xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision a0fb1590788f4dcbcee3fabaeb082ab7d1ad4203)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Virtual Device Labels
29  * ---------------------
30  *
31  * The vdev label serves several distinct purposes:
32  *
33  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34  *	   identity within the pool.
35  *
36  * 	2. Verify that all the devices given in a configuration are present
37  *         within the pool.
38  *
39  * 	3. Determine the uberblock for the pool.
40  *
41  * 	4. In case of an import operation, determine the configuration of the
42  *         toplevel vdev of which it is a part.
43  *
44  * 	5. If an import operation cannot find all the devices in the pool,
45  *         provide enough information to the administrator to determine which
46  *         devices are missing.
47  *
48  * It is important to note that while the kernel is responsible for writing the
49  * label, it only consumes the information in the first three cases.  The
50  * latter information is only consumed in userland when determining the
51  * configuration to import a pool.
52  *
53  *
54  * Label Organization
55  * ------------------
56  *
57  * Before describing the contents of the label, it's important to understand how
58  * the labels are written and updated with respect to the uberblock.
59  *
60  * When the pool configuration is altered, either because it was newly created
61  * or a device was added, we want to update all the labels such that we can deal
62  * with fatal failure at any point.  To this end, each disk has two labels which
63  * are updated before and after the uberblock is synced.  Assuming we have
64  * labels and an uberblock with the following transaction groups:
65  *
66  *              L1          UB          L2
67  *           +------+    +------+    +------+
68  *           |      |    |      |    |      |
69  *           | t10  |    | t10  |    | t10  |
70  *           |      |    |      |    |      |
71  *           +------+    +------+    +------+
72  *
73  * In this stable state, the labels and the uberblock were all updated within
74  * the same transaction group (10).  Each label is mirrored and checksummed, so
75  * that we can detect when we fail partway through writing the label.
76  *
77  * In order to identify which labels are valid, the labels are written in the
78  * following manner:
79  *
80  * 	1. For each vdev, update 'L1' to the new label
81  * 	2. Update the uberblock
82  * 	3. For each vdev, update 'L2' to the new label
83  *
84  * Given arbitrary failure, we can determine the correct label to use based on
85  * the transaction group.  If we fail after updating L1 but before updating the
86  * UB, we will notice that L1's transaction group is greater than the uberblock,
87  * so L2 must be valid.  If we fail after writing the uberblock but before
88  * writing L2, we will notice that L2's transaction group is less than L1, and
89  * therefore L1 is valid.
90  *
91  * Another added complexity is that not every label is updated when the config
92  * is synced.  If we add a single device, we do not want to have to re-write
93  * every label for every device in the pool.  This means that both L1 and L2 may
94  * be older than the pool uberblock, because the necessary information is stored
95  * on another vdev.
96  *
97  *
98  * On-disk Format
99  * --------------
100  *
101  * The vdev label consists of two distinct parts, and is wrapped within the
102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103  * VTOC disk labels, but is otherwise ignored.
104  *
105  * The first half of the label is a packed nvlist which contains pool wide
106  * properties, per-vdev properties, and configuration information.  It is
107  * described in more detail below.
108  *
109  * The latter half of the label consists of a redundant array of uberblocks.
110  * These uberblocks are updated whenever a transaction group is committed,
111  * or when the configuration is updated.  When a pool is loaded, we scan each
112  * vdev for the 'best' uberblock.
113  *
114  *
115  * Configuration Information
116  * -------------------------
117  *
118  * The nvlist describing the pool and vdev contains the following elements:
119  *
120  * 	version		ZFS on-disk version
121  * 	name		Pool name
122  * 	state		Pool state
123  * 	txg		Transaction group in which this label was written
124  * 	pool_guid	Unique identifier for this pool
125  * 	vdev_tree	An nvlist describing vdev tree.
126  *	features_for_read
127  *			An nvlist of the features necessary for reading the MOS.
128  *
129  * Each leaf device label also contains the following:
130  *
131  * 	top_guid	Unique ID for top-level vdev in which this is contained
132  * 	guid		Unique ID for the leaf vdev
133  *
134  * The 'vs' configuration follows the format described in 'spa_config.c'.
135  */
136 
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/zio.h>
147 #include <sys/dsl_scan.h>
148 #include <sys/fs/zfs.h>
149 
150 /*
151  * Basic routines to read and write from a vdev label.
152  * Used throughout the rest of this file.
153  */
154 uint64_t
155 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156 {
157 	ASSERT(offset < sizeof (vdev_label_t));
158 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159 
160 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162 }
163 
164 /*
165  * Returns back the vdev label associated with the passed in offset.
166  */
167 int
168 vdev_label_number(uint64_t psize, uint64_t offset)
169 {
170 	int l;
171 
172 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
173 		offset -= psize - VDEV_LABEL_END_SIZE;
174 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175 	}
176 	l = offset / sizeof (vdev_label_t);
177 	return (l < VDEV_LABELS ? l : -1);
178 }
179 
180 static void
181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
182     uint64_t size, zio_done_func_t *done, void *private, int flags)
183 {
184 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185 	    SCL_STATE_ALL);
186 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
187 
188 	zio_nowait(zio_read_phys(zio, vd,
189 	    vdev_label_offset(vd->vdev_psize, l, offset),
190 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
191 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
192 }
193 
194 static void
195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196     uint64_t size, zio_done_func_t *done, void *private, int flags)
197 {
198 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200 	    (SCL_CONFIG | SCL_STATE) &&
201 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
203 
204 	zio_nowait(zio_write_phys(zio, vd,
205 	    vdev_label_offset(vd->vdev_psize, l, offset),
206 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
207 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208 }
209 
210 /*
211  * Generate the nvlist representing this vdev's config.
212  */
213 nvlist_t *
214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
215     vdev_config_flag_t flags)
216 {
217 	nvlist_t *nv = NULL;
218 
219 	nv = fnvlist_alloc();
220 
221 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
222 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
223 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
224 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
225 
226 	if (vd->vdev_path != NULL)
227 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
228 
229 	if (vd->vdev_devid != NULL)
230 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
231 
232 	if (vd->vdev_physpath != NULL)
233 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 		    vd->vdev_physpath);
235 
236 	if (vd->vdev_fru != NULL)
237 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
238 
239 	if (vd->vdev_nparity != 0) {
240 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
241 		    VDEV_TYPE_RAIDZ) == 0);
242 
243 		/*
244 		 * Make sure someone hasn't managed to sneak a fancy new vdev
245 		 * into a crufty old storage pool.
246 		 */
247 		ASSERT(vd->vdev_nparity == 1 ||
248 		    (vd->vdev_nparity <= 2 &&
249 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
250 		    (vd->vdev_nparity <= 3 &&
251 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
252 
253 		/*
254 		 * Note that we'll add the nparity tag even on storage pools
255 		 * that only support a single parity device -- older software
256 		 * will just ignore it.
257 		 */
258 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
259 	}
260 
261 	if (vd->vdev_wholedisk != -1ULL)
262 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
263 		    vd->vdev_wholedisk);
264 
265 	if (vd->vdev_not_present)
266 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
267 
268 	if (vd->vdev_isspare)
269 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
270 
271 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
272 	    vd == vd->vdev_top) {
273 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
274 		    vd->vdev_ms_array);
275 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
276 		    vd->vdev_ms_shift);
277 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
278 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
279 		    vd->vdev_asize);
280 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
281 		if (vd->vdev_removing)
282 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
283 			    vd->vdev_removing);
284 	}
285 
286 	if (vd->vdev_dtl_sm != NULL) {
287 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
288 		    space_map_object(vd->vdev_dtl_sm));
289 	}
290 
291 	if (vd->vdev_crtxg)
292 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
293 
294 	if (flags & VDEV_CONFIG_MOS) {
295 		if (vd->vdev_leaf_zap != 0) {
296 			ASSERT(vd->vdev_ops->vdev_op_leaf);
297 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
298 			    vd->vdev_leaf_zap);
299 		}
300 
301 		if (vd->vdev_top_zap != 0) {
302 			ASSERT(vd == vd->vdev_top);
303 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
304 			    vd->vdev_top_zap);
305 		}
306 	}
307 
308 	if (getstats) {
309 		vdev_stat_t vs;
310 		pool_scan_stat_t ps;
311 
312 		vdev_get_stats(vd, &vs);
313 		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
314 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
315 
316 		/* provide either current or previous scan information */
317 		if (spa_scan_get_stats(spa, &ps) == 0) {
318 			fnvlist_add_uint64_array(nv,
319 			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
320 			    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
321 		}
322 	}
323 
324 	if (!vd->vdev_ops->vdev_op_leaf) {
325 		nvlist_t **child;
326 		int c, idx;
327 
328 		ASSERT(!vd->vdev_ishole);
329 
330 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
331 		    KM_SLEEP);
332 
333 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
334 			vdev_t *cvd = vd->vdev_child[c];
335 
336 			/*
337 			 * If we're generating an nvlist of removing
338 			 * vdevs then skip over any device which is
339 			 * not being removed.
340 			 */
341 			if ((flags & VDEV_CONFIG_REMOVING) &&
342 			    !cvd->vdev_removing)
343 				continue;
344 
345 			child[idx++] = vdev_config_generate(spa, cvd,
346 			    getstats, flags);
347 		}
348 
349 		if (idx) {
350 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
351 			    child, idx);
352 		}
353 
354 		for (c = 0; c < idx; c++)
355 			nvlist_free(child[c]);
356 
357 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
358 
359 	} else {
360 		const char *aux = NULL;
361 
362 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
363 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
364 		if (vd->vdev_resilver_txg != 0)
365 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
366 			    vd->vdev_resilver_txg);
367 		if (vd->vdev_faulted)
368 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
369 		if (vd->vdev_degraded)
370 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
371 		if (vd->vdev_removed)
372 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
373 		if (vd->vdev_unspare)
374 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
375 		if (vd->vdev_ishole)
376 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
377 
378 		switch (vd->vdev_stat.vs_aux) {
379 		case VDEV_AUX_ERR_EXCEEDED:
380 			aux = "err_exceeded";
381 			break;
382 
383 		case VDEV_AUX_EXTERNAL:
384 			aux = "external";
385 			break;
386 		}
387 
388 		if (aux != NULL)
389 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
390 
391 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
392 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
393 			    vd->vdev_orig_guid);
394 		}
395 	}
396 
397 	return (nv);
398 }
399 
400 /*
401  * Generate a view of the top-level vdevs.  If we currently have holes
402  * in the namespace, then generate an array which contains a list of holey
403  * vdevs.  Additionally, add the number of top-level children that currently
404  * exist.
405  */
406 void
407 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
408 {
409 	vdev_t *rvd = spa->spa_root_vdev;
410 	uint64_t *array;
411 	uint_t c, idx;
412 
413 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
414 
415 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
416 		vdev_t *tvd = rvd->vdev_child[c];
417 
418 		if (tvd->vdev_ishole)
419 			array[idx++] = c;
420 	}
421 
422 	if (idx) {
423 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
424 		    array, idx) == 0);
425 	}
426 
427 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
428 	    rvd->vdev_children) == 0);
429 
430 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
431 }
432 
433 /*
434  * Returns the configuration from the label of the given vdev. For vdevs
435  * which don't have a txg value stored on their label (i.e. spares/cache)
436  * or have not been completely initialized (txg = 0) just return
437  * the configuration from the first valid label we find. Otherwise,
438  * find the most up-to-date label that does not exceed the specified
439  * 'txg' value.
440  */
441 nvlist_t *
442 vdev_label_read_config(vdev_t *vd, uint64_t txg)
443 {
444 	spa_t *spa = vd->vdev_spa;
445 	nvlist_t *config = NULL;
446 	vdev_phys_t *vp;
447 	zio_t *zio;
448 	uint64_t best_txg = 0;
449 	int error = 0;
450 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
451 	    ZIO_FLAG_SPECULATIVE;
452 
453 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
454 
455 	if (!vdev_readable(vd))
456 		return (NULL);
457 
458 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
459 
460 retry:
461 	for (int l = 0; l < VDEV_LABELS; l++) {
462 		nvlist_t *label = NULL;
463 
464 		zio = zio_root(spa, NULL, NULL, flags);
465 
466 		vdev_label_read(zio, vd, l, vp,
467 		    offsetof(vdev_label_t, vl_vdev_phys),
468 		    sizeof (vdev_phys_t), NULL, NULL, flags);
469 
470 		if (zio_wait(zio) == 0 &&
471 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
472 		    &label, 0) == 0) {
473 			uint64_t label_txg = 0;
474 
475 			/*
476 			 * Auxiliary vdevs won't have txg values in their
477 			 * labels and newly added vdevs may not have been
478 			 * completely initialized so just return the
479 			 * configuration from the first valid label we
480 			 * encounter.
481 			 */
482 			error = nvlist_lookup_uint64(label,
483 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
484 			if ((error || label_txg == 0) && !config) {
485 				config = label;
486 				break;
487 			} else if (label_txg <= txg && label_txg > best_txg) {
488 				best_txg = label_txg;
489 				nvlist_free(config);
490 				config = fnvlist_dup(label);
491 			}
492 		}
493 
494 		if (label != NULL) {
495 			nvlist_free(label);
496 			label = NULL;
497 		}
498 	}
499 
500 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
501 		flags |= ZIO_FLAG_TRYHARD;
502 		goto retry;
503 	}
504 
505 	zio_buf_free(vp, sizeof (vdev_phys_t));
506 
507 	return (config);
508 }
509 
510 /*
511  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
512  * in with the device guid if this spare is active elsewhere on the system.
513  */
514 static boolean_t
515 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
516     uint64_t *spare_guid, uint64_t *l2cache_guid)
517 {
518 	spa_t *spa = vd->vdev_spa;
519 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
520 	uint64_t vdtxg = 0;
521 	nvlist_t *label;
522 
523 	if (spare_guid)
524 		*spare_guid = 0ULL;
525 	if (l2cache_guid)
526 		*l2cache_guid = 0ULL;
527 
528 	/*
529 	 * Read the label, if any, and perform some basic sanity checks.
530 	 */
531 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
532 		return (B_FALSE);
533 
534 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
535 	    &vdtxg);
536 
537 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
538 	    &state) != 0 ||
539 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
540 	    &device_guid) != 0) {
541 		nvlist_free(label);
542 		return (B_FALSE);
543 	}
544 
545 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
546 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
547 	    &pool_guid) != 0 ||
548 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
549 	    &txg) != 0)) {
550 		nvlist_free(label);
551 		return (B_FALSE);
552 	}
553 
554 	nvlist_free(label);
555 
556 	/*
557 	 * Check to see if this device indeed belongs to the pool it claims to
558 	 * be a part of.  The only way this is allowed is if the device is a hot
559 	 * spare (which we check for later on).
560 	 */
561 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
562 	    !spa_guid_exists(pool_guid, device_guid) &&
563 	    !spa_spare_exists(device_guid, NULL, NULL) &&
564 	    !spa_l2cache_exists(device_guid, NULL))
565 		return (B_FALSE);
566 
567 	/*
568 	 * If the transaction group is zero, then this an initialized (but
569 	 * unused) label.  This is only an error if the create transaction
570 	 * on-disk is the same as the one we're using now, in which case the
571 	 * user has attempted to add the same vdev multiple times in the same
572 	 * transaction.
573 	 */
574 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
575 	    txg == 0 && vdtxg == crtxg)
576 		return (B_TRUE);
577 
578 	/*
579 	 * Check to see if this is a spare device.  We do an explicit check for
580 	 * spa_has_spare() here because it may be on our pending list of spares
581 	 * to add.  We also check if it is an l2cache device.
582 	 */
583 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
584 	    spa_has_spare(spa, device_guid)) {
585 		if (spare_guid)
586 			*spare_guid = device_guid;
587 
588 		switch (reason) {
589 		case VDEV_LABEL_CREATE:
590 		case VDEV_LABEL_L2CACHE:
591 			return (B_TRUE);
592 
593 		case VDEV_LABEL_REPLACE:
594 			return (!spa_has_spare(spa, device_guid) ||
595 			    spare_pool != 0ULL);
596 
597 		case VDEV_LABEL_SPARE:
598 			return (spa_has_spare(spa, device_guid));
599 		}
600 	}
601 
602 	/*
603 	 * Check to see if this is an l2cache device.
604 	 */
605 	if (spa_l2cache_exists(device_guid, NULL))
606 		return (B_TRUE);
607 
608 	/*
609 	 * We can't rely on a pool's state if it's been imported
610 	 * read-only.  Instead we look to see if the pools is marked
611 	 * read-only in the namespace and set the state to active.
612 	 */
613 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
614 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
615 	    spa_mode(spa) == FREAD)
616 		state = POOL_STATE_ACTIVE;
617 
618 	/*
619 	 * If the device is marked ACTIVE, then this device is in use by another
620 	 * pool on the system.
621 	 */
622 	return (state == POOL_STATE_ACTIVE);
623 }
624 
625 /*
626  * Initialize a vdev label.  We check to make sure each leaf device is not in
627  * use, and writable.  We put down an initial label which we will later
628  * overwrite with a complete label.  Note that it's important to do this
629  * sequentially, not in parallel, so that we catch cases of multiple use of the
630  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
631  * itself.
632  */
633 int
634 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
635 {
636 	spa_t *spa = vd->vdev_spa;
637 	nvlist_t *label;
638 	vdev_phys_t *vp;
639 	char *pad2;
640 	uberblock_t *ub;
641 	zio_t *zio;
642 	char *buf;
643 	size_t buflen;
644 	int error;
645 	uint64_t spare_guid, l2cache_guid;
646 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
647 
648 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
649 
650 	for (int c = 0; c < vd->vdev_children; c++)
651 		if ((error = vdev_label_init(vd->vdev_child[c],
652 		    crtxg, reason)) != 0)
653 			return (error);
654 
655 	/* Track the creation time for this vdev */
656 	vd->vdev_crtxg = crtxg;
657 
658 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
659 		return (0);
660 
661 	/*
662 	 * Dead vdevs cannot be initialized.
663 	 */
664 	if (vdev_is_dead(vd))
665 		return (SET_ERROR(EIO));
666 
667 	/*
668 	 * Determine if the vdev is in use.
669 	 */
670 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
671 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
672 		return (SET_ERROR(EBUSY));
673 
674 	/*
675 	 * If this is a request to add or replace a spare or l2cache device
676 	 * that is in use elsewhere on the system, then we must update the
677 	 * guid (which was initialized to a random value) to reflect the
678 	 * actual GUID (which is shared between multiple pools).
679 	 */
680 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
681 	    spare_guid != 0ULL) {
682 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
683 
684 		vd->vdev_guid += guid_delta;
685 
686 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
687 			pvd->vdev_guid_sum += guid_delta;
688 
689 		/*
690 		 * If this is a replacement, then we want to fallthrough to the
691 		 * rest of the code.  If we're adding a spare, then it's already
692 		 * labeled appropriately and we can just return.
693 		 */
694 		if (reason == VDEV_LABEL_SPARE)
695 			return (0);
696 		ASSERT(reason == VDEV_LABEL_REPLACE ||
697 		    reason == VDEV_LABEL_SPLIT);
698 	}
699 
700 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
701 	    l2cache_guid != 0ULL) {
702 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
703 
704 		vd->vdev_guid += guid_delta;
705 
706 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
707 			pvd->vdev_guid_sum += guid_delta;
708 
709 		/*
710 		 * If this is a replacement, then we want to fallthrough to the
711 		 * rest of the code.  If we're adding an l2cache, then it's
712 		 * already labeled appropriately and we can just return.
713 		 */
714 		if (reason == VDEV_LABEL_L2CACHE)
715 			return (0);
716 		ASSERT(reason == VDEV_LABEL_REPLACE);
717 	}
718 
719 	/*
720 	 * Initialize its label.
721 	 */
722 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
723 	bzero(vp, sizeof (vdev_phys_t));
724 
725 	/*
726 	 * Generate a label describing the pool and our top-level vdev.
727 	 * We mark it as being from txg 0 to indicate that it's not
728 	 * really part of an active pool just yet.  The labels will
729 	 * be written again with a meaningful txg by spa_sync().
730 	 */
731 	if (reason == VDEV_LABEL_SPARE ||
732 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
733 		/*
734 		 * For inactive hot spares, we generate a special label that
735 		 * identifies as a mutually shared hot spare.  We write the
736 		 * label if we are adding a hot spare, or if we are removing an
737 		 * active hot spare (in which case we want to revert the
738 		 * labels).
739 		 */
740 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
741 
742 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
743 		    spa_version(spa)) == 0);
744 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
745 		    POOL_STATE_SPARE) == 0);
746 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
747 		    vd->vdev_guid) == 0);
748 	} else if (reason == VDEV_LABEL_L2CACHE ||
749 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
750 		/*
751 		 * For level 2 ARC devices, add a special label.
752 		 */
753 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
754 
755 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
756 		    spa_version(spa)) == 0);
757 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
758 		    POOL_STATE_L2CACHE) == 0);
759 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
760 		    vd->vdev_guid) == 0);
761 	} else {
762 		uint64_t txg = 0ULL;
763 
764 		if (reason == VDEV_LABEL_SPLIT)
765 			txg = spa->spa_uberblock.ub_txg;
766 		label = spa_config_generate(spa, vd, txg, B_FALSE);
767 
768 		/*
769 		 * Add our creation time.  This allows us to detect multiple
770 		 * vdev uses as described above, and automatically expires if we
771 		 * fail.
772 		 */
773 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
774 		    crtxg) == 0);
775 	}
776 
777 	buf = vp->vp_nvlist;
778 	buflen = sizeof (vp->vp_nvlist);
779 
780 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
781 	if (error != 0) {
782 		nvlist_free(label);
783 		zio_buf_free(vp, sizeof (vdev_phys_t));
784 		/* EFAULT means nvlist_pack ran out of room */
785 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
786 	}
787 
788 	/*
789 	 * Initialize uberblock template.
790 	 */
791 	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
792 	bzero(ub, VDEV_UBERBLOCK_RING);
793 	*ub = spa->spa_uberblock;
794 	ub->ub_txg = 0;
795 
796 	/* Initialize the 2nd padding area. */
797 	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
798 	bzero(pad2, VDEV_PAD_SIZE);
799 
800 	/*
801 	 * Write everything in parallel.
802 	 */
803 retry:
804 	zio = zio_root(spa, NULL, NULL, flags);
805 
806 	for (int l = 0; l < VDEV_LABELS; l++) {
807 
808 		vdev_label_write(zio, vd, l, vp,
809 		    offsetof(vdev_label_t, vl_vdev_phys),
810 		    sizeof (vdev_phys_t), NULL, NULL, flags);
811 
812 		/*
813 		 * Skip the 1st padding area.
814 		 * Zero out the 2nd padding area where it might have
815 		 * left over data from previous filesystem format.
816 		 */
817 		vdev_label_write(zio, vd, l, pad2,
818 		    offsetof(vdev_label_t, vl_pad2),
819 		    VDEV_PAD_SIZE, NULL, NULL, flags);
820 
821 		vdev_label_write(zio, vd, l, ub,
822 		    offsetof(vdev_label_t, vl_uberblock),
823 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
824 	}
825 
826 	error = zio_wait(zio);
827 
828 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
829 		flags |= ZIO_FLAG_TRYHARD;
830 		goto retry;
831 	}
832 
833 	nvlist_free(label);
834 	zio_buf_free(pad2, VDEV_PAD_SIZE);
835 	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
836 	zio_buf_free(vp, sizeof (vdev_phys_t));
837 
838 	/*
839 	 * If this vdev hasn't been previously identified as a spare, then we
840 	 * mark it as such only if a) we are labeling it as a spare, or b) it
841 	 * exists as a spare elsewhere in the system.  Do the same for
842 	 * level 2 ARC devices.
843 	 */
844 	if (error == 0 && !vd->vdev_isspare &&
845 	    (reason == VDEV_LABEL_SPARE ||
846 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
847 		spa_spare_add(vd);
848 
849 	if (error == 0 && !vd->vdev_isl2cache &&
850 	    (reason == VDEV_LABEL_L2CACHE ||
851 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
852 		spa_l2cache_add(vd);
853 
854 	return (error);
855 }
856 
857 /*
858  * ==========================================================================
859  * uberblock load/sync
860  * ==========================================================================
861  */
862 
863 /*
864  * Consider the following situation: txg is safely synced to disk.  We've
865  * written the first uberblock for txg + 1, and then we lose power.  When we
866  * come back up, we fail to see the uberblock for txg + 1 because, say,
867  * it was on a mirrored device and the replica to which we wrote txg + 1
868  * is now offline.  If we then make some changes and sync txg + 1, and then
869  * the missing replica comes back, then for a few seconds we'll have two
870  * conflicting uberblocks on disk with the same txg.  The solution is simple:
871  * among uberblocks with equal txg, choose the one with the latest timestamp.
872  */
873 static int
874 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
875 {
876 	if (ub1->ub_txg < ub2->ub_txg)
877 		return (-1);
878 	if (ub1->ub_txg > ub2->ub_txg)
879 		return (1);
880 
881 	if (ub1->ub_timestamp < ub2->ub_timestamp)
882 		return (-1);
883 	if (ub1->ub_timestamp > ub2->ub_timestamp)
884 		return (1);
885 
886 	return (0);
887 }
888 
889 struct ubl_cbdata {
890 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
891 	vdev_t		*ubl_vd;	/* vdev associated with the above */
892 };
893 
894 static void
895 vdev_uberblock_load_done(zio_t *zio)
896 {
897 	vdev_t *vd = zio->io_vd;
898 	spa_t *spa = zio->io_spa;
899 	zio_t *rio = zio->io_private;
900 	uberblock_t *ub = zio->io_data;
901 	struct ubl_cbdata *cbp = rio->io_private;
902 
903 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
904 
905 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
906 		mutex_enter(&rio->io_lock);
907 		if (ub->ub_txg <= spa->spa_load_max_txg &&
908 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
909 			/*
910 			 * Keep track of the vdev in which this uberblock
911 			 * was found. We will use this information later
912 			 * to obtain the config nvlist associated with
913 			 * this uberblock.
914 			 */
915 			*cbp->ubl_ubbest = *ub;
916 			cbp->ubl_vd = vd;
917 		}
918 		mutex_exit(&rio->io_lock);
919 	}
920 
921 	zio_buf_free(zio->io_data, zio->io_size);
922 }
923 
924 static void
925 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
926     struct ubl_cbdata *cbp)
927 {
928 	for (int c = 0; c < vd->vdev_children; c++)
929 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
930 
931 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
932 		for (int l = 0; l < VDEV_LABELS; l++) {
933 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
934 				vdev_label_read(zio, vd, l,
935 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
936 				    VDEV_UBERBLOCK_OFFSET(vd, n),
937 				    VDEV_UBERBLOCK_SIZE(vd),
938 				    vdev_uberblock_load_done, zio, flags);
939 			}
940 		}
941 	}
942 }
943 
944 /*
945  * Reads the 'best' uberblock from disk along with its associated
946  * configuration. First, we read the uberblock array of each label of each
947  * vdev, keeping track of the uberblock with the highest txg in each array.
948  * Then, we read the configuration from the same vdev as the best uberblock.
949  */
950 void
951 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
952 {
953 	zio_t *zio;
954 	spa_t *spa = rvd->vdev_spa;
955 	struct ubl_cbdata cb;
956 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
957 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
958 
959 	ASSERT(ub);
960 	ASSERT(config);
961 
962 	bzero(ub, sizeof (uberblock_t));
963 	*config = NULL;
964 
965 	cb.ubl_ubbest = ub;
966 	cb.ubl_vd = NULL;
967 
968 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
969 	zio = zio_root(spa, NULL, &cb, flags);
970 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
971 	(void) zio_wait(zio);
972 
973 	/*
974 	 * It's possible that the best uberblock was discovered on a label
975 	 * that has a configuration which was written in a future txg.
976 	 * Search all labels on this vdev to find the configuration that
977 	 * matches the txg for our uberblock.
978 	 */
979 	if (cb.ubl_vd != NULL)
980 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
981 	spa_config_exit(spa, SCL_ALL, FTAG);
982 }
983 
984 /*
985  * On success, increment root zio's count of good writes.
986  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
987  */
988 static void
989 vdev_uberblock_sync_done(zio_t *zio)
990 {
991 	uint64_t *good_writes = zio->io_private;
992 
993 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
994 		atomic_inc_64(good_writes);
995 }
996 
997 /*
998  * Write the uberblock to all labels of all leaves of the specified vdev.
999  */
1000 static void
1001 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
1002 {
1003 	uberblock_t *ubbuf;
1004 	int n;
1005 
1006 	for (int c = 0; c < vd->vdev_children; c++)
1007 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1008 
1009 	if (!vd->vdev_ops->vdev_op_leaf)
1010 		return;
1011 
1012 	if (!vdev_writeable(vd))
1013 		return;
1014 
1015 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1016 
1017 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1018 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1019 	*ubbuf = *ub;
1020 
1021 	for (int l = 0; l < VDEV_LABELS; l++)
1022 		vdev_label_write(zio, vd, l, ubbuf,
1023 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1024 		    vdev_uberblock_sync_done, zio->io_private,
1025 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1026 
1027 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1028 }
1029 
1030 /* Sync the uberblocks to all vdevs in svd[] */
1031 int
1032 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1033 {
1034 	spa_t *spa = svd[0]->vdev_spa;
1035 	zio_t *zio;
1036 	uint64_t good_writes = 0;
1037 
1038 	zio = zio_root(spa, NULL, &good_writes, flags);
1039 
1040 	for (int v = 0; v < svdcount; v++)
1041 		vdev_uberblock_sync(zio, ub, svd[v], flags);
1042 
1043 	(void) zio_wait(zio);
1044 
1045 	/*
1046 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1047 	 * are no longer needed (because the new uberblocks and the even
1048 	 * labels are safely on disk), so it is safe to overwrite them.
1049 	 */
1050 	zio = zio_root(spa, NULL, NULL, flags);
1051 
1052 	for (int v = 0; v < svdcount; v++)
1053 		zio_flush(zio, svd[v]);
1054 
1055 	(void) zio_wait(zio);
1056 
1057 	return (good_writes >= 1 ? 0 : EIO);
1058 }
1059 
1060 /*
1061  * On success, increment the count of good writes for our top-level vdev.
1062  */
1063 static void
1064 vdev_label_sync_done(zio_t *zio)
1065 {
1066 	uint64_t *good_writes = zio->io_private;
1067 
1068 	if (zio->io_error == 0)
1069 		atomic_inc_64(good_writes);
1070 }
1071 
1072 /*
1073  * If there weren't enough good writes, indicate failure to the parent.
1074  */
1075 static void
1076 vdev_label_sync_top_done(zio_t *zio)
1077 {
1078 	uint64_t *good_writes = zio->io_private;
1079 
1080 	if (*good_writes == 0)
1081 		zio->io_error = SET_ERROR(EIO);
1082 
1083 	kmem_free(good_writes, sizeof (uint64_t));
1084 }
1085 
1086 /*
1087  * We ignore errors for log and cache devices, simply free the private data.
1088  */
1089 static void
1090 vdev_label_sync_ignore_done(zio_t *zio)
1091 {
1092 	kmem_free(zio->io_private, sizeof (uint64_t));
1093 }
1094 
1095 /*
1096  * Write all even or odd labels to all leaves of the specified vdev.
1097  */
1098 static void
1099 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1100 {
1101 	nvlist_t *label;
1102 	vdev_phys_t *vp;
1103 	char *buf;
1104 	size_t buflen;
1105 
1106 	for (int c = 0; c < vd->vdev_children; c++)
1107 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1108 
1109 	if (!vd->vdev_ops->vdev_op_leaf)
1110 		return;
1111 
1112 	if (!vdev_writeable(vd))
1113 		return;
1114 
1115 	/*
1116 	 * Generate a label describing the top-level config to which we belong.
1117 	 */
1118 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1119 
1120 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1121 	bzero(vp, sizeof (vdev_phys_t));
1122 
1123 	buf = vp->vp_nvlist;
1124 	buflen = sizeof (vp->vp_nvlist);
1125 
1126 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1127 		for (; l < VDEV_LABELS; l += 2) {
1128 			vdev_label_write(zio, vd, l, vp,
1129 			    offsetof(vdev_label_t, vl_vdev_phys),
1130 			    sizeof (vdev_phys_t),
1131 			    vdev_label_sync_done, zio->io_private,
1132 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1133 		}
1134 	}
1135 
1136 	zio_buf_free(vp, sizeof (vdev_phys_t));
1137 	nvlist_free(label);
1138 }
1139 
1140 int
1141 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1142 {
1143 	list_t *dl = &spa->spa_config_dirty_list;
1144 	vdev_t *vd;
1145 	zio_t *zio;
1146 	int error;
1147 
1148 	/*
1149 	 * Write the new labels to disk.
1150 	 */
1151 	zio = zio_root(spa, NULL, NULL, flags);
1152 
1153 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1154 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1155 		    KM_SLEEP);
1156 
1157 		ASSERT(!vd->vdev_ishole);
1158 
1159 		zio_t *vio = zio_null(zio, spa, NULL,
1160 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1161 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1162 		    good_writes, flags);
1163 		vdev_label_sync(vio, vd, l, txg, flags);
1164 		zio_nowait(vio);
1165 	}
1166 
1167 	error = zio_wait(zio);
1168 
1169 	/*
1170 	 * Flush the new labels to disk.
1171 	 */
1172 	zio = zio_root(spa, NULL, NULL, flags);
1173 
1174 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1175 		zio_flush(zio, vd);
1176 
1177 	(void) zio_wait(zio);
1178 
1179 	return (error);
1180 }
1181 
1182 /*
1183  * Sync the uberblock and any changes to the vdev configuration.
1184  *
1185  * The order of operations is carefully crafted to ensure that
1186  * if the system panics or loses power at any time, the state on disk
1187  * is still transactionally consistent.  The in-line comments below
1188  * describe the failure semantics at each stage.
1189  *
1190  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1191  * at any time, you can just call it again, and it will resume its work.
1192  */
1193 int
1194 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1195 {
1196 	spa_t *spa = svd[0]->vdev_spa;
1197 	uberblock_t *ub = &spa->spa_uberblock;
1198 	vdev_t *vd;
1199 	zio_t *zio;
1200 	int error = 0;
1201 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1202 
1203 retry:
1204 	/*
1205 	 * Normally, we don't want to try too hard to write every label and
1206 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1207 	 * sync process to block while we retry.  But if we can't write a
1208 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1209 	 * bailing out and declaring the pool faulted.
1210 	 */
1211 	if (error != 0) {
1212 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1213 			return (error);
1214 		flags |= ZIO_FLAG_TRYHARD;
1215 	}
1216 
1217 	ASSERT(ub->ub_txg <= txg);
1218 
1219 	/*
1220 	 * If this isn't a resync due to I/O errors,
1221 	 * and nothing changed in this transaction group,
1222 	 * and the vdev configuration hasn't changed,
1223 	 * then there's nothing to do.
1224 	 */
1225 	if (ub->ub_txg < txg &&
1226 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1227 	    list_is_empty(&spa->spa_config_dirty_list))
1228 		return (0);
1229 
1230 	if (txg > spa_freeze_txg(spa))
1231 		return (0);
1232 
1233 	ASSERT(txg <= spa->spa_final_txg);
1234 
1235 	/*
1236 	 * Flush the write cache of every disk that's been written to
1237 	 * in this transaction group.  This ensures that all blocks
1238 	 * written in this txg will be committed to stable storage
1239 	 * before any uberblock that references them.
1240 	 */
1241 	zio = zio_root(spa, NULL, NULL, flags);
1242 
1243 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1244 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1245 		zio_flush(zio, vd);
1246 
1247 	(void) zio_wait(zio);
1248 
1249 	/*
1250 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1251 	 * system dies in the middle of this process, that's OK: all of the
1252 	 * even labels that made it to disk will be newer than any uberblock,
1253 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1254 	 * which have not yet been touched, will still be valid.  We flush
1255 	 * the new labels to disk to ensure that all even-label updates
1256 	 * are committed to stable storage before the uberblock update.
1257 	 */
1258 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1259 		goto retry;
1260 
1261 	/*
1262 	 * Sync the uberblocks to all vdevs in svd[].
1263 	 * If the system dies in the middle of this step, there are two cases
1264 	 * to consider, and the on-disk state is consistent either way:
1265 	 *
1266 	 * (1)	If none of the new uberblocks made it to disk, then the
1267 	 *	previous uberblock will be the newest, and the odd labels
1268 	 *	(which had not yet been touched) will be valid with respect
1269 	 *	to that uberblock.
1270 	 *
1271 	 * (2)	If one or more new uberblocks made it to disk, then they
1272 	 *	will be the newest, and the even labels (which had all
1273 	 *	been successfully committed) will be valid with respect
1274 	 *	to the new uberblocks.
1275 	 */
1276 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1277 		goto retry;
1278 
1279 	/*
1280 	 * Sync out odd labels for every dirty vdev.  If the system dies
1281 	 * in the middle of this process, the even labels and the new
1282 	 * uberblocks will suffice to open the pool.  The next time
1283 	 * the pool is opened, the first thing we'll do -- before any
1284 	 * user data is modified -- is mark every vdev dirty so that
1285 	 * all labels will be brought up to date.  We flush the new labels
1286 	 * to disk to ensure that all odd-label updates are committed to
1287 	 * stable storage before the next transaction group begins.
1288 	 */
1289 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0)
1290 		goto retry;
1291 
1292 	return (0);
1293 }
1294