xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision 945e3b4bc345679cad92f0a896670030a411c8f8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Virtual Device Labels
29  * ---------------------
30  *
31  * The vdev label serves several distinct purposes:
32  *
33  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34  *	   identity within the pool.
35  *
36  *	2. Verify that all the devices given in a configuration are present
37  *         within the pool.
38  *
39  *	3. Determine the uberblock for the pool.
40  *
41  *	4. In case of an import operation, determine the configuration of the
42  *         toplevel vdev of which it is a part.
43  *
44  *	5. If an import operation cannot find all the devices in the pool,
45  *         provide enough information to the administrator to determine which
46  *         devices are missing.
47  *
48  * It is important to note that while the kernel is responsible for writing the
49  * label, it only consumes the information in the first three cases.  The
50  * latter information is only consumed in userland when determining the
51  * configuration to import a pool.
52  *
53  *
54  * Label Organization
55  * ------------------
56  *
57  * Before describing the contents of the label, it's important to understand how
58  * the labels are written and updated with respect to the uberblock.
59  *
60  * When the pool configuration is altered, either because it was newly created
61  * or a device was added, we want to update all the labels such that we can deal
62  * with fatal failure at any point.  To this end, each disk has two labels which
63  * are updated before and after the uberblock is synced.  Assuming we have
64  * labels and an uberblock with the following transaction groups:
65  *
66  *              L1          UB          L2
67  *           +------+    +------+    +------+
68  *           |      |    |      |    |      |
69  *           | t10  |    | t10  |    | t10  |
70  *           |      |    |      |    |      |
71  *           +------+    +------+    +------+
72  *
73  * In this stable state, the labels and the uberblock were all updated within
74  * the same transaction group (10).  Each label is mirrored and checksummed, so
75  * that we can detect when we fail partway through writing the label.
76  *
77  * In order to identify which labels are valid, the labels are written in the
78  * following manner:
79  *
80  *	1. For each vdev, update 'L1' to the new label
81  *	2. Update the uberblock
82  *	3. For each vdev, update 'L2' to the new label
83  *
84  * Given arbitrary failure, we can determine the correct label to use based on
85  * the transaction group.  If we fail after updating L1 but before updating the
86  * UB, we will notice that L1's transaction group is greater than the uberblock,
87  * so L2 must be valid.  If we fail after writing the uberblock but before
88  * writing L2, we will notice that L2's transaction group is less than L1, and
89  * therefore L1 is valid.
90  *
91  * Another added complexity is that not every label is updated when the config
92  * is synced.  If we add a single device, we do not want to have to re-write
93  * every label for every device in the pool.  This means that both L1 and L2 may
94  * be older than the pool uberblock, because the necessary information is stored
95  * on another vdev.
96  *
97  *
98  * On-disk Format
99  * --------------
100  *
101  * The vdev label consists of two distinct parts, and is wrapped within the
102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103  * VTOC disk labels, but is otherwise ignored.
104  *
105  * The first half of the label is a packed nvlist which contains pool wide
106  * properties, per-vdev properties, and configuration information.  It is
107  * described in more detail below.
108  *
109  * The latter half of the label consists of a redundant array of uberblocks.
110  * These uberblocks are updated whenever a transaction group is committed,
111  * or when the configuration is updated.  When a pool is loaded, we scan each
112  * vdev for the 'best' uberblock.
113  *
114  *
115  * Configuration Information
116  * -------------------------
117  *
118  * The nvlist describing the pool and vdev contains the following elements:
119  *
120  *	version		ZFS on-disk version
121  *	name		Pool name
122  *	state		Pool state
123  *	txg		Transaction group in which this label was written
124  *	pool_guid	Unique identifier for this pool
125  *	vdev_tree	An nvlist describing vdev tree.
126  *	features_for_read
127  *			An nvlist of the features necessary for reading the MOS.
128  *
129  * Each leaf device label also contains the following:
130  *
131  *	top_guid	Unique ID for top-level vdev in which this is contained
132  *	guid		Unique ID for the leaf vdev
133  *
134  * The 'vs' configuration follows the format described in 'spa_config.c'.
135  */
136 
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/metaslab_impl.h>
147 #include <sys/zio.h>
148 #include <sys/dsl_scan.h>
149 #include <sys/abd.h>
150 #include <sys/fs/zfs.h>
151 
152 /*
153  * Basic routines to read and write from a vdev label.
154  * Used throughout the rest of this file.
155  */
156 uint64_t
157 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
158 {
159 	ASSERT(offset < sizeof (vdev_label_t));
160 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
161 
162 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
163 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
164 }
165 
166 /*
167  * Returns back the vdev label associated with the passed in offset.
168  */
169 int
170 vdev_label_number(uint64_t psize, uint64_t offset)
171 {
172 	int l;
173 
174 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
175 		offset -= psize - VDEV_LABEL_END_SIZE;
176 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
177 	}
178 	l = offset / sizeof (vdev_label_t);
179 	return (l < VDEV_LABELS ? l : -1);
180 }
181 
182 static void
183 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
184     uint64_t size, zio_done_func_t *done, void *private, int flags)
185 {
186 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
187 	    SCL_STATE_ALL);
188 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
189 
190 	zio_nowait(zio_read_phys(zio, vd,
191 	    vdev_label_offset(vd->vdev_psize, l, offset),
192 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
193 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
194 }
195 
196 static void
197 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
198     uint64_t size, zio_done_func_t *done, void *private, int flags)
199 {
200 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
201 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
202 	    (SCL_CONFIG | SCL_STATE) &&
203 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
204 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
205 
206 	zio_nowait(zio_write_phys(zio, vd,
207 	    vdev_label_offset(vd->vdev_psize, l, offset),
208 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
209 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
210 }
211 
212 static void
213 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
214 {
215 	spa_t *spa = vd->vdev_spa;
216 
217 	if (vd != spa->spa_root_vdev)
218 		return;
219 
220 	/* provide either current or previous scan information */
221 	pool_scan_stat_t ps;
222 	if (spa_scan_get_stats(spa, &ps) == 0) {
223 		fnvlist_add_uint64_array(nvl,
224 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
225 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
226 	}
227 
228 	pool_removal_stat_t prs;
229 	if (spa_removal_get_stats(spa, &prs) == 0) {
230 		fnvlist_add_uint64_array(nvl,
231 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
232 		    sizeof (prs) / sizeof (uint64_t));
233 	}
234 
235 	pool_checkpoint_stat_t pcs;
236 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
237 		fnvlist_add_uint64_array(nvl,
238 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
239 		    sizeof (pcs) / sizeof (uint64_t));
240 	}
241 }
242 
243 /*
244  * Generate the nvlist representing this vdev's config.
245  */
246 nvlist_t *
247 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
248     vdev_config_flag_t flags)
249 {
250 	nvlist_t *nv = NULL;
251 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
252 
253 	nv = fnvlist_alloc();
254 
255 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
256 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
257 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
258 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
259 
260 	if (vd->vdev_path != NULL)
261 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
262 
263 	if (vd->vdev_devid != NULL)
264 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
265 
266 	if (vd->vdev_physpath != NULL)
267 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
268 		    vd->vdev_physpath);
269 
270 	if (vd->vdev_fru != NULL)
271 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
272 
273 	if (vd->vdev_nparity != 0) {
274 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
275 		    VDEV_TYPE_RAIDZ) == 0);
276 
277 		/*
278 		 * Make sure someone hasn't managed to sneak a fancy new vdev
279 		 * into a crufty old storage pool.
280 		 */
281 		ASSERT(vd->vdev_nparity == 1 ||
282 		    (vd->vdev_nparity <= 2 &&
283 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
284 		    (vd->vdev_nparity <= 3 &&
285 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
286 
287 		/*
288 		 * Note that we'll add the nparity tag even on storage pools
289 		 * that only support a single parity device -- older software
290 		 * will just ignore it.
291 		 */
292 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
293 	}
294 
295 	if (vd->vdev_wholedisk != -1ULL)
296 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
297 		    vd->vdev_wholedisk);
298 
299 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
300 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
301 
302 	if (vd->vdev_isspare)
303 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
304 
305 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
306 	    vd == vd->vdev_top) {
307 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
308 		    vd->vdev_ms_array);
309 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
310 		    vd->vdev_ms_shift);
311 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
312 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
313 		    vd->vdev_asize);
314 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
315 		if (vd->vdev_removing) {
316 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
317 			    vd->vdev_removing);
318 		}
319 	}
320 
321 	if (vd->vdev_dtl_sm != NULL) {
322 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
323 		    space_map_object(vd->vdev_dtl_sm));
324 	}
325 
326 	if (vic->vic_mapping_object != 0) {
327 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
328 		    vic->vic_mapping_object);
329 	}
330 
331 	if (vic->vic_births_object != 0) {
332 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
333 		    vic->vic_births_object);
334 	}
335 
336 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
337 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
338 		    vic->vic_prev_indirect_vdev);
339 	}
340 
341 	if (vd->vdev_crtxg)
342 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
343 
344 	if (flags & VDEV_CONFIG_MOS) {
345 		if (vd->vdev_leaf_zap != 0) {
346 			ASSERT(vd->vdev_ops->vdev_op_leaf);
347 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
348 			    vd->vdev_leaf_zap);
349 		}
350 
351 		if (vd->vdev_top_zap != 0) {
352 			ASSERT(vd == vd->vdev_top);
353 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
354 			    vd->vdev_top_zap);
355 		}
356 	}
357 
358 	if (getstats) {
359 		vdev_stat_t vs;
360 
361 		vdev_get_stats(vd, &vs);
362 		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
363 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
364 
365 		root_vdev_actions_getprogress(vd, nv);
366 
367 		/*
368 		 * Note: this can be called from open context
369 		 * (spa_get_stats()), so we need the rwlock to prevent
370 		 * the mapping from being changed by condensing.
371 		 */
372 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
373 		if (vd->vdev_indirect_mapping != NULL) {
374 			ASSERT(vd->vdev_indirect_births != NULL);
375 			vdev_indirect_mapping_t *vim =
376 			    vd->vdev_indirect_mapping;
377 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
378 			    vdev_indirect_mapping_size(vim));
379 		}
380 		rw_exit(&vd->vdev_indirect_rwlock);
381 		if (vd->vdev_mg != NULL &&
382 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
383 			/*
384 			 * Compute approximately how much memory would be used
385 			 * for the indirect mapping if this device were to
386 			 * be removed.
387 			 *
388 			 * Note: If the frag metric is invalid, then not
389 			 * enough metaslabs have been converted to have
390 			 * histograms.
391 			 */
392 			uint64_t seg_count = 0;
393 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
394 
395 			/*
396 			 * There are the same number of allocated segments
397 			 * as free segments, so we will have at least one
398 			 * entry per free segment.  However, small free
399 			 * segments (smaller than vdev_removal_max_span)
400 			 * will be combined with adjacent allocated segments
401 			 * as a single mapping.
402 			 */
403 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
404 				if (1ULL << (i + 1) < vdev_removal_max_span) {
405 					to_alloc +=
406 					    vd->vdev_mg->mg_histogram[i] <<
407 					    i + 1;
408 				} else {
409 					seg_count +=
410 					    vd->vdev_mg->mg_histogram[i];
411 				}
412 			}
413 
414 			/*
415 			 * The maximum length of a mapping is
416 			 * zfs_remove_max_segment, so we need at least one entry
417 			 * per zfs_remove_max_segment of allocated data.
418 			 */
419 			seg_count += to_alloc / zfs_remove_max_segment;
420 
421 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
422 			    seg_count *
423 			    sizeof (vdev_indirect_mapping_entry_phys_t));
424 		}
425 	}
426 
427 	if (!vd->vdev_ops->vdev_op_leaf) {
428 		nvlist_t **child;
429 		int c, idx;
430 
431 		ASSERT(!vd->vdev_ishole);
432 
433 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
434 		    KM_SLEEP);
435 
436 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
437 			vdev_t *cvd = vd->vdev_child[c];
438 
439 			/*
440 			 * If we're generating an nvlist of removing
441 			 * vdevs then skip over any device which is
442 			 * not being removed.
443 			 */
444 			if ((flags & VDEV_CONFIG_REMOVING) &&
445 			    !cvd->vdev_removing)
446 				continue;
447 
448 			child[idx++] = vdev_config_generate(spa, cvd,
449 			    getstats, flags);
450 		}
451 
452 		if (idx) {
453 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
454 			    child, idx);
455 		}
456 
457 		for (c = 0; c < idx; c++)
458 			nvlist_free(child[c]);
459 
460 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
461 
462 	} else {
463 		const char *aux = NULL;
464 
465 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
466 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
467 		if (vd->vdev_resilver_txg != 0)
468 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
469 			    vd->vdev_resilver_txg);
470 		if (vd->vdev_faulted)
471 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
472 		if (vd->vdev_degraded)
473 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
474 		if (vd->vdev_removed)
475 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
476 		if (vd->vdev_unspare)
477 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
478 		if (vd->vdev_ishole)
479 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
480 
481 		switch (vd->vdev_stat.vs_aux) {
482 		case VDEV_AUX_ERR_EXCEEDED:
483 			aux = "err_exceeded";
484 			break;
485 
486 		case VDEV_AUX_EXTERNAL:
487 			aux = "external";
488 			break;
489 		}
490 
491 		if (aux != NULL)
492 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
493 
494 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
495 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
496 			    vd->vdev_orig_guid);
497 		}
498 	}
499 
500 	return (nv);
501 }
502 
503 /*
504  * Generate a view of the top-level vdevs.  If we currently have holes
505  * in the namespace, then generate an array which contains a list of holey
506  * vdevs.  Additionally, add the number of top-level children that currently
507  * exist.
508  */
509 void
510 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
511 {
512 	vdev_t *rvd = spa->spa_root_vdev;
513 	uint64_t *array;
514 	uint_t c, idx;
515 
516 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
517 
518 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
519 		vdev_t *tvd = rvd->vdev_child[c];
520 
521 		if (tvd->vdev_ishole) {
522 			array[idx++] = c;
523 		}
524 	}
525 
526 	if (idx) {
527 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
528 		    array, idx) == 0);
529 	}
530 
531 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
532 	    rvd->vdev_children) == 0);
533 
534 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
535 }
536 
537 /*
538  * Returns the configuration from the label of the given vdev. For vdevs
539  * which don't have a txg value stored on their label (i.e. spares/cache)
540  * or have not been completely initialized (txg = 0) just return
541  * the configuration from the first valid label we find. Otherwise,
542  * find the most up-to-date label that does not exceed the specified
543  * 'txg' value.
544  */
545 nvlist_t *
546 vdev_label_read_config(vdev_t *vd, uint64_t txg)
547 {
548 	spa_t *spa = vd->vdev_spa;
549 	nvlist_t *config = NULL;
550 	vdev_phys_t *vp;
551 	abd_t *vp_abd;
552 	zio_t *zio;
553 	uint64_t best_txg = 0;
554 	uint64_t label_txg = 0;
555 	int error = 0;
556 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
557 	    ZIO_FLAG_SPECULATIVE;
558 
559 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
560 
561 	if (!vdev_readable(vd))
562 		return (NULL);
563 
564 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
565 	vp = abd_to_buf(vp_abd);
566 
567 retry:
568 	for (int l = 0; l < VDEV_LABELS; l++) {
569 		nvlist_t *label = NULL;
570 
571 		zio = zio_root(spa, NULL, NULL, flags);
572 
573 		vdev_label_read(zio, vd, l, vp_abd,
574 		    offsetof(vdev_label_t, vl_vdev_phys),
575 		    sizeof (vdev_phys_t), NULL, NULL, flags);
576 
577 		if (zio_wait(zio) == 0 &&
578 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
579 		    &label, 0) == 0) {
580 			/*
581 			 * Auxiliary vdevs won't have txg values in their
582 			 * labels and newly added vdevs may not have been
583 			 * completely initialized so just return the
584 			 * configuration from the first valid label we
585 			 * encounter.
586 			 */
587 			error = nvlist_lookup_uint64(label,
588 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
589 			if ((error || label_txg == 0) && !config) {
590 				config = label;
591 				break;
592 			} else if (label_txg <= txg && label_txg > best_txg) {
593 				best_txg = label_txg;
594 				nvlist_free(config);
595 				config = fnvlist_dup(label);
596 			}
597 		}
598 
599 		if (label != NULL) {
600 			nvlist_free(label);
601 			label = NULL;
602 		}
603 	}
604 
605 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
606 		flags |= ZIO_FLAG_TRYHARD;
607 		goto retry;
608 	}
609 
610 	/*
611 	 * We found a valid label but it didn't pass txg restrictions.
612 	 */
613 	if (config == NULL && label_txg != 0) {
614 		vdev_dbgmsg(vd, "label discarded as txg is too large "
615 		    "(%llu > %llu)", (u_longlong_t)label_txg,
616 		    (u_longlong_t)txg);
617 	}
618 
619 	abd_free(vp_abd);
620 
621 	return (config);
622 }
623 
624 /*
625  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
626  * in with the device guid if this spare is active elsewhere on the system.
627  */
628 static boolean_t
629 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
630     uint64_t *spare_guid, uint64_t *l2cache_guid)
631 {
632 	spa_t *spa = vd->vdev_spa;
633 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
634 	uint64_t vdtxg = 0;
635 	nvlist_t *label;
636 
637 	if (spare_guid)
638 		*spare_guid = 0ULL;
639 	if (l2cache_guid)
640 		*l2cache_guid = 0ULL;
641 
642 	/*
643 	 * Read the label, if any, and perform some basic sanity checks.
644 	 */
645 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
646 		return (B_FALSE);
647 
648 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
649 	    &vdtxg);
650 
651 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
652 	    &state) != 0 ||
653 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
654 	    &device_guid) != 0) {
655 		nvlist_free(label);
656 		return (B_FALSE);
657 	}
658 
659 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
660 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
661 	    &pool_guid) != 0 ||
662 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
663 	    &txg) != 0)) {
664 		nvlist_free(label);
665 		return (B_FALSE);
666 	}
667 
668 	nvlist_free(label);
669 
670 	/*
671 	 * Check to see if this device indeed belongs to the pool it claims to
672 	 * be a part of.  The only way this is allowed is if the device is a hot
673 	 * spare (which we check for later on).
674 	 */
675 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
676 	    !spa_guid_exists(pool_guid, device_guid) &&
677 	    !spa_spare_exists(device_guid, NULL, NULL) &&
678 	    !spa_l2cache_exists(device_guid, NULL))
679 		return (B_FALSE);
680 
681 	/*
682 	 * If the transaction group is zero, then this an initialized (but
683 	 * unused) label.  This is only an error if the create transaction
684 	 * on-disk is the same as the one we're using now, in which case the
685 	 * user has attempted to add the same vdev multiple times in the same
686 	 * transaction.
687 	 */
688 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
689 	    txg == 0 && vdtxg == crtxg)
690 		return (B_TRUE);
691 
692 	/*
693 	 * Check to see if this is a spare device.  We do an explicit check for
694 	 * spa_has_spare() here because it may be on our pending list of spares
695 	 * to add.  We also check if it is an l2cache device.
696 	 */
697 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
698 	    spa_has_spare(spa, device_guid)) {
699 		if (spare_guid)
700 			*spare_guid = device_guid;
701 
702 		switch (reason) {
703 		case VDEV_LABEL_CREATE:
704 		case VDEV_LABEL_L2CACHE:
705 			return (B_TRUE);
706 
707 		case VDEV_LABEL_REPLACE:
708 			return (!spa_has_spare(spa, device_guid) ||
709 			    spare_pool != 0ULL);
710 
711 		case VDEV_LABEL_SPARE:
712 			return (spa_has_spare(spa, device_guid));
713 		}
714 	}
715 
716 	/*
717 	 * Check to see if this is an l2cache device.
718 	 */
719 	if (spa_l2cache_exists(device_guid, NULL))
720 		return (B_TRUE);
721 
722 	/*
723 	 * We can't rely on a pool's state if it's been imported
724 	 * read-only.  Instead we look to see if the pools is marked
725 	 * read-only in the namespace and set the state to active.
726 	 */
727 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
728 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
729 	    spa_mode(spa) == FREAD)
730 		state = POOL_STATE_ACTIVE;
731 
732 	/*
733 	 * If the device is marked ACTIVE, then this device is in use by another
734 	 * pool on the system.
735 	 */
736 	return (state == POOL_STATE_ACTIVE);
737 }
738 
739 /*
740  * Initialize a vdev label.  We check to make sure each leaf device is not in
741  * use, and writable.  We put down an initial label which we will later
742  * overwrite with a complete label.  Note that it's important to do this
743  * sequentially, not in parallel, so that we catch cases of multiple use of the
744  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
745  * itself.
746  */
747 int
748 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
749 {
750 	spa_t *spa = vd->vdev_spa;
751 	nvlist_t *label;
752 	vdev_phys_t *vp;
753 	abd_t *vp_abd;
754 	abd_t *pad2;
755 	uberblock_t *ub;
756 	abd_t *ub_abd;
757 	zio_t *zio;
758 	char *buf;
759 	size_t buflen;
760 	int error;
761 	uint64_t spare_guid, l2cache_guid;
762 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
763 
764 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
765 
766 	for (int c = 0; c < vd->vdev_children; c++)
767 		if ((error = vdev_label_init(vd->vdev_child[c],
768 		    crtxg, reason)) != 0)
769 			return (error);
770 
771 	/* Track the creation time for this vdev */
772 	vd->vdev_crtxg = crtxg;
773 
774 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
775 		return (0);
776 
777 	/*
778 	 * Dead vdevs cannot be initialized.
779 	 */
780 	if (vdev_is_dead(vd))
781 		return (SET_ERROR(EIO));
782 
783 	/*
784 	 * Determine if the vdev is in use.
785 	 */
786 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
787 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
788 		return (SET_ERROR(EBUSY));
789 
790 	/*
791 	 * If this is a request to add or replace a spare or l2cache device
792 	 * that is in use elsewhere on the system, then we must update the
793 	 * guid (which was initialized to a random value) to reflect the
794 	 * actual GUID (which is shared between multiple pools).
795 	 */
796 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
797 	    spare_guid != 0ULL) {
798 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
799 
800 		vd->vdev_guid += guid_delta;
801 
802 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
803 			pvd->vdev_guid_sum += guid_delta;
804 
805 		/*
806 		 * If this is a replacement, then we want to fallthrough to the
807 		 * rest of the code.  If we're adding a spare, then it's already
808 		 * labeled appropriately and we can just return.
809 		 */
810 		if (reason == VDEV_LABEL_SPARE)
811 			return (0);
812 		ASSERT(reason == VDEV_LABEL_REPLACE ||
813 		    reason == VDEV_LABEL_SPLIT);
814 	}
815 
816 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
817 	    l2cache_guid != 0ULL) {
818 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
819 
820 		vd->vdev_guid += guid_delta;
821 
822 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
823 			pvd->vdev_guid_sum += guid_delta;
824 
825 		/*
826 		 * If this is a replacement, then we want to fallthrough to the
827 		 * rest of the code.  If we're adding an l2cache, then it's
828 		 * already labeled appropriately and we can just return.
829 		 */
830 		if (reason == VDEV_LABEL_L2CACHE)
831 			return (0);
832 		ASSERT(reason == VDEV_LABEL_REPLACE);
833 	}
834 
835 	/*
836 	 * Initialize its label.
837 	 */
838 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
839 	abd_zero(vp_abd, sizeof (vdev_phys_t));
840 	vp = abd_to_buf(vp_abd);
841 
842 	/*
843 	 * Generate a label describing the pool and our top-level vdev.
844 	 * We mark it as being from txg 0 to indicate that it's not
845 	 * really part of an active pool just yet.  The labels will
846 	 * be written again with a meaningful txg by spa_sync().
847 	 */
848 	if (reason == VDEV_LABEL_SPARE ||
849 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
850 		/*
851 		 * For inactive hot spares, we generate a special label that
852 		 * identifies as a mutually shared hot spare.  We write the
853 		 * label if we are adding a hot spare, or if we are removing an
854 		 * active hot spare (in which case we want to revert the
855 		 * labels).
856 		 */
857 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
858 
859 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
860 		    spa_version(spa)) == 0);
861 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
862 		    POOL_STATE_SPARE) == 0);
863 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
864 		    vd->vdev_guid) == 0);
865 	} else if (reason == VDEV_LABEL_L2CACHE ||
866 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
867 		/*
868 		 * For level 2 ARC devices, add a special label.
869 		 */
870 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
871 
872 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
873 		    spa_version(spa)) == 0);
874 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
875 		    POOL_STATE_L2CACHE) == 0);
876 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
877 		    vd->vdev_guid) == 0);
878 	} else {
879 		uint64_t txg = 0ULL;
880 
881 		if (reason == VDEV_LABEL_SPLIT)
882 			txg = spa->spa_uberblock.ub_txg;
883 		label = spa_config_generate(spa, vd, txg, B_FALSE);
884 
885 		/*
886 		 * Add our creation time.  This allows us to detect multiple
887 		 * vdev uses as described above, and automatically expires if we
888 		 * fail.
889 		 */
890 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
891 		    crtxg) == 0);
892 	}
893 
894 	buf = vp->vp_nvlist;
895 	buflen = sizeof (vp->vp_nvlist);
896 
897 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
898 	if (error != 0) {
899 		nvlist_free(label);
900 		abd_free(vp_abd);
901 		/* EFAULT means nvlist_pack ran out of room */
902 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
903 	}
904 
905 	/*
906 	 * Initialize uberblock template.
907 	 */
908 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
909 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
910 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
911 	ub = abd_to_buf(ub_abd);
912 	ub->ub_txg = 0;
913 
914 	/* Initialize the 2nd padding area. */
915 	pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
916 	abd_zero(pad2, VDEV_PAD_SIZE);
917 
918 	/*
919 	 * Write everything in parallel.
920 	 */
921 retry:
922 	zio = zio_root(spa, NULL, NULL, flags);
923 
924 	for (int l = 0; l < VDEV_LABELS; l++) {
925 
926 		vdev_label_write(zio, vd, l, vp_abd,
927 		    offsetof(vdev_label_t, vl_vdev_phys),
928 		    sizeof (vdev_phys_t), NULL, NULL, flags);
929 
930 		/*
931 		 * Skip the 1st padding area.
932 		 * Zero out the 2nd padding area where it might have
933 		 * left over data from previous filesystem format.
934 		 */
935 		vdev_label_write(zio, vd, l, pad2,
936 		    offsetof(vdev_label_t, vl_pad2),
937 		    VDEV_PAD_SIZE, NULL, NULL, flags);
938 
939 		vdev_label_write(zio, vd, l, ub_abd,
940 		    offsetof(vdev_label_t, vl_uberblock),
941 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
942 	}
943 
944 	error = zio_wait(zio);
945 
946 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
947 		flags |= ZIO_FLAG_TRYHARD;
948 		goto retry;
949 	}
950 
951 	nvlist_free(label);
952 	abd_free(pad2);
953 	abd_free(ub_abd);
954 	abd_free(vp_abd);
955 
956 	/*
957 	 * If this vdev hasn't been previously identified as a spare, then we
958 	 * mark it as such only if a) we are labeling it as a spare, or b) it
959 	 * exists as a spare elsewhere in the system.  Do the same for
960 	 * level 2 ARC devices.
961 	 */
962 	if (error == 0 && !vd->vdev_isspare &&
963 	    (reason == VDEV_LABEL_SPARE ||
964 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
965 		spa_spare_add(vd);
966 
967 	if (error == 0 && !vd->vdev_isl2cache &&
968 	    (reason == VDEV_LABEL_L2CACHE ||
969 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
970 		spa_l2cache_add(vd);
971 
972 	return (error);
973 }
974 
975 /*
976  * ==========================================================================
977  * uberblock load/sync
978  * ==========================================================================
979  */
980 
981 /*
982  * Consider the following situation: txg is safely synced to disk.  We've
983  * written the first uberblock for txg + 1, and then we lose power.  When we
984  * come back up, we fail to see the uberblock for txg + 1 because, say,
985  * it was on a mirrored device and the replica to which we wrote txg + 1
986  * is now offline.  If we then make some changes and sync txg + 1, and then
987  * the missing replica comes back, then for a few seconds we'll have two
988  * conflicting uberblocks on disk with the same txg.  The solution is simple:
989  * among uberblocks with equal txg, choose the one with the latest timestamp.
990  */
991 static int
992 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
993 {
994 	if (ub1->ub_txg < ub2->ub_txg)
995 		return (-1);
996 	if (ub1->ub_txg > ub2->ub_txg)
997 		return (1);
998 
999 	if (ub1->ub_timestamp < ub2->ub_timestamp)
1000 		return (-1);
1001 	if (ub1->ub_timestamp > ub2->ub_timestamp)
1002 		return (1);
1003 
1004 	return (0);
1005 }
1006 
1007 struct ubl_cbdata {
1008 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1009 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1010 };
1011 
1012 static void
1013 vdev_uberblock_load_done(zio_t *zio)
1014 {
1015 	vdev_t *vd = zio->io_vd;
1016 	spa_t *spa = zio->io_spa;
1017 	zio_t *rio = zio->io_private;
1018 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1019 	struct ubl_cbdata *cbp = rio->io_private;
1020 
1021 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1022 
1023 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1024 		mutex_enter(&rio->io_lock);
1025 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1026 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1027 			/*
1028 			 * Keep track of the vdev in which this uberblock
1029 			 * was found. We will use this information later
1030 			 * to obtain the config nvlist associated with
1031 			 * this uberblock.
1032 			 */
1033 			*cbp->ubl_ubbest = *ub;
1034 			cbp->ubl_vd = vd;
1035 		}
1036 		mutex_exit(&rio->io_lock);
1037 	}
1038 
1039 	abd_free(zio->io_abd);
1040 }
1041 
1042 static void
1043 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1044     struct ubl_cbdata *cbp)
1045 {
1046 	for (int c = 0; c < vd->vdev_children; c++)
1047 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1048 
1049 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1050 		for (int l = 0; l < VDEV_LABELS; l++) {
1051 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1052 				vdev_label_read(zio, vd, l,
1053 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1054 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1055 				    VDEV_UBERBLOCK_SIZE(vd),
1056 				    vdev_uberblock_load_done, zio, flags);
1057 			}
1058 		}
1059 	}
1060 }
1061 
1062 /*
1063  * Reads the 'best' uberblock from disk along with its associated
1064  * configuration. First, we read the uberblock array of each label of each
1065  * vdev, keeping track of the uberblock with the highest txg in each array.
1066  * Then, we read the configuration from the same vdev as the best uberblock.
1067  */
1068 void
1069 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1070 {
1071 	zio_t *zio;
1072 	spa_t *spa = rvd->vdev_spa;
1073 	struct ubl_cbdata cb;
1074 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1075 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1076 
1077 	ASSERT(ub);
1078 	ASSERT(config);
1079 
1080 	bzero(ub, sizeof (uberblock_t));
1081 	*config = NULL;
1082 
1083 	cb.ubl_ubbest = ub;
1084 	cb.ubl_vd = NULL;
1085 
1086 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1087 	zio = zio_root(spa, NULL, &cb, flags);
1088 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1089 	(void) zio_wait(zio);
1090 
1091 	/*
1092 	 * It's possible that the best uberblock was discovered on a label
1093 	 * that has a configuration which was written in a future txg.
1094 	 * Search all labels on this vdev to find the configuration that
1095 	 * matches the txg for our uberblock.
1096 	 */
1097 	if (cb.ubl_vd != NULL) {
1098 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1099 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1100 
1101 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1102 		if (*config == NULL && spa->spa_extreme_rewind) {
1103 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1104 			    "Trying again without txg restrictions.");
1105 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1106 		}
1107 		if (*config == NULL) {
1108 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1109 		}
1110 	}
1111 	spa_config_exit(spa, SCL_ALL, FTAG);
1112 }
1113 
1114 /*
1115  * On success, increment root zio's count of good writes.
1116  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1117  */
1118 static void
1119 vdev_uberblock_sync_done(zio_t *zio)
1120 {
1121 	uint64_t *good_writes = zio->io_private;
1122 
1123 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1124 		atomic_inc_64(good_writes);
1125 }
1126 
1127 /*
1128  * Write the uberblock to all labels of all leaves of the specified vdev.
1129  */
1130 static void
1131 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1132     uberblock_t *ub, vdev_t *vd, int flags)
1133 {
1134 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1135 		vdev_uberblock_sync(zio, good_writes,
1136 		    ub, vd->vdev_child[c], flags);
1137 	}
1138 
1139 	if (!vd->vdev_ops->vdev_op_leaf)
1140 		return;
1141 
1142 	if (!vdev_writeable(vd))
1143 		return;
1144 
1145 	int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1146 
1147 	/* Copy the uberblock_t into the ABD */
1148 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1149 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1150 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1151 
1152 	for (int l = 0; l < VDEV_LABELS; l++)
1153 		vdev_label_write(zio, vd, l, ub_abd,
1154 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1155 		    vdev_uberblock_sync_done, good_writes,
1156 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1157 
1158 	abd_free(ub_abd);
1159 }
1160 
1161 /* Sync the uberblocks to all vdevs in svd[] */
1162 int
1163 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1164 {
1165 	spa_t *spa = svd[0]->vdev_spa;
1166 	zio_t *zio;
1167 	uint64_t good_writes = 0;
1168 
1169 	zio = zio_root(spa, NULL, NULL, flags);
1170 
1171 	for (int v = 0; v < svdcount; v++)
1172 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1173 
1174 	(void) zio_wait(zio);
1175 
1176 	/*
1177 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1178 	 * are no longer needed (because the new uberblocks and the even
1179 	 * labels are safely on disk), so it is safe to overwrite them.
1180 	 */
1181 	zio = zio_root(spa, NULL, NULL, flags);
1182 
1183 	for (int v = 0; v < svdcount; v++) {
1184 		if (vdev_writeable(svd[v])) {
1185 			zio_flush(zio, svd[v]);
1186 		}
1187 	}
1188 
1189 	(void) zio_wait(zio);
1190 
1191 	return (good_writes >= 1 ? 0 : EIO);
1192 }
1193 
1194 /*
1195  * On success, increment the count of good writes for our top-level vdev.
1196  */
1197 static void
1198 vdev_label_sync_done(zio_t *zio)
1199 {
1200 	uint64_t *good_writes = zio->io_private;
1201 
1202 	if (zio->io_error == 0)
1203 		atomic_inc_64(good_writes);
1204 }
1205 
1206 /*
1207  * If there weren't enough good writes, indicate failure to the parent.
1208  */
1209 static void
1210 vdev_label_sync_top_done(zio_t *zio)
1211 {
1212 	uint64_t *good_writes = zio->io_private;
1213 
1214 	if (*good_writes == 0)
1215 		zio->io_error = SET_ERROR(EIO);
1216 
1217 	kmem_free(good_writes, sizeof (uint64_t));
1218 }
1219 
1220 /*
1221  * We ignore errors for log and cache devices, simply free the private data.
1222  */
1223 static void
1224 vdev_label_sync_ignore_done(zio_t *zio)
1225 {
1226 	kmem_free(zio->io_private, sizeof (uint64_t));
1227 }
1228 
1229 /*
1230  * Write all even or odd labels to all leaves of the specified vdev.
1231  */
1232 static void
1233 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1234     vdev_t *vd, int l, uint64_t txg, int flags)
1235 {
1236 	nvlist_t *label;
1237 	vdev_phys_t *vp;
1238 	abd_t *vp_abd;
1239 	char *buf;
1240 	size_t buflen;
1241 
1242 	for (int c = 0; c < vd->vdev_children; c++) {
1243 		vdev_label_sync(zio, good_writes,
1244 		    vd->vdev_child[c], l, txg, flags);
1245 	}
1246 
1247 	if (!vd->vdev_ops->vdev_op_leaf)
1248 		return;
1249 
1250 	if (!vdev_writeable(vd))
1251 		return;
1252 
1253 	/*
1254 	 * Generate a label describing the top-level config to which we belong.
1255 	 */
1256 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1257 
1258 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1259 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1260 	vp = abd_to_buf(vp_abd);
1261 
1262 	buf = vp->vp_nvlist;
1263 	buflen = sizeof (vp->vp_nvlist);
1264 
1265 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1266 		for (; l < VDEV_LABELS; l += 2) {
1267 			vdev_label_write(zio, vd, l, vp_abd,
1268 			    offsetof(vdev_label_t, vl_vdev_phys),
1269 			    sizeof (vdev_phys_t),
1270 			    vdev_label_sync_done, good_writes,
1271 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1272 		}
1273 	}
1274 
1275 	abd_free(vp_abd);
1276 	nvlist_free(label);
1277 }
1278 
1279 int
1280 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1281 {
1282 	list_t *dl = &spa->spa_config_dirty_list;
1283 	vdev_t *vd;
1284 	zio_t *zio;
1285 	int error;
1286 
1287 	/*
1288 	 * Write the new labels to disk.
1289 	 */
1290 	zio = zio_root(spa, NULL, NULL, flags);
1291 
1292 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1293 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1294 		    KM_SLEEP);
1295 
1296 		ASSERT(!vd->vdev_ishole);
1297 
1298 		zio_t *vio = zio_null(zio, spa, NULL,
1299 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1300 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1301 		    good_writes, flags);
1302 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1303 		zio_nowait(vio);
1304 	}
1305 
1306 	error = zio_wait(zio);
1307 
1308 	/*
1309 	 * Flush the new labels to disk.
1310 	 */
1311 	zio = zio_root(spa, NULL, NULL, flags);
1312 
1313 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1314 		zio_flush(zio, vd);
1315 
1316 	(void) zio_wait(zio);
1317 
1318 	return (error);
1319 }
1320 
1321 /*
1322  * Sync the uberblock and any changes to the vdev configuration.
1323  *
1324  * The order of operations is carefully crafted to ensure that
1325  * if the system panics or loses power at any time, the state on disk
1326  * is still transactionally consistent.  The in-line comments below
1327  * describe the failure semantics at each stage.
1328  *
1329  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1330  * at any time, you can just call it again, and it will resume its work.
1331  */
1332 int
1333 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1334 {
1335 	spa_t *spa = svd[0]->vdev_spa;
1336 	uberblock_t *ub = &spa->spa_uberblock;
1337 	int error = 0;
1338 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1339 
1340 	ASSERT(svdcount != 0);
1341 retry:
1342 	/*
1343 	 * Normally, we don't want to try too hard to write every label and
1344 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1345 	 * sync process to block while we retry.  But if we can't write a
1346 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1347 	 * bailing out and declaring the pool faulted.
1348 	 */
1349 	if (error != 0) {
1350 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1351 			return (error);
1352 		flags |= ZIO_FLAG_TRYHARD;
1353 	}
1354 
1355 	ASSERT(ub->ub_txg <= txg);
1356 
1357 	/*
1358 	 * If this isn't a resync due to I/O errors,
1359 	 * and nothing changed in this transaction group,
1360 	 * and the vdev configuration hasn't changed,
1361 	 * then there's nothing to do.
1362 	 */
1363 	if (ub->ub_txg < txg &&
1364 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1365 	    list_is_empty(&spa->spa_config_dirty_list))
1366 		return (0);
1367 
1368 	if (txg > spa_freeze_txg(spa))
1369 		return (0);
1370 
1371 	ASSERT(txg <= spa->spa_final_txg);
1372 
1373 	/*
1374 	 * Flush the write cache of every disk that's been written to
1375 	 * in this transaction group.  This ensures that all blocks
1376 	 * written in this txg will be committed to stable storage
1377 	 * before any uberblock that references them.
1378 	 */
1379 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1380 
1381 	for (vdev_t *vd =
1382 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1383 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1384 		zio_flush(zio, vd);
1385 
1386 	(void) zio_wait(zio);
1387 
1388 	/*
1389 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1390 	 * system dies in the middle of this process, that's OK: all of the
1391 	 * even labels that made it to disk will be newer than any uberblock,
1392 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1393 	 * which have not yet been touched, will still be valid.  We flush
1394 	 * the new labels to disk to ensure that all even-label updates
1395 	 * are committed to stable storage before the uberblock update.
1396 	 */
1397 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1398 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1399 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1400 			    "for pool '%s' when syncing out the even labels "
1401 			    "of dirty vdevs", error, spa_name(spa));
1402 		}
1403 		goto retry;
1404 	}
1405 
1406 	/*
1407 	 * Sync the uberblocks to all vdevs in svd[].
1408 	 * If the system dies in the middle of this step, there are two cases
1409 	 * to consider, and the on-disk state is consistent either way:
1410 	 *
1411 	 * (1)	If none of the new uberblocks made it to disk, then the
1412 	 *	previous uberblock will be the newest, and the odd labels
1413 	 *	(which had not yet been touched) will be valid with respect
1414 	 *	to that uberblock.
1415 	 *
1416 	 * (2)	If one or more new uberblocks made it to disk, then they
1417 	 *	will be the newest, and the even labels (which had all
1418 	 *	been successfully committed) will be valid with respect
1419 	 *	to the new uberblocks.
1420 	 */
1421 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1422 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1423 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1424 			    "%d for pool '%s'", error, spa_name(spa));
1425 		}
1426 		goto retry;
1427 	}
1428 
1429 	/*
1430 	 * Sync out odd labels for every dirty vdev.  If the system dies
1431 	 * in the middle of this process, the even labels and the new
1432 	 * uberblocks will suffice to open the pool.  The next time
1433 	 * the pool is opened, the first thing we'll do -- before any
1434 	 * user data is modified -- is mark every vdev dirty so that
1435 	 * all labels will be brought up to date.  We flush the new labels
1436 	 * to disk to ensure that all odd-label updates are committed to
1437 	 * stable storage before the next transaction group begins.
1438 	 */
1439 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1440 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1441 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1442 			    "for pool '%s' when syncing out the odd labels of "
1443 			    "dirty vdevs", error, spa_name(spa));
1444 		}
1445 		goto retry;
1446 	}
1447 
1448 	return (0);
1449 }
1450