864 	return (0);
865 }
866 
867 struct ubl_cbdata {
868 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
869 	vdev_t		*ubl_vd;	/* vdev associated with the above */
870 	int		ubl_label;	/* Label associated with the above */
871 };
872 
873 static void
874 vdev_uberblock_load_done(zio_t *zio)
875 {
876 	vdev_t *vd = zio->io_vd;
877 	spa_t *spa = zio->io_spa;
878 	zio_t *rio = zio->io_private;
879 	uberblock_t *ub = zio->io_data;
880 	struct ubl_cbdata *cbp = rio->io_private;
881 
882 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
883 
884 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
885 		mutex_enter(&rio->io_lock);
886 		if (ub->ub_txg <= spa->spa_load_max_txg &&
887 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
888 			/*
889 			 * Keep track of the vdev and label in which this
890 			 * uberblock was found. We will use this information
891 			 * later to obtain the config nvlist associated with
892 			 * this uberblock.
893 			 */
894 			*cbp->ubl_ubbest = *ub;
895 			cbp->ubl_vd = vd;
896 			cbp->ubl_label = vdev_label_number(vd->vdev_psize,
897 			    zio->io_offset);
898 		}
899 		mutex_exit(&rio->io_lock);
900 	}
901 
902 	zio_buf_free(zio->io_data, zio->io_size);
903 }
904 
905 static void
906 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
907     struct ubl_cbdata *cbp)
908 {
909 	for (int c = 0; c < vd->vdev_children; c++)
910 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
911 
912 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
913 		for (int l = 0; l < VDEV_LABELS; l++) {
914 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
915 				vdev_label_read(zio, vd, l,
916 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
917 				    VDEV_UBERBLOCK_OFFSET(vd, n),
918 				    VDEV_UBERBLOCK_SIZE(vd),
919 				    vdev_uberblock_load_done, zio, flags);
920 			}
921 		}
922 	}
923 }
924 
925 /*
926  * Reads the 'best' uberblock from disk along with its associated
927  * configuration. First, we read the uberblock array of each label of each
928  * vdev, keeping track of the uberblock with the highest txg in each array.
929  * Then, we read the configuration from the same label as the best uberblock.
930  */
931 void
932 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
933 {
934 	int i;
935 	zio_t *zio;
936 	spa_t *spa = rvd->vdev_spa;
937 	struct ubl_cbdata cb;
938 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
939 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
940 
941 	ASSERT(ub);
942 	ASSERT(config);
943 
944 	bzero(ub, sizeof (uberblock_t));
945 	*config = NULL;
946 
947 	cb.ubl_ubbest = ub;
948 	cb.ubl_vd = NULL;
949 
950 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
951 	zio = zio_root(spa, NULL, &cb, flags);
952 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
953 	(void) zio_wait(zio);
954 	if (cb.ubl_vd != NULL) {
955 		for (i = cb.ubl_label % 2; i < VDEV_LABELS; i += 2) {
956 			*config = vdev_label_read_config(cb.ubl_vd, i);
957 			if (*config != NULL)
958 				break;
959 		}
960 	}
961 	spa_config_exit(spa, SCL_ALL, FTAG);
962 }
963 
964 /*
965  * On success, increment root zio's count of good writes.
966  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
967  */
968 static void
969 vdev_uberblock_sync_done(zio_t *zio)
970 {
971 	uint64_t *good_writes = zio->io_private;
972 
973 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
974 		atomic_add_64(good_writes, 1);
975 }
976 
977 /*
978  * Write the uberblock to all labels of all leaves of the specified vdev.
979  */
980 static void
981 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
982 {
983 	uberblock_t *ubbuf;
984 	int n;
985 
986 	for (int c = 0; c < vd->vdev_children; c++)
987 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
988 
989 	if (!vd->vdev_ops->vdev_op_leaf)
990 		return;
991 
992 	if (!vdev_writeable(vd))
993 		return;
994 
995 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
996 
997 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
998 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
999 	*ubbuf = *ub;
1000 
1001 	for (int l = 0; l < VDEV_LABELS; l++)
1002 		vdev_label_write(zio, vd, l, ubbuf,
1003 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1004 		    vdev_uberblock_sync_done, zio->io_private,
1005 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1006 
1007 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1008 }
1009 
1010 int
1011 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1012 {
1013 	spa_t *spa = svd[0]->vdev_spa;
1014 	zio_t *zio;
1015 	uint64_t good_writes = 0;
1016 
1017 	zio = zio_root(spa, NULL, &good_writes, flags);
1018 
1019 	for (int v = 0; v < svdcount; v++)
1020 		vdev_uberblock_sync(zio, ub, svd[v], flags);
1021 
1022 	(void) zio_wait(zio);
1023 
1024 	/*
1025 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1026 	 * are no longer needed (because the new uberblocks and the even
1027 	 * labels are safely on disk), so it is safe to overwrite them.
1028 	 */
1029 	zio = zio_root(spa, NULL, NULL, flags);
1030 
1031 	for (int v = 0; v < svdcount; v++)
1032 		zio_flush(zio, svd[v]);
1033 
1034 	(void) zio_wait(zio);
1035 
1036 	return (good_writes >= 1 ? 0 : EIO);
1037 }
1038 
1039 /*
1040  * On success, increment the count of good writes for our top-level vdev.
1041  */
1042 static void
1043 vdev_label_sync_done(zio_t *zio)
1044 {
1045 	uint64_t *good_writes = zio->io_private;
1046 
1047 	if (zio->io_error == 0)
1048 		atomic_add_64(good_writes, 1);
1049 }
1050 
1051 /*
1052  * If there weren't enough good writes, indicate failure to the parent.
1053  */
1054 static void
1055 vdev_label_sync_top_done(zio_t *zio)
1056 {
1057 	uint64_t *good_writes = zio->io_private;
1058 
1059 	if (*good_writes == 0)
1060 		zio->io_error = EIO;
1061 
1062 	kmem_free(good_writes, sizeof (uint64_t));
1063 }
1064 
1065 /*
1066  * We ignore errors for log and cache devices, simply free the private data.
1067  */
1068 static void
1069 vdev_label_sync_ignore_done(zio_t *zio)
1070 {
1071 	kmem_free(zio->io_private, sizeof (uint64_t));
1072 }
1073 
1074 /*
1075  * Write all even or odd labels to all leaves of the specified vdev.
1076  */
1077 static void
1078 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1079 {
1080 	nvlist_t *label;
1081 	vdev_phys_t *vp;
1082 	char *buf;
1083 	size_t buflen;
1084 
1085 	for (int c = 0; c < vd->vdev_children; c++)
1086 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1087 
1088 	if (!vd->vdev_ops->vdev_op_leaf)
1089 		return;
1090 
1091 	if (!vdev_writeable(vd))
1092 		return;
1093 
1094 	/*
1095 	 * Generate a label describing the top-level config to which we belong.
1096 	 */
1097 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1098 
1099 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1100 	bzero(vp, sizeof (vdev_phys_t));
1101 
1102 	buf = vp->vp_nvlist;
1103 	buflen = sizeof (vp->vp_nvlist);
1104 
1105 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1106 		for (; l < VDEV_LABELS; l += 2) {
1107 			vdev_label_write(zio, vd, l, vp,
1108 			    offsetof(vdev_label_t, vl_vdev_phys),
1109 			    sizeof (vdev_phys_t),
1110 			    vdev_label_sync_done, zio->io_private,
1111 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1112 		}
1113 	}
1114 
1115 	zio_buf_free(vp, sizeof (vdev_phys_t));
1116 	nvlist_free(label);
1117 }
1118 
1119 int
1120 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1121 {
1122 	list_t *dl = &spa->spa_config_dirty_list;
1123 	vdev_t *vd;
1124 	zio_t *zio;
1125 	int error;
1126 
1127 	/*
1128 	 * Write the new labels to disk.
1129 	 */
1130 	zio = zio_root(spa, NULL, NULL, flags);
1131 
1132 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1133 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1134 		    KM_SLEEP);
1135 
1136 		ASSERT(!vd->vdev_ishole);
1137 
1138 		zio_t *vio = zio_null(zio, spa, NULL,
1139 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1140 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1141 		    good_writes, flags);
1142 		vdev_label_sync(vio, vd, l, txg, flags);
1143 		zio_nowait(vio);
1144 	}
1145 
1146 	error = zio_wait(zio);
1147 
1148 	/*
1149 	 * Flush the new labels to disk.
1150 	 */
1151 	zio = zio_root(spa, NULL, NULL, flags);
1152 
1153 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1154 		zio_flush(zio, vd);
1155 
1156 	(void) zio_wait(zio);
1157 
1158 	return (error);
1159 }
1160 
1161 /*
1162  * Sync the uberblock and any changes to the vdev configuration.
1163  *
1164  * The order of operations is carefully crafted to ensure that
1165  * if the system panics or loses power at any time, the state on disk
1166  * is still transactionally consistent.  The in-line comments below
1167  * describe the failure semantics at each stage.
1168  *
1169  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1170  * at any time, you can just call it again, and it will resume its work.
1171  */
1172 int
1173 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1174 {
1175 	spa_t *spa = svd[0]->vdev_spa;
1176 	uberblock_t *ub = &spa->spa_uberblock;
1177 	vdev_t *vd;
1178 	zio_t *zio;
1179 	int error;
1180 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1181 
1182 	/*
1183 	 * Normally, we don't want to try too hard to write every label and
1184 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1185 	 * sync process to block while we retry.  But if we can't write a
1186 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1187 	 * bailing out and declaring the pool faulted.
1188 	 */
1189 	if (tryhard)
1190 		flags |= ZIO_FLAG_TRYHARD;
1191 
1192 	ASSERT(ub->ub_txg <= txg);
1193 
1194 	/*
1195 	 * If this isn't a resync due to I/O errors,
1196 	 * and nothing changed in this transaction group,
1197 	 * and the vdev configuration hasn't changed,
1198 	 * then there's nothing to do.
1199 	 */
1200 	if (ub->ub_txg < txg &&
1201 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1202 	    list_is_empty(&spa->spa_config_dirty_list))
1203 		return (0);
1204 
1205 	if (txg > spa_freeze_txg(spa))
1206 		return (0);
1207 
1208 	ASSERT(txg <= spa->spa_final_txg);
1209 
1210 	/*
1211 	 * Flush the write cache of every disk that's been written to
1212 	 * in this transaction group.  This ensures that all blocks
1213 	 * written in this txg will be committed to stable storage
1214 	 * before any uberblock that references them.
1215 	 */
1216 	zio = zio_root(spa, NULL, NULL, flags);
1217 
1218 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1219 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1220 		zio_flush(zio, vd);
1221 
1222 	(void) zio_wait(zio);
1223 
1224 	/*
1225 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1226 	 * system dies in the middle of this process, that's OK: all of the
1227 	 * even labels that made it to disk will be newer than any uberblock,
1228 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1229 	 * which have not yet been touched, will still be valid.  We flush
1230 	 * the new labels to disk to ensure that all even-label updates
1231 	 * are committed to stable storage before the uberblock update.
1232 	 */
1233 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1234 		return (error);
1235 
1236 	/*
1237 	 * Sync the uberblocks to all vdevs in svd[].
1238 	 * If the system dies in the middle of this step, there are two cases
1239 	 * to consider, and the on-disk state is consistent either way:
1240 	 *
1241 	 * (1)	If none of the new uberblocks made it to disk, then the
1242 	 *	previous uberblock will be the newest, and the odd labels
1243 	 *	(which had not yet been touched) will be valid with respect
1244 	 *	to that uberblock.
1245 	 *
1246 	 * (2)	If one or more new uberblocks made it to disk, then they
1247 	 *	will be the newest, and the even labels (which had all
1248 	 *	been successfully committed) will be valid with respect
1249 	 *	to the new uberblocks.
1250 	 */
1251 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1252 		return (error);
1253 
1254 	/*
1255 	 * Sync out odd labels for every dirty vdev.  If the system dies
1256 	 * in the middle of this process, the even labels and the new
1257 	 * uberblocks will suffice to open the pool.  The next time
1258 	 * the pool is opened, the first thing we'll do -- before any
1259 	 * user data is modified -- is mark every vdev dirty so that
1260 	 * all labels will be brought up to date.  We flush the new labels
1261 	 * to disk to ensure that all odd-label updates are committed to
1262 	 * stable storage before the next transaction group begins.
1263 	 */
1264 	return (vdev_label_sync_list(spa, 1, txg, flags));
1265 }
1266