1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Virtual Device Labels 29 * --------------------- 30 * 31 * The vdev label serves several distinct purposes: 32 * 33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 34 * identity within the pool. 35 * 36 * 2. Verify that all the devices given in a configuration are present 37 * within the pool. 38 * 39 * 3. Determine the uberblock for the pool. 40 * 41 * 4. In case of an import operation, determine the configuration of the 42 * toplevel vdev of which it is a part. 43 * 44 * 5. If an import operation cannot find all the devices in the pool, 45 * provide enough information to the administrator to determine which 46 * devices are missing. 47 * 48 * It is important to note that while the kernel is responsible for writing the 49 * label, it only consumes the information in the first three cases. The 50 * latter information is only consumed in userland when determining the 51 * configuration to import a pool. 52 * 53 * 54 * Label Organization 55 * ------------------ 56 * 57 * Before describing the contents of the label, it's important to understand how 58 * the labels are written and updated with respect to the uberblock. 59 * 60 * When the pool configuration is altered, either because it was newly created 61 * or a device was added, we want to update all the labels such that we can deal 62 * with fatal failure at any point. To this end, each disk has two labels which 63 * are updated before and after the uberblock is synced. Assuming we have 64 * labels and an uberblock with the following transaction groups: 65 * 66 * L1 UB L2 67 * +------+ +------+ +------+ 68 * | | | | | | 69 * | t10 | | t10 | | t10 | 70 * | | | | | | 71 * +------+ +------+ +------+ 72 * 73 * In this stable state, the labels and the uberblock were all updated within 74 * the same transaction group (10). Each label is mirrored and checksummed, so 75 * that we can detect when we fail partway through writing the label. 76 * 77 * In order to identify which labels are valid, the labels are written in the 78 * following manner: 79 * 80 * 1. For each vdev, update 'L1' to the new label 81 * 2. Update the uberblock 82 * 3. For each vdev, update 'L2' to the new label 83 * 84 * Given arbitrary failure, we can determine the correct label to use based on 85 * the transaction group. If we fail after updating L1 but before updating the 86 * UB, we will notice that L1's transaction group is greater than the uberblock, 87 * so L2 must be valid. If we fail after writing the uberblock but before 88 * writing L2, we will notice that L2's transaction group is less than L1, and 89 * therefore L1 is valid. 90 * 91 * Another added complexity is that not every label is updated when the config 92 * is synced. If we add a single device, we do not want to have to re-write 93 * every label for every device in the pool. This means that both L1 and L2 may 94 * be older than the pool uberblock, because the necessary information is stored 95 * on another vdev. 96 * 97 * 98 * On-disk Format 99 * -------------- 100 * 101 * The vdev label consists of two distinct parts, and is wrapped within the 102 * vdev_label_t structure. The label includes 8k of padding to permit legacy 103 * VTOC disk labels, but is otherwise ignored. 104 * 105 * The first half of the label is a packed nvlist which contains pool wide 106 * properties, per-vdev properties, and configuration information. It is 107 * described in more detail below. 108 * 109 * The latter half of the label consists of a redundant array of uberblocks. 110 * These uberblocks are updated whenever a transaction group is committed, 111 * or when the configuration is updated. When a pool is loaded, we scan each 112 * vdev for the 'best' uberblock. 113 * 114 * 115 * Configuration Information 116 * ------------------------- 117 * 118 * The nvlist describing the pool and vdev contains the following elements: 119 * 120 * version ZFS on-disk version 121 * name Pool name 122 * state Pool state 123 * txg Transaction group in which this label was written 124 * pool_guid Unique identifier for this pool 125 * vdev_tree An nvlist describing vdev tree. 126 * features_for_read 127 * An nvlist of the features necessary for reading the MOS. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/metaslab_impl.h> 147 #include <sys/zio.h> 148 #include <sys/dsl_scan.h> 149 #include <sys/abd.h> 150 #include <sys/fs/zfs.h> 151 152 /* 153 * Basic routines to read and write from a vdev label. 154 * Used throughout the rest of this file. 155 */ 156 uint64_t 157 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 158 { 159 ASSERT(offset < sizeof (vdev_label_t)); 160 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 161 162 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 163 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 164 } 165 166 /* 167 * Returns back the vdev label associated with the passed in offset. 168 */ 169 int 170 vdev_label_number(uint64_t psize, uint64_t offset) 171 { 172 int l; 173 174 if (offset >= psize - VDEV_LABEL_END_SIZE) { 175 offset -= psize - VDEV_LABEL_END_SIZE; 176 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 177 } 178 l = offset / sizeof (vdev_label_t); 179 return (l < VDEV_LABELS ? l : -1); 180 } 181 182 static void 183 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 184 uint64_t size, zio_done_func_t *done, void *private, int flags) 185 { 186 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 187 SCL_STATE_ALL); 188 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 189 190 zio_nowait(zio_read_phys(zio, vd, 191 vdev_label_offset(vd->vdev_psize, l, offset), 192 size, buf, ZIO_CHECKSUM_LABEL, done, private, 193 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 194 } 195 196 static void 197 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 198 uint64_t size, zio_done_func_t *done, void *private, int flags) 199 { 200 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 201 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 202 (SCL_CONFIG | SCL_STATE) && 203 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 204 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 205 206 zio_nowait(zio_write_phys(zio, vd, 207 vdev_label_offset(vd->vdev_psize, l, offset), 208 size, buf, ZIO_CHECKSUM_LABEL, done, private, 209 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 210 } 211 212 /* 213 * Generate the nvlist representing this vdev's config. 214 */ 215 nvlist_t * 216 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 217 vdev_config_flag_t flags) 218 { 219 nvlist_t *nv = NULL; 220 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 221 222 nv = fnvlist_alloc(); 223 224 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 225 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 226 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 227 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 228 229 if (vd->vdev_path != NULL) 230 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 231 232 if (vd->vdev_devid != NULL) 233 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 234 235 if (vd->vdev_physpath != NULL) 236 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 237 vd->vdev_physpath); 238 239 if (vd->vdev_fru != NULL) 240 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 241 242 if (vd->vdev_nparity != 0) { 243 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 244 VDEV_TYPE_RAIDZ) == 0); 245 246 /* 247 * Make sure someone hasn't managed to sneak a fancy new vdev 248 * into a crufty old storage pool. 249 */ 250 ASSERT(vd->vdev_nparity == 1 || 251 (vd->vdev_nparity <= 2 && 252 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 253 (vd->vdev_nparity <= 3 && 254 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 255 256 /* 257 * Note that we'll add the nparity tag even on storage pools 258 * that only support a single parity device -- older software 259 * will just ignore it. 260 */ 261 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 262 } 263 264 if (vd->vdev_wholedisk != -1ULL) 265 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 266 vd->vdev_wholedisk); 267 268 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 269 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 270 271 if (vd->vdev_isspare) 272 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 273 274 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 275 vd == vd->vdev_top) { 276 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 277 vd->vdev_ms_array); 278 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 279 vd->vdev_ms_shift); 280 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 281 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 282 vd->vdev_asize); 283 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 284 if (vd->vdev_removing) { 285 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 286 vd->vdev_removing); 287 } 288 } 289 290 if (vd->vdev_dtl_sm != NULL) { 291 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 292 space_map_object(vd->vdev_dtl_sm)); 293 } 294 295 if (vic->vic_mapping_object != 0) { 296 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 297 vic->vic_mapping_object); 298 } 299 300 if (vic->vic_births_object != 0) { 301 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 302 vic->vic_births_object); 303 } 304 305 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 306 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 307 vic->vic_prev_indirect_vdev); 308 } 309 310 if (vd->vdev_crtxg) 311 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 312 313 if (flags & VDEV_CONFIG_MOS) { 314 if (vd->vdev_leaf_zap != 0) { 315 ASSERT(vd->vdev_ops->vdev_op_leaf); 316 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 317 vd->vdev_leaf_zap); 318 } 319 320 if (vd->vdev_top_zap != 0) { 321 ASSERT(vd == vd->vdev_top); 322 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 323 vd->vdev_top_zap); 324 } 325 } 326 327 if (getstats) { 328 vdev_stat_t vs; 329 330 vdev_get_stats(vd, &vs); 331 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 332 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)); 333 334 /* provide either current or previous scan information */ 335 pool_scan_stat_t ps; 336 if (spa_scan_get_stats(spa, &ps) == 0) { 337 fnvlist_add_uint64_array(nv, 338 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 339 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 340 } 341 342 pool_removal_stat_t prs; 343 if (spa_removal_get_stats(spa, &prs) == 0) { 344 fnvlist_add_uint64_array(nv, 345 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 346 sizeof (prs) / sizeof (uint64_t)); 347 } 348 349 /* 350 * Note: this can be called from open context 351 * (spa_get_stats()), so we need the rwlock to prevent 352 * the mapping from being changed by condensing. 353 */ 354 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 355 if (vd->vdev_indirect_mapping != NULL) { 356 ASSERT(vd->vdev_indirect_births != NULL); 357 vdev_indirect_mapping_t *vim = 358 vd->vdev_indirect_mapping; 359 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 360 vdev_indirect_mapping_size(vim)); 361 } 362 rw_exit(&vd->vdev_indirect_rwlock); 363 if (vd->vdev_mg != NULL && 364 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 365 /* 366 * Compute approximately how much memory would be used 367 * for the indirect mapping if this device were to 368 * be removed. 369 * 370 * Note: If the frag metric is invalid, then not 371 * enough metaslabs have been converted to have 372 * histograms. 373 */ 374 uint64_t seg_count = 0; 375 376 /* 377 * There are the same number of allocated segments 378 * as free segments, so we will have at least one 379 * entry per free segment. 380 */ 381 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 382 seg_count += vd->vdev_mg->mg_histogram[i]; 383 } 384 385 /* 386 * The maximum length of a mapping is SPA_MAXBLOCKSIZE, 387 * so we need at least one entry per SPA_MAXBLOCKSIZE 388 * of allocated data. 389 */ 390 seg_count += vd->vdev_stat.vs_alloc / SPA_MAXBLOCKSIZE; 391 392 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 393 seg_count * 394 sizeof (vdev_indirect_mapping_entry_phys_t)); 395 } 396 } 397 398 if (!vd->vdev_ops->vdev_op_leaf) { 399 nvlist_t **child; 400 int c, idx; 401 402 ASSERT(!vd->vdev_ishole); 403 404 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 405 KM_SLEEP); 406 407 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 408 vdev_t *cvd = vd->vdev_child[c]; 409 410 /* 411 * If we're generating an nvlist of removing 412 * vdevs then skip over any device which is 413 * not being removed. 414 */ 415 if ((flags & VDEV_CONFIG_REMOVING) && 416 !cvd->vdev_removing) 417 continue; 418 419 child[idx++] = vdev_config_generate(spa, cvd, 420 getstats, flags); 421 } 422 423 if (idx) { 424 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 425 child, idx); 426 } 427 428 for (c = 0; c < idx; c++) 429 nvlist_free(child[c]); 430 431 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 432 433 } else { 434 const char *aux = NULL; 435 436 if (vd->vdev_offline && !vd->vdev_tmpoffline) 437 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 438 if (vd->vdev_resilver_txg != 0) 439 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 440 vd->vdev_resilver_txg); 441 if (vd->vdev_faulted) 442 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 443 if (vd->vdev_degraded) 444 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 445 if (vd->vdev_removed) 446 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 447 if (vd->vdev_unspare) 448 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 449 if (vd->vdev_ishole) 450 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 451 452 switch (vd->vdev_stat.vs_aux) { 453 case VDEV_AUX_ERR_EXCEEDED: 454 aux = "err_exceeded"; 455 break; 456 457 case VDEV_AUX_EXTERNAL: 458 aux = "external"; 459 break; 460 } 461 462 if (aux != NULL) 463 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 464 465 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 466 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 467 vd->vdev_orig_guid); 468 } 469 } 470 471 return (nv); 472 } 473 474 /* 475 * Generate a view of the top-level vdevs. If we currently have holes 476 * in the namespace, then generate an array which contains a list of holey 477 * vdevs. Additionally, add the number of top-level children that currently 478 * exist. 479 */ 480 void 481 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 482 { 483 vdev_t *rvd = spa->spa_root_vdev; 484 uint64_t *array; 485 uint_t c, idx; 486 487 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 488 489 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 490 vdev_t *tvd = rvd->vdev_child[c]; 491 492 if (tvd->vdev_ishole) { 493 array[idx++] = c; 494 } 495 } 496 497 if (idx) { 498 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 499 array, idx) == 0); 500 } 501 502 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 503 rvd->vdev_children) == 0); 504 505 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 506 } 507 508 /* 509 * Returns the configuration from the label of the given vdev. For vdevs 510 * which don't have a txg value stored on their label (i.e. spares/cache) 511 * or have not been completely initialized (txg = 0) just return 512 * the configuration from the first valid label we find. Otherwise, 513 * find the most up-to-date label that does not exceed the specified 514 * 'txg' value. 515 */ 516 nvlist_t * 517 vdev_label_read_config(vdev_t *vd, uint64_t txg) 518 { 519 spa_t *spa = vd->vdev_spa; 520 nvlist_t *config = NULL; 521 vdev_phys_t *vp; 522 abd_t *vp_abd; 523 zio_t *zio; 524 uint64_t best_txg = 0; 525 int error = 0; 526 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 527 ZIO_FLAG_SPECULATIVE; 528 529 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 530 531 if (!vdev_readable(vd)) 532 return (NULL); 533 534 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 535 vp = abd_to_buf(vp_abd); 536 537 retry: 538 for (int l = 0; l < VDEV_LABELS; l++) { 539 nvlist_t *label = NULL; 540 541 zio = zio_root(spa, NULL, NULL, flags); 542 543 vdev_label_read(zio, vd, l, vp_abd, 544 offsetof(vdev_label_t, vl_vdev_phys), 545 sizeof (vdev_phys_t), NULL, NULL, flags); 546 547 if (zio_wait(zio) == 0 && 548 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 549 &label, 0) == 0) { 550 uint64_t label_txg = 0; 551 552 /* 553 * Auxiliary vdevs won't have txg values in their 554 * labels and newly added vdevs may not have been 555 * completely initialized so just return the 556 * configuration from the first valid label we 557 * encounter. 558 */ 559 error = nvlist_lookup_uint64(label, 560 ZPOOL_CONFIG_POOL_TXG, &label_txg); 561 if ((error || label_txg == 0) && !config) { 562 config = label; 563 break; 564 } else if (label_txg <= txg && label_txg > best_txg) { 565 best_txg = label_txg; 566 nvlist_free(config); 567 config = fnvlist_dup(label); 568 } 569 } 570 571 if (label != NULL) { 572 nvlist_free(label); 573 label = NULL; 574 } 575 } 576 577 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 578 flags |= ZIO_FLAG_TRYHARD; 579 goto retry; 580 } 581 582 abd_free(vp_abd); 583 584 return (config); 585 } 586 587 /* 588 * Determine if a device is in use. The 'spare_guid' parameter will be filled 589 * in with the device guid if this spare is active elsewhere on the system. 590 */ 591 static boolean_t 592 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 593 uint64_t *spare_guid, uint64_t *l2cache_guid) 594 { 595 spa_t *spa = vd->vdev_spa; 596 uint64_t state, pool_guid, device_guid, txg, spare_pool; 597 uint64_t vdtxg = 0; 598 nvlist_t *label; 599 600 if (spare_guid) 601 *spare_guid = 0ULL; 602 if (l2cache_guid) 603 *l2cache_guid = 0ULL; 604 605 /* 606 * Read the label, if any, and perform some basic sanity checks. 607 */ 608 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 609 return (B_FALSE); 610 611 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 612 &vdtxg); 613 614 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 615 &state) != 0 || 616 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 617 &device_guid) != 0) { 618 nvlist_free(label); 619 return (B_FALSE); 620 } 621 622 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 623 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 624 &pool_guid) != 0 || 625 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 626 &txg) != 0)) { 627 nvlist_free(label); 628 return (B_FALSE); 629 } 630 631 nvlist_free(label); 632 633 /* 634 * Check to see if this device indeed belongs to the pool it claims to 635 * be a part of. The only way this is allowed is if the device is a hot 636 * spare (which we check for later on). 637 */ 638 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 639 !spa_guid_exists(pool_guid, device_guid) && 640 !spa_spare_exists(device_guid, NULL, NULL) && 641 !spa_l2cache_exists(device_guid, NULL)) 642 return (B_FALSE); 643 644 /* 645 * If the transaction group is zero, then this an initialized (but 646 * unused) label. This is only an error if the create transaction 647 * on-disk is the same as the one we're using now, in which case the 648 * user has attempted to add the same vdev multiple times in the same 649 * transaction. 650 */ 651 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 652 txg == 0 && vdtxg == crtxg) 653 return (B_TRUE); 654 655 /* 656 * Check to see if this is a spare device. We do an explicit check for 657 * spa_has_spare() here because it may be on our pending list of spares 658 * to add. We also check if it is an l2cache device. 659 */ 660 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 661 spa_has_spare(spa, device_guid)) { 662 if (spare_guid) 663 *spare_guid = device_guid; 664 665 switch (reason) { 666 case VDEV_LABEL_CREATE: 667 case VDEV_LABEL_L2CACHE: 668 return (B_TRUE); 669 670 case VDEV_LABEL_REPLACE: 671 return (!spa_has_spare(spa, device_guid) || 672 spare_pool != 0ULL); 673 674 case VDEV_LABEL_SPARE: 675 return (spa_has_spare(spa, device_guid)); 676 } 677 } 678 679 /* 680 * Check to see if this is an l2cache device. 681 */ 682 if (spa_l2cache_exists(device_guid, NULL)) 683 return (B_TRUE); 684 685 /* 686 * We can't rely on a pool's state if it's been imported 687 * read-only. Instead we look to see if the pools is marked 688 * read-only in the namespace and set the state to active. 689 */ 690 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 691 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 692 spa_mode(spa) == FREAD) 693 state = POOL_STATE_ACTIVE; 694 695 /* 696 * If the device is marked ACTIVE, then this device is in use by another 697 * pool on the system. 698 */ 699 return (state == POOL_STATE_ACTIVE); 700 } 701 702 /* 703 * Initialize a vdev label. We check to make sure each leaf device is not in 704 * use, and writable. We put down an initial label which we will later 705 * overwrite with a complete label. Note that it's important to do this 706 * sequentially, not in parallel, so that we catch cases of multiple use of the 707 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 708 * itself. 709 */ 710 int 711 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 712 { 713 spa_t *spa = vd->vdev_spa; 714 nvlist_t *label; 715 vdev_phys_t *vp; 716 abd_t *vp_abd; 717 abd_t *pad2; 718 uberblock_t *ub; 719 abd_t *ub_abd; 720 zio_t *zio; 721 char *buf; 722 size_t buflen; 723 int error; 724 uint64_t spare_guid, l2cache_guid; 725 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 726 727 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 728 729 for (int c = 0; c < vd->vdev_children; c++) 730 if ((error = vdev_label_init(vd->vdev_child[c], 731 crtxg, reason)) != 0) 732 return (error); 733 734 /* Track the creation time for this vdev */ 735 vd->vdev_crtxg = crtxg; 736 737 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 738 return (0); 739 740 /* 741 * Dead vdevs cannot be initialized. 742 */ 743 if (vdev_is_dead(vd)) 744 return (SET_ERROR(EIO)); 745 746 /* 747 * Determine if the vdev is in use. 748 */ 749 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 750 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 751 return (SET_ERROR(EBUSY)); 752 753 /* 754 * If this is a request to add or replace a spare or l2cache device 755 * that is in use elsewhere on the system, then we must update the 756 * guid (which was initialized to a random value) to reflect the 757 * actual GUID (which is shared between multiple pools). 758 */ 759 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 760 spare_guid != 0ULL) { 761 uint64_t guid_delta = spare_guid - vd->vdev_guid; 762 763 vd->vdev_guid += guid_delta; 764 765 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 766 pvd->vdev_guid_sum += guid_delta; 767 768 /* 769 * If this is a replacement, then we want to fallthrough to the 770 * rest of the code. If we're adding a spare, then it's already 771 * labeled appropriately and we can just return. 772 */ 773 if (reason == VDEV_LABEL_SPARE) 774 return (0); 775 ASSERT(reason == VDEV_LABEL_REPLACE || 776 reason == VDEV_LABEL_SPLIT); 777 } 778 779 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 780 l2cache_guid != 0ULL) { 781 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 782 783 vd->vdev_guid += guid_delta; 784 785 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 786 pvd->vdev_guid_sum += guid_delta; 787 788 /* 789 * If this is a replacement, then we want to fallthrough to the 790 * rest of the code. If we're adding an l2cache, then it's 791 * already labeled appropriately and we can just return. 792 */ 793 if (reason == VDEV_LABEL_L2CACHE) 794 return (0); 795 ASSERT(reason == VDEV_LABEL_REPLACE); 796 } 797 798 /* 799 * Initialize its label. 800 */ 801 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 802 abd_zero(vp_abd, sizeof (vdev_phys_t)); 803 vp = abd_to_buf(vp_abd); 804 805 /* 806 * Generate a label describing the pool and our top-level vdev. 807 * We mark it as being from txg 0 to indicate that it's not 808 * really part of an active pool just yet. The labels will 809 * be written again with a meaningful txg by spa_sync(). 810 */ 811 if (reason == VDEV_LABEL_SPARE || 812 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 813 /* 814 * For inactive hot spares, we generate a special label that 815 * identifies as a mutually shared hot spare. We write the 816 * label if we are adding a hot spare, or if we are removing an 817 * active hot spare (in which case we want to revert the 818 * labels). 819 */ 820 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 821 822 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 823 spa_version(spa)) == 0); 824 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 825 POOL_STATE_SPARE) == 0); 826 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 827 vd->vdev_guid) == 0); 828 } else if (reason == VDEV_LABEL_L2CACHE || 829 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 830 /* 831 * For level 2 ARC devices, add a special label. 832 */ 833 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 834 835 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 836 spa_version(spa)) == 0); 837 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 838 POOL_STATE_L2CACHE) == 0); 839 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 840 vd->vdev_guid) == 0); 841 } else { 842 uint64_t txg = 0ULL; 843 844 if (reason == VDEV_LABEL_SPLIT) 845 txg = spa->spa_uberblock.ub_txg; 846 label = spa_config_generate(spa, vd, txg, B_FALSE); 847 848 /* 849 * Add our creation time. This allows us to detect multiple 850 * vdev uses as described above, and automatically expires if we 851 * fail. 852 */ 853 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 854 crtxg) == 0); 855 } 856 857 buf = vp->vp_nvlist; 858 buflen = sizeof (vp->vp_nvlist); 859 860 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 861 if (error != 0) { 862 nvlist_free(label); 863 abd_free(vp_abd); 864 /* EFAULT means nvlist_pack ran out of room */ 865 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 866 } 867 868 /* 869 * Initialize uberblock template. 870 */ 871 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 872 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 873 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 874 ub = abd_to_buf(ub_abd); 875 ub->ub_txg = 0; 876 877 /* Initialize the 2nd padding area. */ 878 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 879 abd_zero(pad2, VDEV_PAD_SIZE); 880 881 /* 882 * Write everything in parallel. 883 */ 884 retry: 885 zio = zio_root(spa, NULL, NULL, flags); 886 887 for (int l = 0; l < VDEV_LABELS; l++) { 888 889 vdev_label_write(zio, vd, l, vp_abd, 890 offsetof(vdev_label_t, vl_vdev_phys), 891 sizeof (vdev_phys_t), NULL, NULL, flags); 892 893 /* 894 * Skip the 1st padding area. 895 * Zero out the 2nd padding area where it might have 896 * left over data from previous filesystem format. 897 */ 898 vdev_label_write(zio, vd, l, pad2, 899 offsetof(vdev_label_t, vl_pad2), 900 VDEV_PAD_SIZE, NULL, NULL, flags); 901 902 vdev_label_write(zio, vd, l, ub_abd, 903 offsetof(vdev_label_t, vl_uberblock), 904 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 905 } 906 907 error = zio_wait(zio); 908 909 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 910 flags |= ZIO_FLAG_TRYHARD; 911 goto retry; 912 } 913 914 nvlist_free(label); 915 abd_free(pad2); 916 abd_free(ub_abd); 917 abd_free(vp_abd); 918 919 /* 920 * If this vdev hasn't been previously identified as a spare, then we 921 * mark it as such only if a) we are labeling it as a spare, or b) it 922 * exists as a spare elsewhere in the system. Do the same for 923 * level 2 ARC devices. 924 */ 925 if (error == 0 && !vd->vdev_isspare && 926 (reason == VDEV_LABEL_SPARE || 927 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 928 spa_spare_add(vd); 929 930 if (error == 0 && !vd->vdev_isl2cache && 931 (reason == VDEV_LABEL_L2CACHE || 932 spa_l2cache_exists(vd->vdev_guid, NULL))) 933 spa_l2cache_add(vd); 934 935 return (error); 936 } 937 938 /* 939 * ========================================================================== 940 * uberblock load/sync 941 * ========================================================================== 942 */ 943 944 /* 945 * Consider the following situation: txg is safely synced to disk. We've 946 * written the first uberblock for txg + 1, and then we lose power. When we 947 * come back up, we fail to see the uberblock for txg + 1 because, say, 948 * it was on a mirrored device and the replica to which we wrote txg + 1 949 * is now offline. If we then make some changes and sync txg + 1, and then 950 * the missing replica comes back, then for a few seconds we'll have two 951 * conflicting uberblocks on disk with the same txg. The solution is simple: 952 * among uberblocks with equal txg, choose the one with the latest timestamp. 953 */ 954 static int 955 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 956 { 957 if (ub1->ub_txg < ub2->ub_txg) 958 return (-1); 959 if (ub1->ub_txg > ub2->ub_txg) 960 return (1); 961 962 if (ub1->ub_timestamp < ub2->ub_timestamp) 963 return (-1); 964 if (ub1->ub_timestamp > ub2->ub_timestamp) 965 return (1); 966 967 return (0); 968 } 969 970 struct ubl_cbdata { 971 uberblock_t *ubl_ubbest; /* Best uberblock */ 972 vdev_t *ubl_vd; /* vdev associated with the above */ 973 }; 974 975 static void 976 vdev_uberblock_load_done(zio_t *zio) 977 { 978 vdev_t *vd = zio->io_vd; 979 spa_t *spa = zio->io_spa; 980 zio_t *rio = zio->io_private; 981 uberblock_t *ub = abd_to_buf(zio->io_abd); 982 struct ubl_cbdata *cbp = rio->io_private; 983 984 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 985 986 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 987 mutex_enter(&rio->io_lock); 988 if (ub->ub_txg <= spa->spa_load_max_txg && 989 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 990 /* 991 * Keep track of the vdev in which this uberblock 992 * was found. We will use this information later 993 * to obtain the config nvlist associated with 994 * this uberblock. 995 */ 996 *cbp->ubl_ubbest = *ub; 997 cbp->ubl_vd = vd; 998 } 999 mutex_exit(&rio->io_lock); 1000 } 1001 1002 abd_free(zio->io_abd); 1003 } 1004 1005 static void 1006 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1007 struct ubl_cbdata *cbp) 1008 { 1009 for (int c = 0; c < vd->vdev_children; c++) 1010 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1011 1012 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1013 for (int l = 0; l < VDEV_LABELS; l++) { 1014 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1015 vdev_label_read(zio, vd, l, 1016 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1017 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1018 VDEV_UBERBLOCK_SIZE(vd), 1019 vdev_uberblock_load_done, zio, flags); 1020 } 1021 } 1022 } 1023 } 1024 1025 /* 1026 * Reads the 'best' uberblock from disk along with its associated 1027 * configuration. First, we read the uberblock array of each label of each 1028 * vdev, keeping track of the uberblock with the highest txg in each array. 1029 * Then, we read the configuration from the same vdev as the best uberblock. 1030 */ 1031 void 1032 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1033 { 1034 zio_t *zio; 1035 spa_t *spa = rvd->vdev_spa; 1036 struct ubl_cbdata cb; 1037 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1038 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1039 1040 ASSERT(ub); 1041 ASSERT(config); 1042 1043 bzero(ub, sizeof (uberblock_t)); 1044 *config = NULL; 1045 1046 cb.ubl_ubbest = ub; 1047 cb.ubl_vd = NULL; 1048 1049 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1050 zio = zio_root(spa, NULL, &cb, flags); 1051 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1052 (void) zio_wait(zio); 1053 1054 /* 1055 * It's possible that the best uberblock was discovered on a label 1056 * that has a configuration which was written in a future txg. 1057 * Search all labels on this vdev to find the configuration that 1058 * matches the txg for our uberblock. 1059 */ 1060 if (cb.ubl_vd != NULL) { 1061 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1062 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1063 1064 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1065 if (*config == NULL && spa->spa_extreme_rewind) { 1066 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1067 "Trying again without txg restrictions."); 1068 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1069 } 1070 if (*config == NULL) { 1071 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1072 } 1073 } 1074 spa_config_exit(spa, SCL_ALL, FTAG); 1075 } 1076 1077 /* 1078 * On success, increment root zio's count of good writes. 1079 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1080 */ 1081 static void 1082 vdev_uberblock_sync_done(zio_t *zio) 1083 { 1084 uint64_t *good_writes = zio->io_private; 1085 1086 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1087 atomic_inc_64(good_writes); 1088 } 1089 1090 /* 1091 * Write the uberblock to all labels of all leaves of the specified vdev. 1092 */ 1093 static void 1094 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 1095 { 1096 for (uint64_t c = 0; c < vd->vdev_children; c++) 1097 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 1098 1099 if (!vd->vdev_ops->vdev_op_leaf) 1100 return; 1101 1102 if (!vdev_writeable(vd)) 1103 return; 1104 1105 int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 1106 1107 /* Copy the uberblock_t into the ABD */ 1108 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1109 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1110 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1111 1112 for (int l = 0; l < VDEV_LABELS; l++) 1113 vdev_label_write(zio, vd, l, ub_abd, 1114 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1115 vdev_uberblock_sync_done, zio->io_private, 1116 flags | ZIO_FLAG_DONT_PROPAGATE); 1117 1118 abd_free(ub_abd); 1119 } 1120 1121 /* Sync the uberblocks to all vdevs in svd[] */ 1122 int 1123 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1124 { 1125 spa_t *spa = svd[0]->vdev_spa; 1126 zio_t *zio; 1127 uint64_t good_writes = 0; 1128 1129 zio = zio_root(spa, NULL, &good_writes, flags); 1130 1131 for (int v = 0; v < svdcount; v++) 1132 vdev_uberblock_sync(zio, ub, svd[v], flags); 1133 1134 (void) zio_wait(zio); 1135 1136 /* 1137 * Flush the uberblocks to disk. This ensures that the odd labels 1138 * are no longer needed (because the new uberblocks and the even 1139 * labels are safely on disk), so it is safe to overwrite them. 1140 */ 1141 zio = zio_root(spa, NULL, NULL, flags); 1142 1143 for (int v = 0; v < svdcount; v++) { 1144 if (vdev_writeable(svd[v])) { 1145 zio_flush(zio, svd[v]); 1146 } 1147 } 1148 1149 (void) zio_wait(zio); 1150 1151 return (good_writes >= 1 ? 0 : EIO); 1152 } 1153 1154 /* 1155 * On success, increment the count of good writes for our top-level vdev. 1156 */ 1157 static void 1158 vdev_label_sync_done(zio_t *zio) 1159 { 1160 uint64_t *good_writes = zio->io_private; 1161 1162 if (zio->io_error == 0) 1163 atomic_inc_64(good_writes); 1164 } 1165 1166 /* 1167 * If there weren't enough good writes, indicate failure to the parent. 1168 */ 1169 static void 1170 vdev_label_sync_top_done(zio_t *zio) 1171 { 1172 uint64_t *good_writes = zio->io_private; 1173 1174 if (*good_writes == 0) 1175 zio->io_error = SET_ERROR(EIO); 1176 1177 kmem_free(good_writes, sizeof (uint64_t)); 1178 } 1179 1180 /* 1181 * We ignore errors for log and cache devices, simply free the private data. 1182 */ 1183 static void 1184 vdev_label_sync_ignore_done(zio_t *zio) 1185 { 1186 kmem_free(zio->io_private, sizeof (uint64_t)); 1187 } 1188 1189 /* 1190 * Write all even or odd labels to all leaves of the specified vdev. 1191 */ 1192 static void 1193 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 1194 { 1195 nvlist_t *label; 1196 vdev_phys_t *vp; 1197 abd_t *vp_abd; 1198 char *buf; 1199 size_t buflen; 1200 1201 for (int c = 0; c < vd->vdev_children; c++) 1202 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 1203 1204 if (!vd->vdev_ops->vdev_op_leaf) 1205 return; 1206 1207 if (!vdev_writeable(vd)) 1208 return; 1209 1210 /* 1211 * Generate a label describing the top-level config to which we belong. 1212 */ 1213 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1214 1215 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1216 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1217 vp = abd_to_buf(vp_abd); 1218 1219 buf = vp->vp_nvlist; 1220 buflen = sizeof (vp->vp_nvlist); 1221 1222 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1223 for (; l < VDEV_LABELS; l += 2) { 1224 vdev_label_write(zio, vd, l, vp_abd, 1225 offsetof(vdev_label_t, vl_vdev_phys), 1226 sizeof (vdev_phys_t), 1227 vdev_label_sync_done, zio->io_private, 1228 flags | ZIO_FLAG_DONT_PROPAGATE); 1229 } 1230 } 1231 1232 abd_free(vp_abd); 1233 nvlist_free(label); 1234 } 1235 1236 int 1237 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1238 { 1239 list_t *dl = &spa->spa_config_dirty_list; 1240 vdev_t *vd; 1241 zio_t *zio; 1242 int error; 1243 1244 /* 1245 * Write the new labels to disk. 1246 */ 1247 zio = zio_root(spa, NULL, NULL, flags); 1248 1249 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1250 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1251 KM_SLEEP); 1252 1253 ASSERT(!vd->vdev_ishole); 1254 1255 zio_t *vio = zio_null(zio, spa, NULL, 1256 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1257 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1258 good_writes, flags); 1259 vdev_label_sync(vio, vd, l, txg, flags); 1260 zio_nowait(vio); 1261 } 1262 1263 error = zio_wait(zio); 1264 1265 /* 1266 * Flush the new labels to disk. 1267 */ 1268 zio = zio_root(spa, NULL, NULL, flags); 1269 1270 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1271 zio_flush(zio, vd); 1272 1273 (void) zio_wait(zio); 1274 1275 return (error); 1276 } 1277 1278 /* 1279 * Sync the uberblock and any changes to the vdev configuration. 1280 * 1281 * The order of operations is carefully crafted to ensure that 1282 * if the system panics or loses power at any time, the state on disk 1283 * is still transactionally consistent. The in-line comments below 1284 * describe the failure semantics at each stage. 1285 * 1286 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1287 * at any time, you can just call it again, and it will resume its work. 1288 */ 1289 int 1290 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1291 { 1292 spa_t *spa = svd[0]->vdev_spa; 1293 uberblock_t *ub = &spa->spa_uberblock; 1294 vdev_t *vd; 1295 zio_t *zio; 1296 int error = 0; 1297 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1298 1299 retry: 1300 /* 1301 * Normally, we don't want to try too hard to write every label and 1302 * uberblock. If there is a flaky disk, we don't want the rest of the 1303 * sync process to block while we retry. But if we can't write a 1304 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1305 * bailing out and declaring the pool faulted. 1306 */ 1307 if (error != 0) { 1308 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1309 return (error); 1310 flags |= ZIO_FLAG_TRYHARD; 1311 } 1312 1313 ASSERT(ub->ub_txg <= txg); 1314 1315 /* 1316 * If this isn't a resync due to I/O errors, 1317 * and nothing changed in this transaction group, 1318 * and the vdev configuration hasn't changed, 1319 * then there's nothing to do. 1320 */ 1321 if (ub->ub_txg < txg && 1322 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1323 list_is_empty(&spa->spa_config_dirty_list)) 1324 return (0); 1325 1326 if (txg > spa_freeze_txg(spa)) 1327 return (0); 1328 1329 ASSERT(txg <= spa->spa_final_txg); 1330 1331 /* 1332 * Flush the write cache of every disk that's been written to 1333 * in this transaction group. This ensures that all blocks 1334 * written in this txg will be committed to stable storage 1335 * before any uberblock that references them. 1336 */ 1337 zio = zio_root(spa, NULL, NULL, flags); 1338 1339 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1340 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1341 zio_flush(zio, vd); 1342 1343 (void) zio_wait(zio); 1344 1345 /* 1346 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1347 * system dies in the middle of this process, that's OK: all of the 1348 * even labels that made it to disk will be newer than any uberblock, 1349 * and will therefore be considered invalid. The odd labels (L1, L3), 1350 * which have not yet been touched, will still be valid. We flush 1351 * the new labels to disk to ensure that all even-label updates 1352 * are committed to stable storage before the uberblock update. 1353 */ 1354 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1355 goto retry; 1356 1357 /* 1358 * Sync the uberblocks to all vdevs in svd[]. 1359 * If the system dies in the middle of this step, there are two cases 1360 * to consider, and the on-disk state is consistent either way: 1361 * 1362 * (1) If none of the new uberblocks made it to disk, then the 1363 * previous uberblock will be the newest, and the odd labels 1364 * (which had not yet been touched) will be valid with respect 1365 * to that uberblock. 1366 * 1367 * (2) If one or more new uberblocks made it to disk, then they 1368 * will be the newest, and the even labels (which had all 1369 * been successfully committed) will be valid with respect 1370 * to the new uberblocks. 1371 */ 1372 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1373 goto retry; 1374 1375 /* 1376 * Sync out odd labels for every dirty vdev. If the system dies 1377 * in the middle of this process, the even labels and the new 1378 * uberblocks will suffice to open the pool. The next time 1379 * the pool is opened, the first thing we'll do -- before any 1380 * user data is modified -- is mark every vdev dirty so that 1381 * all labels will be brought up to date. We flush the new labels 1382 * to disk to ensure that all odd-label updates are committed to 1383 * stable storage before the next transaction group begins. 1384 */ 1385 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) 1386 goto retry; 1387 1388 return (0); 1389 } 1390