1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * 128 * Each leaf device label also contains the following: 129 * 130 * top_guid Unique ID for top-level vdev in which this is contained 131 * guid Unique ID for the leaf vdev 132 * 133 * The 'vs' configuration follows the format described in 'spa_config.c'. 134 */ 135 136 #include <sys/zfs_context.h> 137 #include <sys/spa.h> 138 #include <sys/spa_impl.h> 139 #include <sys/dmu.h> 140 #include <sys/zap.h> 141 #include <sys/vdev.h> 142 #include <sys/vdev_impl.h> 143 #include <sys/uberblock_impl.h> 144 #include <sys/metaslab.h> 145 #include <sys/zio.h> 146 #include <sys/fs/zfs.h> 147 148 /* 149 * Basic routines to read and write from a vdev label. 150 * Used throughout the rest of this file. 151 */ 152 uint64_t 153 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 154 { 155 ASSERT(offset < sizeof (vdev_label_t)); 156 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 157 158 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 159 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 160 } 161 162 static void 163 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 164 uint64_t size, zio_done_func_t *done, void *private) 165 { 166 ASSERT(vd->vdev_children == 0); 167 168 zio_nowait(zio_read_phys(zio, vd, 169 vdev_label_offset(vd->vdev_psize, l, offset), 170 size, buf, ZIO_CHECKSUM_LABEL, done, private, 171 ZIO_PRIORITY_SYNC_READ, 172 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 173 B_TRUE)); 174 } 175 176 static void 177 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 178 uint64_t size, zio_done_func_t *done, void *private) 179 { 180 ASSERT(vd->vdev_children == 0); 181 182 zio_nowait(zio_write_phys(zio, vd, 183 vdev_label_offset(vd->vdev_psize, l, offset), 184 size, buf, ZIO_CHECKSUM_LABEL, done, private, 185 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL, 186 B_TRUE)); 187 } 188 189 /* 190 * Generate the nvlist representing this vdev's config. 191 */ 192 nvlist_t * 193 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 194 boolean_t isspare, boolean_t isl2cache) 195 { 196 nvlist_t *nv = NULL; 197 198 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 199 200 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 201 vd->vdev_ops->vdev_op_type) == 0); 202 if (!isspare && !isl2cache) 203 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 204 == 0); 205 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 206 207 if (vd->vdev_path != NULL) 208 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 209 vd->vdev_path) == 0); 210 211 if (vd->vdev_devid != NULL) 212 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 213 vd->vdev_devid) == 0); 214 215 if (vd->vdev_physpath != NULL) 216 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 217 vd->vdev_physpath) == 0); 218 219 if (vd->vdev_nparity != 0) { 220 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 221 VDEV_TYPE_RAIDZ) == 0); 222 223 /* 224 * Make sure someone hasn't managed to sneak a fancy new vdev 225 * into a crufty old storage pool. 226 */ 227 ASSERT(vd->vdev_nparity == 1 || 228 (vd->vdev_nparity == 2 && 229 spa_version(spa) >= SPA_VERSION_RAID6)); 230 231 /* 232 * Note that we'll add the nparity tag even on storage pools 233 * that only support a single parity device -- older software 234 * will just ignore it. 235 */ 236 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 237 vd->vdev_nparity) == 0); 238 } 239 240 if (vd->vdev_wholedisk != -1ULL) 241 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 242 vd->vdev_wholedisk) == 0); 243 244 if (vd->vdev_not_present) 245 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 246 247 if (vd->vdev_isspare) 248 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 249 250 if (!isspare && !isl2cache && vd == vd->vdev_top) { 251 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 252 vd->vdev_ms_array) == 0); 253 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 254 vd->vdev_ms_shift) == 0); 255 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 256 vd->vdev_ashift) == 0); 257 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 258 vd->vdev_asize) == 0); 259 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 260 vd->vdev_islog) == 0); 261 } 262 263 if (vd->vdev_dtl.smo_object != 0) 264 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 265 vd->vdev_dtl.smo_object) == 0); 266 267 if (getstats) { 268 vdev_stat_t vs; 269 vdev_get_stats(vd, &vs); 270 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 271 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 272 } 273 274 if (!vd->vdev_ops->vdev_op_leaf) { 275 nvlist_t **child; 276 int c; 277 278 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 279 KM_SLEEP); 280 281 for (c = 0; c < vd->vdev_children; c++) 282 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 283 getstats, isspare, isl2cache); 284 285 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 286 child, vd->vdev_children) == 0); 287 288 for (c = 0; c < vd->vdev_children; c++) 289 nvlist_free(child[c]); 290 291 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 292 293 } else { 294 if (vd->vdev_offline && !vd->vdev_tmpoffline) 295 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 296 B_TRUE) == 0); 297 if (vd->vdev_faulted) 298 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 299 B_TRUE) == 0); 300 if (vd->vdev_degraded) 301 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 302 B_TRUE) == 0); 303 if (vd->vdev_removed) 304 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 305 B_TRUE) == 0); 306 if (vd->vdev_unspare) 307 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 308 B_TRUE) == 0); 309 } 310 311 return (nv); 312 } 313 314 nvlist_t * 315 vdev_label_read_config(vdev_t *vd) 316 { 317 spa_t *spa = vd->vdev_spa; 318 nvlist_t *config = NULL; 319 vdev_phys_t *vp; 320 zio_t *zio; 321 int l; 322 323 ASSERT(spa_config_held(spa, RW_READER) || 324 spa_config_held(spa, RW_WRITER)); 325 326 if (!vdev_readable(vd)) 327 return (NULL); 328 329 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 330 331 for (l = 0; l < VDEV_LABELS; l++) { 332 333 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | 334 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD); 335 336 vdev_label_read(zio, vd, l, vp, 337 offsetof(vdev_label_t, vl_vdev_phys), 338 sizeof (vdev_phys_t), NULL, NULL); 339 340 if (zio_wait(zio) == 0 && 341 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 342 &config, 0) == 0) 343 break; 344 345 if (config != NULL) { 346 nvlist_free(config); 347 config = NULL; 348 } 349 } 350 351 zio_buf_free(vp, sizeof (vdev_phys_t)); 352 353 return (config); 354 } 355 356 /* 357 * Determine if a device is in use. The 'spare_guid' parameter will be filled 358 * in with the device guid if this spare is active elsewhere on the system. 359 */ 360 static boolean_t 361 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 362 uint64_t *spare_guid, uint64_t *l2cache_guid) 363 { 364 spa_t *spa = vd->vdev_spa; 365 uint64_t state, pool_guid, device_guid, txg, spare_pool; 366 uint64_t vdtxg = 0; 367 nvlist_t *label; 368 369 if (spare_guid) 370 *spare_guid = 0ULL; 371 if (l2cache_guid) 372 *l2cache_guid = 0ULL; 373 374 /* 375 * Read the label, if any, and perform some basic sanity checks. 376 */ 377 if ((label = vdev_label_read_config(vd)) == NULL) 378 return (B_FALSE); 379 380 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 381 &vdtxg); 382 383 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 384 &state) != 0 || 385 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 386 &device_guid) != 0) { 387 nvlist_free(label); 388 return (B_FALSE); 389 } 390 391 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 392 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 393 &pool_guid) != 0 || 394 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 395 &txg) != 0)) { 396 nvlist_free(label); 397 return (B_FALSE); 398 } 399 400 nvlist_free(label); 401 402 /* 403 * Check to see if this device indeed belongs to the pool it claims to 404 * be a part of. The only way this is allowed is if the device is a hot 405 * spare (which we check for later on). 406 */ 407 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 408 !spa_guid_exists(pool_guid, device_guid) && 409 !spa_spare_exists(device_guid, NULL) && 410 !spa_l2cache_exists(device_guid, NULL)) 411 return (B_FALSE); 412 413 /* 414 * If the transaction group is zero, then this an initialized (but 415 * unused) label. This is only an error if the create transaction 416 * on-disk is the same as the one we're using now, in which case the 417 * user has attempted to add the same vdev multiple times in the same 418 * transaction. 419 */ 420 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 421 txg == 0 && vdtxg == crtxg) 422 return (B_TRUE); 423 424 /* 425 * Check to see if this is a spare device. We do an explicit check for 426 * spa_has_spare() here because it may be on our pending list of spares 427 * to add. We also check if it is an l2cache device. 428 */ 429 if (spa_spare_exists(device_guid, &spare_pool) || 430 spa_has_spare(spa, device_guid)) { 431 if (spare_guid) 432 *spare_guid = device_guid; 433 434 switch (reason) { 435 case VDEV_LABEL_CREATE: 436 case VDEV_LABEL_L2CACHE: 437 return (B_TRUE); 438 439 case VDEV_LABEL_REPLACE: 440 return (!spa_has_spare(spa, device_guid) || 441 spare_pool != 0ULL); 442 443 case VDEV_LABEL_SPARE: 444 return (spa_has_spare(spa, device_guid)); 445 } 446 } 447 448 /* 449 * Check to see if this is an l2cache device. 450 */ 451 if (spa_l2cache_exists(device_guid, NULL)) 452 return (B_TRUE); 453 454 /* 455 * If the device is marked ACTIVE, then this device is in use by another 456 * pool on the system. 457 */ 458 return (state == POOL_STATE_ACTIVE); 459 } 460 461 /* 462 * Initialize a vdev label. We check to make sure each leaf device is not in 463 * use, and writable. We put down an initial label which we will later 464 * overwrite with a complete label. Note that it's important to do this 465 * sequentially, not in parallel, so that we catch cases of multiple use of the 466 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 467 * itself. 468 */ 469 int 470 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 471 { 472 spa_t *spa = vd->vdev_spa; 473 nvlist_t *label; 474 vdev_phys_t *vp; 475 vdev_boot_header_t *vb; 476 uberblock_t *ub; 477 zio_t *zio; 478 int l, c, n; 479 char *buf; 480 size_t buflen; 481 int error; 482 uint64_t spare_guid, l2cache_guid; 483 484 ASSERT(spa_config_held(spa, RW_WRITER)); 485 486 for (c = 0; c < vd->vdev_children; c++) 487 if ((error = vdev_label_init(vd->vdev_child[c], 488 crtxg, reason)) != 0) 489 return (error); 490 491 if (!vd->vdev_ops->vdev_op_leaf) 492 return (0); 493 494 /* 495 * Dead vdevs cannot be initialized. 496 */ 497 if (vdev_is_dead(vd)) 498 return (EIO); 499 500 /* 501 * Determine if the vdev is in use. 502 */ 503 if (reason != VDEV_LABEL_REMOVE && 504 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 505 return (EBUSY); 506 507 ASSERT(reason != VDEV_LABEL_REMOVE || 508 vdev_inuse(vd, crtxg, reason, NULL, NULL)); 509 510 /* 511 * If this is a request to add or replace a spare or l2cache device 512 * that is in use elsewhere on the system, then we must update the 513 * guid (which was initialized to a random value) to reflect the 514 * actual GUID (which is shared between multiple pools). 515 */ 516 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 517 spare_guid != 0ULL) { 518 vdev_t *pvd = vd->vdev_parent; 519 520 for (; pvd != NULL; pvd = pvd->vdev_parent) { 521 pvd->vdev_guid_sum -= vd->vdev_guid; 522 pvd->vdev_guid_sum += spare_guid; 523 } 524 525 vd->vdev_guid = vd->vdev_guid_sum = spare_guid; 526 527 /* 528 * If this is a replacement, then we want to fallthrough to the 529 * rest of the code. If we're adding a spare, then it's already 530 * labeled appropriately and we can just return. 531 */ 532 if (reason == VDEV_LABEL_SPARE) 533 return (0); 534 ASSERT(reason == VDEV_LABEL_REPLACE); 535 } 536 537 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 538 l2cache_guid != 0ULL) { 539 vdev_t *pvd = vd->vdev_parent; 540 541 for (; pvd != NULL; pvd = pvd->vdev_parent) { 542 pvd->vdev_guid_sum -= vd->vdev_guid; 543 pvd->vdev_guid_sum += l2cache_guid; 544 } 545 546 vd->vdev_guid = vd->vdev_guid_sum = l2cache_guid; 547 548 /* 549 * If this is a replacement, then we want to fallthrough to the 550 * rest of the code. If we're adding an l2cache, then it's 551 * already labeled appropriately and we can just return. 552 */ 553 if (reason == VDEV_LABEL_L2CACHE) 554 return (0); 555 ASSERT(reason == VDEV_LABEL_REPLACE); 556 } 557 558 /* 559 * Initialize its label. 560 */ 561 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 562 bzero(vp, sizeof (vdev_phys_t)); 563 564 /* 565 * Generate a label describing the pool and our top-level vdev. 566 * We mark it as being from txg 0 to indicate that it's not 567 * really part of an active pool just yet. The labels will 568 * be written again with a meaningful txg by spa_sync(). 569 */ 570 if (reason == VDEV_LABEL_SPARE || 571 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 572 /* 573 * For inactive hot spares, we generate a special label that 574 * identifies as a mutually shared hot spare. We write the 575 * label if we are adding a hot spare, or if we are removing an 576 * active hot spare (in which case we want to revert the 577 * labels). 578 */ 579 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 580 581 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 582 spa_version(spa)) == 0); 583 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 584 POOL_STATE_SPARE) == 0); 585 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 586 vd->vdev_guid) == 0); 587 } else if (reason == VDEV_LABEL_L2CACHE || 588 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 589 /* 590 * For level 2 ARC devices, add a special label. 591 */ 592 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 593 594 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 595 spa_version(spa)) == 0); 596 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 597 POOL_STATE_L2CACHE) == 0); 598 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 599 vd->vdev_guid) == 0); 600 } else { 601 label = spa_config_generate(spa, vd, 0ULL, B_FALSE); 602 603 /* 604 * Add our creation time. This allows us to detect multiple 605 * vdev uses as described above, and automatically expires if we 606 * fail. 607 */ 608 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 609 crtxg) == 0); 610 } 611 612 buf = vp->vp_nvlist; 613 buflen = sizeof (vp->vp_nvlist); 614 615 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 616 if (error != 0) { 617 nvlist_free(label); 618 zio_buf_free(vp, sizeof (vdev_phys_t)); 619 /* EFAULT means nvlist_pack ran out of room */ 620 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 621 } 622 623 /* 624 * Initialize boot block header. 625 */ 626 vb = zio_buf_alloc(sizeof (vdev_boot_header_t)); 627 bzero(vb, sizeof (vdev_boot_header_t)); 628 vb->vb_magic = VDEV_BOOT_MAGIC; 629 vb->vb_version = VDEV_BOOT_VERSION; 630 vb->vb_offset = VDEV_BOOT_OFFSET; 631 vb->vb_size = VDEV_BOOT_SIZE; 632 633 /* 634 * Initialize uberblock template. 635 */ 636 ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 637 bzero(ub, VDEV_UBERBLOCK_SIZE(vd)); 638 *ub = spa->spa_uberblock; 639 ub->ub_txg = 0; 640 641 /* 642 * Write everything in parallel. 643 */ 644 zio = zio_root(spa, NULL, NULL, 645 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 646 647 for (l = 0; l < VDEV_LABELS; l++) { 648 649 vdev_label_write(zio, vd, l, vp, 650 offsetof(vdev_label_t, vl_vdev_phys), 651 sizeof (vdev_phys_t), NULL, NULL); 652 653 vdev_label_write(zio, vd, l, vb, 654 offsetof(vdev_label_t, vl_boot_header), 655 sizeof (vdev_boot_header_t), NULL, NULL); 656 657 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 658 vdev_label_write(zio, vd, l, ub, 659 VDEV_UBERBLOCK_OFFSET(vd, n), 660 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL); 661 } 662 } 663 664 error = zio_wait(zio); 665 666 nvlist_free(label); 667 zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd)); 668 zio_buf_free(vb, sizeof (vdev_boot_header_t)); 669 zio_buf_free(vp, sizeof (vdev_phys_t)); 670 671 /* 672 * If this vdev hasn't been previously identified as a spare, then we 673 * mark it as such only if a) we are labeling it as a spare, or b) it 674 * exists as a spare elsewhere in the system. Do the same for 675 * level 2 ARC devices. 676 */ 677 if (error == 0 && !vd->vdev_isspare && 678 (reason == VDEV_LABEL_SPARE || 679 spa_spare_exists(vd->vdev_guid, NULL))) 680 spa_spare_add(vd); 681 682 if (error == 0 && !vd->vdev_isl2cache && 683 (reason == VDEV_LABEL_L2CACHE || 684 spa_l2cache_exists(vd->vdev_guid, NULL))) 685 spa_l2cache_add(vd); 686 687 return (error); 688 } 689 690 /* 691 * ========================================================================== 692 * uberblock load/sync 693 * ========================================================================== 694 */ 695 696 /* 697 * Consider the following situation: txg is safely synced to disk. We've 698 * written the first uberblock for txg + 1, and then we lose power. When we 699 * come back up, we fail to see the uberblock for txg + 1 because, say, 700 * it was on a mirrored device and the replica to which we wrote txg + 1 701 * is now offline. If we then make some changes and sync txg + 1, and then 702 * the missing replica comes back, then for a new seconds we'll have two 703 * conflicting uberblocks on disk with the same txg. The solution is simple: 704 * among uberblocks with equal txg, choose the one with the latest timestamp. 705 */ 706 static int 707 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 708 { 709 if (ub1->ub_txg < ub2->ub_txg) 710 return (-1); 711 if (ub1->ub_txg > ub2->ub_txg) 712 return (1); 713 714 if (ub1->ub_timestamp < ub2->ub_timestamp) 715 return (-1); 716 if (ub1->ub_timestamp > ub2->ub_timestamp) 717 return (1); 718 719 return (0); 720 } 721 722 static void 723 vdev_uberblock_load_done(zio_t *zio) 724 { 725 uberblock_t *ub = zio->io_data; 726 uberblock_t *ubbest = zio->io_private; 727 spa_t *spa = zio->io_spa; 728 729 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 730 731 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 732 mutex_enter(&spa->spa_uberblock_lock); 733 if (vdev_uberblock_compare(ub, ubbest) > 0) 734 *ubbest = *ub; 735 mutex_exit(&spa->spa_uberblock_lock); 736 } 737 738 zio_buf_free(zio->io_data, zio->io_size); 739 } 740 741 void 742 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 743 { 744 int l, c, n; 745 746 for (c = 0; c < vd->vdev_children; c++) 747 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 748 749 if (!vd->vdev_ops->vdev_op_leaf) 750 return; 751 752 if (vdev_is_dead(vd)) 753 return; 754 755 for (l = 0; l < VDEV_LABELS; l++) { 756 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 757 vdev_label_read(zio, vd, l, 758 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 759 VDEV_UBERBLOCK_OFFSET(vd, n), 760 VDEV_UBERBLOCK_SIZE(vd), 761 vdev_uberblock_load_done, ubbest); 762 } 763 } 764 } 765 766 /* 767 * Write the uberblock to both labels of all leaves of the specified vdev. 768 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 769 */ 770 static void 771 vdev_uberblock_sync_done(zio_t *zio) 772 { 773 uint64_t *good_writes = zio->io_root->io_private; 774 775 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 776 atomic_add_64(good_writes, 1); 777 } 778 779 static void 780 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, uint64_t txg) 781 { 782 int l, c, n; 783 784 for (c = 0; c < vd->vdev_children; c++) 785 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], txg); 786 787 if (!vd->vdev_ops->vdev_op_leaf) 788 return; 789 790 if (vdev_is_dead(vd)) 791 return; 792 793 n = txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 794 795 ASSERT(ub->ub_txg == txg); 796 797 for (l = 0; l < VDEV_LABELS; l++) 798 vdev_label_write(zio, vd, l, ub, 799 VDEV_UBERBLOCK_OFFSET(vd, n), 800 VDEV_UBERBLOCK_SIZE(vd), 801 vdev_uberblock_sync_done, NULL); 802 803 dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg); 804 } 805 806 static int 807 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *vd, uint64_t txg) 808 { 809 uberblock_t *ubbuf; 810 size_t size = vd->vdev_top ? VDEV_UBERBLOCK_SIZE(vd) : SPA_MAXBLOCKSIZE; 811 uint64_t *good_writes; 812 zio_t *zio; 813 int error; 814 815 ubbuf = zio_buf_alloc(size); 816 bzero(ubbuf, size); 817 *ubbuf = *ub; 818 819 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 820 821 zio = zio_root(spa, NULL, good_writes, 822 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 823 824 vdev_uberblock_sync(zio, ubbuf, vd, txg); 825 826 error = zio_wait(zio); 827 828 if (error && *good_writes != 0) { 829 dprintf("partial success: good_writes = %llu\n", *good_writes); 830 error = 0; 831 } 832 833 /* 834 * It's possible to have no good writes and no error if every vdev is in 835 * the CANT_OPEN state. 836 */ 837 if (*good_writes == 0 && error == 0) 838 error = EIO; 839 840 kmem_free(good_writes, sizeof (uint64_t)); 841 zio_buf_free(ubbuf, size); 842 843 return (error); 844 } 845 846 /* 847 * Sync out an individual vdev. 848 */ 849 static void 850 vdev_sync_label_done(zio_t *zio) 851 { 852 uint64_t *good_writes = zio->io_root->io_private; 853 854 if (zio->io_error == 0) 855 atomic_add_64(good_writes, 1); 856 } 857 858 static void 859 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg) 860 { 861 nvlist_t *label; 862 vdev_phys_t *vp; 863 char *buf; 864 size_t buflen; 865 int c; 866 867 for (c = 0; c < vd->vdev_children; c++) 868 vdev_sync_label(zio, vd->vdev_child[c], l, txg); 869 870 if (!vd->vdev_ops->vdev_op_leaf) 871 return; 872 873 if (vdev_is_dead(vd)) 874 return; 875 876 /* 877 * Generate a label describing the top-level config to which we belong. 878 */ 879 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 880 881 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 882 bzero(vp, sizeof (vdev_phys_t)); 883 884 buf = vp->vp_nvlist; 885 buflen = sizeof (vp->vp_nvlist); 886 887 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) 888 vdev_label_write(zio, vd, l, vp, 889 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 890 vdev_sync_label_done, NULL); 891 892 zio_buf_free(vp, sizeof (vdev_phys_t)); 893 nvlist_free(label); 894 895 dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg); 896 } 897 898 static int 899 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg) 900 { 901 uint64_t *good_writes; 902 zio_t *zio; 903 int error; 904 905 ASSERT(vd == vd->vdev_top); 906 907 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 908 909 zio = zio_root(vd->vdev_spa, NULL, good_writes, 910 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 911 912 /* 913 * Recursively kick off writes to all labels. 914 */ 915 vdev_sync_label(zio, vd, l, txg); 916 917 error = zio_wait(zio); 918 919 if (error && *good_writes != 0) { 920 dprintf("partial success: good_writes = %llu\n", *good_writes); 921 error = 0; 922 } 923 924 if (*good_writes == 0 && error == 0) 925 error = ENODEV; 926 927 /* 928 * Failure to write a label can be fatal for a 929 * top level vdev. We don't want this for slogs 930 * as we use the main pool if they go away. 931 */ 932 if (vd->vdev_islog) 933 error = 0; 934 935 kmem_free(good_writes, sizeof (uint64_t)); 936 937 return (error); 938 } 939 940 /* 941 * Sync the entire vdev configuration. 942 * 943 * The order of operations is carefully crafted to ensure that 944 * if the system panics or loses power at any time, the state on disk 945 * is still transactionally consistent. The in-line comments below 946 * describe the failure semantics at each stage. 947 * 948 * Moreover, it is designed to be idempotent: if spa_sync_labels() fails 949 * at any time, you can just call it again, and it will resume its work. 950 */ 951 int 952 vdev_config_sync(vdev_t *uvd, uint64_t txg) 953 { 954 spa_t *spa = uvd->vdev_spa; 955 uberblock_t *ub = &spa->spa_uberblock; 956 vdev_t *rvd = spa->spa_root_vdev; 957 vdev_t *vd; 958 zio_t *zio; 959 int l, last_error = 0, error = 0; 960 uint64_t good_writes = 0; 961 boolean_t retry_avail = B_TRUE; 962 963 ASSERT(ub->ub_txg <= txg); 964 965 /* 966 * If this isn't a resync due to I/O errors, and nothing changed 967 * in this transaction group, and the vdev configuration hasn't changed, 968 * then there's nothing to do. 969 */ 970 if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE && 971 list_is_empty(&spa->spa_dirty_list)) { 972 dprintf("nothing to sync in %s in txg %llu\n", 973 spa_name(spa), txg); 974 return (0); 975 } 976 977 if (txg > spa_freeze_txg(spa)) 978 return (0); 979 980 ASSERT(txg <= spa->spa_final_txg); 981 982 dprintf("syncing %s txg %llu\n", spa_name(spa), txg); 983 984 /* 985 * Flush the write cache of every disk that's been written to 986 * in this transaction group. This ensures that all blocks 987 * written in this txg will be committed to stable storage 988 * before any uberblock that references them. 989 */ 990 zio = zio_root(spa, NULL, NULL, 991 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 992 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 993 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) { 994 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 995 NULL, NULL, ZIO_PRIORITY_NOW, 996 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 997 } 998 (void) zio_wait(zio); 999 1000 retry: 1001 /* 1002 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1003 * system dies in the middle of this process, that's OK: all of the 1004 * even labels that made it to disk will be newer than any uberblock, 1005 * and will therefore be considered invalid. The odd labels (L1, L3), 1006 * which have not yet been touched, will still be valid. 1007 */ 1008 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 1009 vd = list_next(&spa->spa_dirty_list, vd)) { 1010 for (l = 0; l < VDEV_LABELS; l++) { 1011 if (l & 1) 1012 continue; 1013 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 1014 last_error = error; 1015 else 1016 good_writes++; 1017 } 1018 } 1019 1020 /* 1021 * If all the vdevs that are currently dirty have failed or the 1022 * spa_dirty_list is empty then we dirty all the vdevs and try again. 1023 * This is a last ditch effort to ensure that we get at least one 1024 * update before proceeding to the uberblock. 1025 */ 1026 if (good_writes == 0 && retry_avail) { 1027 vdev_config_dirty(rvd); 1028 retry_avail = B_FALSE; 1029 last_error = 0; 1030 goto retry; 1031 } 1032 1033 if (good_writes == 0) 1034 return (last_error); 1035 1036 /* 1037 * Flush the new labels to disk. This ensures that all even-label 1038 * updates are committed to stable storage before the uberblock update. 1039 */ 1040 zio = zio_root(spa, NULL, NULL, 1041 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 1042 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 1043 vd = list_next(&spa->spa_dirty_list, vd)) { 1044 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 1045 NULL, NULL, ZIO_PRIORITY_NOW, 1046 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 1047 } 1048 (void) zio_wait(zio); 1049 1050 /* 1051 * Sync the uberblocks to all vdevs in the tree specified by uvd. 1052 * If the system dies in the middle of this step, there are two cases 1053 * to consider, and the on-disk state is consistent either way: 1054 * 1055 * (1) If none of the new uberblocks made it to disk, then the 1056 * previous uberblock will be the newest, and the odd labels 1057 * (which had not yet been touched) will be valid with respect 1058 * to that uberblock. 1059 * 1060 * (2) If one or more new uberblocks made it to disk, then they 1061 * will be the newest, and the even labels (which had all 1062 * been successfully committed) will be valid with respect 1063 * to the new uberblocks. 1064 * 1065 * NOTE: We retry to an uberblock update on the root if we were 1066 * failed our initial update attempt. 1067 */ 1068 error = vdev_uberblock_sync_tree(spa, ub, uvd, txg); 1069 if (error && uvd != rvd) 1070 error = vdev_uberblock_sync_tree(spa, ub, rvd, txg); 1071 1072 if (error) 1073 return (error); 1074 1075 /* 1076 * Flush the uberblocks to disk. This ensures that the odd labels 1077 * are no longer needed (because the new uberblocks and the even 1078 * labels are safely on disk), so it is safe to overwrite them. 1079 */ 1080 (void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE, 1081 NULL, NULL, ZIO_PRIORITY_NOW, 1082 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 1083 1084 last_error = 0; 1085 /* 1086 * Sync out odd labels for every dirty vdev. If the system dies 1087 * in the middle of this process, the even labels and the new 1088 * uberblocks will suffice to open the pool. The next time 1089 * the pool is opened, the first thing we'll do -- before any 1090 * user data is modified -- is mark every vdev dirty so that 1091 * all labels will be brought up to date. 1092 */ 1093 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 1094 vd = list_next(&spa->spa_dirty_list, vd)) { 1095 for (l = 0; l < VDEV_LABELS; l++) { 1096 if ((l & 1) == 0) 1097 continue; 1098 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 1099 last_error = error; 1100 else 1101 good_writes++; 1102 } 1103 } 1104 1105 if (good_writes == 0) 1106 return (last_error); 1107 1108 /* 1109 * Flush the new labels to disk. This ensures that all odd-label 1110 * updates are committed to stable storage before the next 1111 * transaction group begins. 1112 */ 1113 zio = zio_root(spa, NULL, NULL, 1114 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 1115 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 1116 vd = list_next(&spa->spa_dirty_list, vd)) { 1117 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 1118 NULL, NULL, ZIO_PRIORITY_NOW, 1119 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 1120 } 1121 (void) zio_wait(zio); 1122 1123 return (0); 1124 } 1125