1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright 2020 Joyent, Inc. 27 * Copyright 2024 MNX Cloud, Inc. 28 */ 29 30 /* 31 * Virtual Device Labels 32 * --------------------- 33 * 34 * The vdev label serves several distinct purposes: 35 * 36 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 37 * identity within the pool. 38 * 39 * 2. Verify that all the devices given in a configuration are present 40 * within the pool. 41 * 42 * 3. Determine the uberblock for the pool. 43 * 44 * 4. In case of an import operation, determine the configuration of the 45 * toplevel vdev of which it is a part. 46 * 47 * 5. If an import operation cannot find all the devices in the pool, 48 * provide enough information to the administrator to determine which 49 * devices are missing. 50 * 51 * It is important to note that while the kernel is responsible for writing the 52 * label, it only consumes the information in the first three cases. The 53 * latter information is only consumed in userland when determining the 54 * configuration to import a pool. 55 * 56 * 57 * Label Organization 58 * ------------------ 59 * 60 * Before describing the contents of the label, it's important to understand how 61 * the labels are written and updated with respect to the uberblock. 62 * 63 * When the pool configuration is altered, either because it was newly created 64 * or a device was added, we want to update all the labels such that we can deal 65 * with fatal failure at any point. To this end, each disk has two labels which 66 * are updated before and after the uberblock is synced. Assuming we have 67 * labels and an uberblock with the following transaction groups: 68 * 69 * L1 UB L2 70 * +------+ +------+ +------+ 71 * | | | | | | 72 * | t10 | | t10 | | t10 | 73 * | | | | | | 74 * +------+ +------+ +------+ 75 * 76 * In this stable state, the labels and the uberblock were all updated within 77 * the same transaction group (10). Each label is mirrored and checksummed, so 78 * that we can detect when we fail partway through writing the label. 79 * 80 * In order to identify which labels are valid, the labels are written in the 81 * following manner: 82 * 83 * 1. For each vdev, update 'L1' to the new label 84 * 2. Update the uberblock 85 * 3. For each vdev, update 'L2' to the new label 86 * 87 * Given arbitrary failure, we can determine the correct label to use based on 88 * the transaction group. If we fail after updating L1 but before updating the 89 * UB, we will notice that L1's transaction group is greater than the uberblock, 90 * so L2 must be valid. If we fail after writing the uberblock but before 91 * writing L2, we will notice that L2's transaction group is less than L1, and 92 * therefore L1 is valid. 93 * 94 * Another added complexity is that not every label is updated when the config 95 * is synced. If we add a single device, we do not want to have to re-write 96 * every label for every device in the pool. This means that both L1 and L2 may 97 * be older than the pool uberblock, because the necessary information is stored 98 * on another vdev. 99 * 100 * 101 * On-disk Format 102 * -------------- 103 * 104 * The vdev label consists of two distinct parts, and is wrapped within the 105 * vdev_label_t structure. The label includes 8k of padding to permit legacy 106 * VTOC disk labels, but is otherwise ignored. 107 * 108 * The first half of the label is a packed nvlist which contains pool wide 109 * properties, per-vdev properties, and configuration information. It is 110 * described in more detail below. 111 * 112 * The latter half of the label consists of a redundant array of uberblocks. 113 * These uberblocks are updated whenever a transaction group is committed, 114 * or when the configuration is updated. When a pool is loaded, we scan each 115 * vdev for the 'best' uberblock. 116 * 117 * 118 * Configuration Information 119 * ------------------------- 120 * 121 * The nvlist describing the pool and vdev contains the following elements: 122 * 123 * version ZFS on-disk version 124 * name Pool name 125 * state Pool state 126 * txg Transaction group in which this label was written 127 * pool_guid Unique identifier for this pool 128 * vdev_tree An nvlist describing vdev tree. 129 * features_for_read 130 * An nvlist of the features necessary for reading the MOS. 131 * 132 * Each leaf device label also contains the following: 133 * 134 * top_guid Unique ID for top-level vdev in which this is contained 135 * guid Unique ID for the leaf vdev 136 * 137 * The 'vs' configuration follows the format described in 'spa_config.c'. 138 */ 139 140 #include <sys/zfs_context.h> 141 #include <sys/spa.h> 142 #include <sys/spa_impl.h> 143 #include <sys/dmu.h> 144 #include <sys/zap.h> 145 #include <sys/vdev.h> 146 #include <sys/vdev_impl.h> 147 #include <sys/uberblock_impl.h> 148 #include <sys/metaslab.h> 149 #include <sys/metaslab_impl.h> 150 #include <sys/zio.h> 151 #include <sys/dsl_scan.h> 152 #include <sys/abd.h> 153 #include <sys/fs/zfs.h> 154 #include <sys/byteorder.h> 155 #include <sys/zfs_bootenv.h> 156 157 /* 158 * Basic routines to read and write from a vdev label. 159 * Used throughout the rest of this file. 160 */ 161 uint64_t 162 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 163 { 164 ASSERT(offset < sizeof (vdev_label_t)); 165 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 166 167 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 168 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 169 } 170 171 /* 172 * Returns back the vdev label associated with the passed in offset. 173 */ 174 int 175 vdev_label_number(uint64_t psize, uint64_t offset) 176 { 177 int l; 178 179 if (offset >= psize - VDEV_LABEL_END_SIZE) { 180 offset -= psize - VDEV_LABEL_END_SIZE; 181 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 182 } 183 l = offset / sizeof (vdev_label_t); 184 return (l < VDEV_LABELS ? l : -1); 185 } 186 187 static void 188 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 189 uint64_t size, zio_done_func_t *done, void *private, int flags) 190 { 191 ASSERT( 192 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 193 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 194 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 195 196 zio_nowait(zio_read_phys(zio, vd, 197 vdev_label_offset(vd->vdev_psize, l, offset), 198 size, buf, ZIO_CHECKSUM_LABEL, done, private, 199 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 200 } 201 202 void 203 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 204 uint64_t size, zio_done_func_t *done, void *private, int flags) 205 { 206 ASSERT( 207 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 208 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 209 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 210 211 zio_nowait(zio_write_phys(zio, vd, 212 vdev_label_offset(vd->vdev_psize, l, offset), 213 size, buf, ZIO_CHECKSUM_LABEL, done, private, 214 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 215 } 216 217 /* 218 * Generate the nvlist representing this vdev's stats 219 */ 220 void 221 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 222 { 223 nvlist_t *nvx; 224 vdev_stat_t *vs; 225 vdev_stat_ex_t *vsx; 226 227 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 228 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 229 230 vdev_get_stats_ex(vd, vs, vsx); 231 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 232 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 233 234 /* 235 * Add extended stats into a special extended stats nvlist. This keeps 236 * all the extended stats nicely grouped together. The extended stats 237 * nvlist is then added to the main nvlist. 238 */ 239 nvx = fnvlist_alloc(); 240 241 /* ZIOs in flight to disk */ 242 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 243 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 244 245 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 246 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 247 248 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 249 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 250 251 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 252 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 253 254 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 255 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 256 257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 258 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 259 260 /* ZIOs pending */ 261 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 262 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 263 264 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 265 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 266 267 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 268 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 269 270 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 271 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 272 273 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 274 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 275 276 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 277 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 278 279 /* Histograms */ 280 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 281 vsx->vsx_total_histo[ZIO_TYPE_READ], 282 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 283 284 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 285 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 286 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 287 288 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 289 vsx->vsx_disk_histo[ZIO_TYPE_READ], 290 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 291 292 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 293 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 294 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 295 296 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 297 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 298 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 299 300 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 301 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 302 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 303 304 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 305 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 306 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 307 308 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 309 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 310 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 311 312 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 313 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 314 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 315 316 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 317 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 318 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 319 320 /* Request sizes */ 321 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 322 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 323 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 324 325 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 326 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 327 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 328 329 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 330 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 331 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 332 333 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 334 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 335 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 336 337 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 338 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 339 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 340 341 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 342 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 343 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 344 345 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 346 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 347 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 348 349 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 350 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 351 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 352 353 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 354 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 355 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 356 357 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 358 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 359 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 360 361 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 362 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 363 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 364 365 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 366 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 367 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 368 369 /* IO delays */ 370 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 371 372 /* Add extended stats nvlist to main nvlist */ 373 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 374 375 nvlist_free(nvx); 376 kmem_free(vs, sizeof (*vs)); 377 kmem_free(vsx, sizeof (*vsx)); 378 } 379 380 static void 381 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 382 { 383 spa_t *spa = vd->vdev_spa; 384 385 if (vd != spa->spa_root_vdev) 386 return; 387 388 /* provide either current or previous scan information */ 389 pool_scan_stat_t ps; 390 if (spa_scan_get_stats(spa, &ps) == 0) { 391 fnvlist_add_uint64_array(nvl, 392 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 393 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 394 } 395 396 pool_removal_stat_t prs; 397 if (spa_removal_get_stats(spa, &prs) == 0) { 398 fnvlist_add_uint64_array(nvl, 399 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 400 sizeof (prs) / sizeof (uint64_t)); 401 } 402 403 pool_checkpoint_stat_t pcs; 404 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 405 fnvlist_add_uint64_array(nvl, 406 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 407 sizeof (pcs) / sizeof (uint64_t)); 408 } 409 } 410 411 /* 412 * Generate the nvlist representing this vdev's config. 413 */ 414 nvlist_t * 415 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 416 vdev_config_flag_t flags) 417 { 418 nvlist_t *nv = NULL; 419 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 420 421 nv = fnvlist_alloc(); 422 423 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 424 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 425 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 426 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 427 428 if (vd->vdev_path != NULL) 429 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 430 431 if (vd->vdev_devid != NULL) 432 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 433 434 if (vd->vdev_physpath != NULL) 435 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 436 vd->vdev_physpath); 437 438 if (vd->vdev_fru != NULL) 439 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 440 441 if (vd->vdev_nparity != 0) { 442 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 443 VDEV_TYPE_RAIDZ) == 0); 444 445 /* 446 * Make sure someone hasn't managed to sneak a fancy new vdev 447 * into a crufty old storage pool. 448 */ 449 ASSERT(vd->vdev_nparity == 1 || 450 (vd->vdev_nparity <= 2 && 451 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 452 (vd->vdev_nparity <= 3 && 453 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 454 455 /* 456 * Note that we'll add the nparity tag even on storage pools 457 * that only support a single parity device -- older software 458 * will just ignore it. 459 */ 460 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 461 } 462 463 if (vd->vdev_wholedisk != -1ULL) 464 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 465 vd->vdev_wholedisk); 466 467 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 468 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 469 470 if (vd->vdev_isspare) 471 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 472 473 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 474 vd == vd->vdev_top) { 475 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 476 vd->vdev_ms_array); 477 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 478 vd->vdev_ms_shift); 479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 480 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 481 vd->vdev_asize); 482 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 483 if (vd->vdev_removing) { 484 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 485 vd->vdev_removing); 486 } 487 488 /* zpool command expects alloc class data */ 489 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 490 const char *bias = NULL; 491 492 switch (vd->vdev_alloc_bias) { 493 case VDEV_BIAS_LOG: 494 bias = VDEV_ALLOC_BIAS_LOG; 495 break; 496 case VDEV_BIAS_SPECIAL: 497 bias = VDEV_ALLOC_BIAS_SPECIAL; 498 break; 499 case VDEV_BIAS_DEDUP: 500 bias = VDEV_ALLOC_BIAS_DEDUP; 501 break; 502 default: 503 ASSERT3U(vd->vdev_alloc_bias, ==, 504 VDEV_BIAS_NONE); 505 } 506 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 507 bias); 508 } 509 } 510 511 if (vd->vdev_dtl_sm != NULL) { 512 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 513 space_map_object(vd->vdev_dtl_sm)); 514 } 515 516 if (vic->vic_mapping_object != 0) { 517 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 518 vic->vic_mapping_object); 519 } 520 521 if (vic->vic_births_object != 0) { 522 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 523 vic->vic_births_object); 524 } 525 526 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 527 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 528 vic->vic_prev_indirect_vdev); 529 } 530 531 if (vd->vdev_crtxg) 532 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 533 534 if (flags & VDEV_CONFIG_MOS) { 535 if (vd->vdev_leaf_zap != 0) { 536 ASSERT(vd->vdev_ops->vdev_op_leaf); 537 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 538 vd->vdev_leaf_zap); 539 } 540 541 if (vd->vdev_top_zap != 0) { 542 ASSERT(vd == vd->vdev_top); 543 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 544 vd->vdev_top_zap); 545 } 546 547 if (vd->vdev_resilver_deferred) { 548 ASSERT(vd->vdev_ops->vdev_op_leaf); 549 ASSERT(spa->spa_resilver_deferred); 550 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 551 } 552 } 553 554 if (getstats) { 555 vdev_config_generate_stats(vd, nv); 556 557 root_vdev_actions_getprogress(vd, nv); 558 559 /* 560 * Note: this can be called from open context 561 * (spa_get_stats()), so we need the rwlock to prevent 562 * the mapping from being changed by condensing. 563 */ 564 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 565 if (vd->vdev_indirect_mapping != NULL) { 566 ASSERT(vd->vdev_indirect_births != NULL); 567 vdev_indirect_mapping_t *vim = 568 vd->vdev_indirect_mapping; 569 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 570 vdev_indirect_mapping_size(vim)); 571 } 572 rw_exit(&vd->vdev_indirect_rwlock); 573 if (vd->vdev_mg != NULL && 574 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 575 /* 576 * Compute approximately how much memory would be used 577 * for the indirect mapping if this device were to 578 * be removed. 579 * 580 * Note: If the frag metric is invalid, then not 581 * enough metaslabs have been converted to have 582 * histograms. 583 */ 584 uint64_t seg_count = 0; 585 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 586 587 /* 588 * There are the same number of allocated segments 589 * as free segments, so we will have at least one 590 * entry per free segment. However, small free 591 * segments (smaller than vdev_removal_max_span) 592 * will be combined with adjacent allocated segments 593 * as a single mapping. 594 */ 595 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 596 if (1ULL << (i + 1) < vdev_removal_max_span) { 597 to_alloc += 598 vd->vdev_mg->mg_histogram[i] << 599 i + 1; 600 } else { 601 seg_count += 602 vd->vdev_mg->mg_histogram[i]; 603 } 604 } 605 606 /* 607 * The maximum length of a mapping is 608 * zfs_remove_max_segment, so we need at least one entry 609 * per zfs_remove_max_segment of allocated data. 610 */ 611 seg_count += to_alloc / zfs_remove_max_segment; 612 613 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 614 seg_count * 615 sizeof (vdev_indirect_mapping_entry_phys_t)); 616 } 617 } 618 619 if (!vd->vdev_ops->vdev_op_leaf) { 620 nvlist_t **child; 621 int c, idx; 622 623 ASSERT(!vd->vdev_ishole); 624 625 /* 626 * Indirect vdevs store the remnants of a removed vdev; 627 * they have no direct children, but are not leaf devices. 628 * The content of an indirect device is stored elsewhere 629 * in the pool. We can avoid a pointless zero-length alloc 630 * and return early here. 631 */ 632 if (vd->vdev_children == 0) 633 return (nv); 634 635 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 636 KM_SLEEP); 637 638 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 639 vdev_t *cvd = vd->vdev_child[c]; 640 641 /* 642 * If we're generating an nvlist of removing 643 * vdevs then skip over any device which is 644 * not being removed. 645 */ 646 if ((flags & VDEV_CONFIG_REMOVING) && 647 !cvd->vdev_removing) 648 continue; 649 650 child[idx++] = vdev_config_generate(spa, cvd, 651 getstats, flags); 652 } 653 654 if (idx) { 655 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 656 child, idx); 657 } 658 659 for (c = 0; c < idx; c++) 660 nvlist_free(child[c]); 661 662 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 663 664 } else { 665 const char *aux = NULL; 666 667 if (vd->vdev_offline && !vd->vdev_tmpoffline) 668 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 669 if (vd->vdev_resilver_txg != 0) 670 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 671 vd->vdev_resilver_txg); 672 if (vd->vdev_faulted) 673 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 674 if (vd->vdev_degraded) 675 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 676 if (vd->vdev_removed) 677 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 678 if (vd->vdev_unspare) 679 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 680 if (vd->vdev_ishole) 681 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 682 683 switch (vd->vdev_stat.vs_aux) { 684 case VDEV_AUX_ERR_EXCEEDED: 685 aux = "err_exceeded"; 686 break; 687 688 case VDEV_AUX_EXTERNAL: 689 aux = "external"; 690 break; 691 } 692 693 if (aux != NULL) 694 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 695 696 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 697 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 698 vd->vdev_orig_guid); 699 } 700 } 701 702 return (nv); 703 } 704 705 /* 706 * Generate a view of the top-level vdevs. If we currently have holes 707 * in the namespace, then generate an array which contains a list of holey 708 * vdevs. Additionally, add the number of top-level children that currently 709 * exist. 710 */ 711 void 712 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 713 { 714 vdev_t *rvd = spa->spa_root_vdev; 715 uint64_t *array; 716 uint_t c, idx; 717 718 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 719 720 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 721 vdev_t *tvd = rvd->vdev_child[c]; 722 723 if (tvd->vdev_ishole) { 724 array[idx++] = c; 725 } 726 } 727 728 if (idx) { 729 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 730 array, idx) == 0); 731 } 732 733 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 734 rvd->vdev_children) == 0); 735 736 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 737 } 738 739 /* 740 * Returns the configuration from the label of the given vdev. For vdevs 741 * which don't have a txg value stored on their label (i.e. spares/cache) 742 * or have not been completely initialized (txg = 0) just return 743 * the configuration from the first valid label we find. Otherwise, 744 * find the most up-to-date label that does not exceed the specified 745 * 'txg' value. 746 */ 747 nvlist_t * 748 vdev_label_read_config(vdev_t *vd, uint64_t txg) 749 { 750 spa_t *spa = vd->vdev_spa; 751 nvlist_t *config = NULL; 752 vdev_phys_t *vp; 753 abd_t *vp_abd; 754 zio_t *zio; 755 uint64_t best_txg = 0; 756 uint64_t label_txg = 0; 757 int error = 0; 758 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 759 ZIO_FLAG_SPECULATIVE; 760 761 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 762 763 if (!vdev_readable(vd)) 764 return (NULL); 765 766 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 767 vp = abd_to_buf(vp_abd); 768 769 retry: 770 for (int l = 0; l < VDEV_LABELS; l++) { 771 nvlist_t *label = NULL; 772 773 zio = zio_root(spa, NULL, NULL, flags); 774 775 vdev_label_read(zio, vd, l, vp_abd, 776 offsetof(vdev_label_t, vl_vdev_phys), 777 sizeof (vdev_phys_t), NULL, NULL, flags); 778 779 if (zio_wait(zio) == 0 && 780 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 781 &label, 0) == 0) { 782 /* 783 * Auxiliary vdevs won't have txg values in their 784 * labels and newly added vdevs may not have been 785 * completely initialized so just return the 786 * configuration from the first valid label we 787 * encounter. 788 */ 789 error = nvlist_lookup_uint64(label, 790 ZPOOL_CONFIG_POOL_TXG, &label_txg); 791 if ((error || label_txg == 0) && !config) { 792 config = label; 793 break; 794 } else if (label_txg <= txg && label_txg > best_txg) { 795 best_txg = label_txg; 796 nvlist_free(config); 797 config = fnvlist_dup(label); 798 } 799 } 800 801 if (label != NULL) { 802 nvlist_free(label); 803 label = NULL; 804 } 805 } 806 807 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 808 flags |= ZIO_FLAG_TRYHARD; 809 goto retry; 810 } 811 812 /* 813 * We found a valid label but it didn't pass txg restrictions. 814 */ 815 if (config == NULL && label_txg != 0) { 816 vdev_dbgmsg(vd, "label discarded as txg is too large " 817 "(%llu > %llu)", (u_longlong_t)label_txg, 818 (u_longlong_t)txg); 819 } 820 821 abd_free(vp_abd); 822 823 return (config); 824 } 825 826 /* 827 * Determine if a device is in use. The 'spare_guid' parameter will be filled 828 * in with the device guid if this spare is active elsewhere on the system. 829 */ 830 static boolean_t 831 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 832 uint64_t *spare_guid, uint64_t *l2cache_guid) 833 { 834 spa_t *spa = vd->vdev_spa; 835 uint64_t state, pool_guid, device_guid, txg, spare_pool; 836 uint64_t vdtxg = 0; 837 nvlist_t *label; 838 839 if (spare_guid) 840 *spare_guid = 0ULL; 841 if (l2cache_guid) 842 *l2cache_guid = 0ULL; 843 844 /* 845 * Read the label, if any, and perform some basic sanity checks. 846 */ 847 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 848 return (B_FALSE); 849 850 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 851 &vdtxg); 852 853 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 854 &state) != 0 || 855 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 856 &device_guid) != 0) { 857 nvlist_free(label); 858 return (B_FALSE); 859 } 860 861 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 862 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 863 &pool_guid) != 0 || 864 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 865 &txg) != 0)) { 866 nvlist_free(label); 867 return (B_FALSE); 868 } 869 870 nvlist_free(label); 871 872 /* 873 * Check to see if this device indeed belongs to the pool it claims to 874 * be a part of. The only way this is allowed is if the device is a hot 875 * spare (which we check for later on). 876 */ 877 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 878 !spa_guid_exists(pool_guid, device_guid) && 879 !spa_spare_exists(device_guid, NULL, NULL) && 880 !spa_l2cache_exists(device_guid, NULL)) 881 return (B_FALSE); 882 883 /* 884 * If the transaction group is zero, then this an initialized (but 885 * unused) label. This is only an error if the create transaction 886 * on-disk is the same as the one we're using now, in which case the 887 * user has attempted to add the same vdev multiple times in the same 888 * transaction. 889 */ 890 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 891 txg == 0 && vdtxg == crtxg) 892 return (B_TRUE); 893 894 /* 895 * Check to see if this is a spare device. We do an explicit check for 896 * spa_has_spare() here because it may be on our pending list of spares 897 * to add. We also check if it is an l2cache device. 898 */ 899 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 900 spa_has_spare(spa, device_guid)) { 901 if (spare_guid) 902 *spare_guid = device_guid; 903 904 switch (reason) { 905 case VDEV_LABEL_CREATE: 906 case VDEV_LABEL_L2CACHE: 907 return (B_TRUE); 908 909 case VDEV_LABEL_REPLACE: 910 return (!spa_has_spare(spa, device_guid) || 911 spare_pool != 0ULL); 912 913 case VDEV_LABEL_SPARE: 914 return (spa_has_spare(spa, device_guid)); 915 } 916 } 917 918 /* 919 * Check to see if this is an l2cache device. 920 */ 921 if (spa_l2cache_exists(device_guid, NULL)) 922 return (B_TRUE); 923 924 /* 925 * We can't rely on a pool's state if it's been imported 926 * read-only. Instead we look to see if the pools is marked 927 * read-only in the namespace and set the state to active. 928 */ 929 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 930 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 931 spa_mode(spa) == FREAD) 932 state = POOL_STATE_ACTIVE; 933 934 /* 935 * If the device is marked ACTIVE, then this device is in use by another 936 * pool on the system. 937 */ 938 return (state == POOL_STATE_ACTIVE); 939 } 940 941 /* 942 * Initialize a vdev label. We check to make sure each leaf device is not in 943 * use, and writable. We put down an initial label which we will later 944 * overwrite with a complete label. Note that it's important to do this 945 * sequentially, not in parallel, so that we catch cases of multiple use of the 946 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 947 * itself. 948 */ 949 int 950 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 951 { 952 spa_t *spa = vd->vdev_spa; 953 nvlist_t *label; 954 vdev_phys_t *vp; 955 abd_t *vp_abd; 956 abd_t *bootenv; 957 uberblock_t *ub; 958 abd_t *ub_abd; 959 zio_t *zio; 960 char *buf; 961 size_t buflen; 962 int error; 963 uint64_t spare_guid = 0, l2cache_guid = 0; 964 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 965 966 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 967 968 for (int c = 0; c < vd->vdev_children; c++) 969 if ((error = vdev_label_init(vd->vdev_child[c], 970 crtxg, reason)) != 0) 971 return (error); 972 973 /* Track the creation time for this vdev */ 974 vd->vdev_crtxg = crtxg; 975 976 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 977 return (0); 978 979 /* 980 * Dead vdevs cannot be initialized. 981 */ 982 if (vdev_is_dead(vd)) 983 return (SET_ERROR(EIO)); 984 985 /* 986 * Determine if the vdev is in use. 987 */ 988 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 989 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 990 return (SET_ERROR(EBUSY)); 991 992 /* 993 * If this is a request to add or replace a spare or l2cache device 994 * that is in use elsewhere on the system, then we must update the 995 * guid (which was initialized to a random value) to reflect the 996 * actual GUID (which is shared between multiple pools). 997 */ 998 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 999 spare_guid != 0ULL) { 1000 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1001 1002 vd->vdev_guid += guid_delta; 1003 1004 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1005 pvd->vdev_guid_sum += guid_delta; 1006 1007 /* 1008 * If this is a replacement, then we want to fallthrough to the 1009 * rest of the code. If we're adding a spare, then it's already 1010 * labeled appropriately and we can just return. 1011 */ 1012 if (reason == VDEV_LABEL_SPARE) 1013 return (0); 1014 ASSERT(reason == VDEV_LABEL_REPLACE || 1015 reason == VDEV_LABEL_SPLIT); 1016 } 1017 1018 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1019 l2cache_guid != 0ULL) { 1020 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1021 1022 vd->vdev_guid += guid_delta; 1023 1024 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1025 pvd->vdev_guid_sum += guid_delta; 1026 1027 /* 1028 * If this is a replacement, then we want to fallthrough to the 1029 * rest of the code. If we're adding an l2cache, then it's 1030 * already labeled appropriately and we can just return. 1031 */ 1032 if (reason == VDEV_LABEL_L2CACHE) 1033 return (0); 1034 ASSERT(reason == VDEV_LABEL_REPLACE); 1035 } 1036 1037 /* 1038 * Initialize its label. 1039 */ 1040 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1041 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1042 vp = abd_to_buf(vp_abd); 1043 1044 /* 1045 * Generate a label describing the pool and our top-level vdev. 1046 * We mark it as being from txg 0 to indicate that it's not 1047 * really part of an active pool just yet. The labels will 1048 * be written again with a meaningful txg by spa_sync(). 1049 */ 1050 if (reason == VDEV_LABEL_SPARE || 1051 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 1052 /* 1053 * For inactive hot spares, we generate a special label that 1054 * identifies as a mutually shared hot spare. We write the 1055 * label if we are adding a hot spare, or if we are removing an 1056 * active hot spare (in which case we want to revert the 1057 * labels). 1058 */ 1059 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1060 1061 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1062 spa_version(spa)) == 0); 1063 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1064 POOL_STATE_SPARE) == 0); 1065 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1066 vd->vdev_guid) == 0); 1067 } else if (reason == VDEV_LABEL_L2CACHE || 1068 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 1069 /* 1070 * For level 2 ARC devices, add a special label. 1071 */ 1072 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1073 1074 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1075 spa_version(spa)) == 0); 1076 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1077 POOL_STATE_L2CACHE) == 0); 1078 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1079 vd->vdev_guid) == 0); 1080 } else { 1081 uint64_t txg = 0ULL; 1082 1083 if (reason == VDEV_LABEL_SPLIT) 1084 txg = spa->spa_uberblock.ub_txg; 1085 label = spa_config_generate(spa, vd, txg, B_FALSE); 1086 1087 /* 1088 * Add our creation time. This allows us to detect multiple 1089 * vdev uses as described above, and automatically expires if we 1090 * fail. 1091 */ 1092 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1093 crtxg) == 0); 1094 } 1095 1096 buf = vp->vp_nvlist; 1097 buflen = sizeof (vp->vp_nvlist); 1098 1099 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1100 if (error != 0) { 1101 nvlist_free(label); 1102 abd_free(vp_abd); 1103 /* EFAULT means nvlist_pack ran out of room */ 1104 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 1105 } 1106 1107 /* 1108 * Initialize uberblock template. 1109 */ 1110 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1111 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 1112 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1113 ub = abd_to_buf(ub_abd); 1114 ub->ub_txg = 0; 1115 1116 /* Initialize the 2nd padding area. */ 1117 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1118 abd_zero(bootenv, VDEV_PAD_SIZE); 1119 1120 /* 1121 * Write everything in parallel. 1122 */ 1123 retry: 1124 zio = zio_root(spa, NULL, NULL, flags); 1125 1126 for (int l = 0; l < VDEV_LABELS; l++) { 1127 1128 vdev_label_write(zio, vd, l, vp_abd, 1129 offsetof(vdev_label_t, vl_vdev_phys), 1130 sizeof (vdev_phys_t), NULL, NULL, flags); 1131 1132 /* 1133 * Skip the 1st padding area. 1134 * Zero out the 2nd padding area where it might have 1135 * left over data from previous filesystem format. 1136 */ 1137 vdev_label_write(zio, vd, l, bootenv, 1138 offsetof(vdev_label_t, vl_be), 1139 VDEV_PAD_SIZE, NULL, NULL, flags); 1140 1141 vdev_label_write(zio, vd, l, ub_abd, 1142 offsetof(vdev_label_t, vl_uberblock), 1143 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1144 } 1145 1146 error = zio_wait(zio); 1147 1148 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1149 flags |= ZIO_FLAG_TRYHARD; 1150 goto retry; 1151 } 1152 1153 nvlist_free(label); 1154 abd_free(bootenv); 1155 abd_free(ub_abd); 1156 abd_free(vp_abd); 1157 1158 /* 1159 * If this vdev hasn't been previously identified as a spare, then we 1160 * mark it as such only if a) we are labeling it as a spare, or b) it 1161 * exists as a spare elsewhere in the system. Do the same for 1162 * level 2 ARC devices. 1163 */ 1164 if (error == 0 && !vd->vdev_isspare && 1165 (reason == VDEV_LABEL_SPARE || 1166 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1167 spa_spare_add(vd); 1168 1169 if (error == 0 && !vd->vdev_isl2cache && 1170 (reason == VDEV_LABEL_L2CACHE || 1171 spa_l2cache_exists(vd->vdev_guid, NULL))) 1172 spa_l2cache_add(vd); 1173 1174 return (error); 1175 } 1176 1177 /* 1178 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1179 * callback to finish, store our abd in the callback pointer. Otherwise, we 1180 * just free our abd and return. 1181 */ 1182 static void 1183 vdev_label_read_bootenv_done(zio_t *zio) 1184 { 1185 zio_t *rio = zio->io_private; 1186 abd_t **cbp = rio->io_private; 1187 1188 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1189 1190 if (zio->io_error == 0) { 1191 mutex_enter(&rio->io_lock); 1192 if (*cbp == NULL) { 1193 /* Will free this buffer in vdev_label_read_bootenv. */ 1194 *cbp = zio->io_abd; 1195 } else { 1196 abd_free(zio->io_abd); 1197 } 1198 mutex_exit(&rio->io_lock); 1199 } else { 1200 abd_free(zio->io_abd); 1201 } 1202 } 1203 1204 static void 1205 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1206 { 1207 for (int c = 0; c < vd->vdev_children; c++) 1208 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1209 1210 /* 1211 * We just use the first label that has a correct checksum; the 1212 * bootloader should have rewritten them all to be the same on boot, 1213 * and any changes we made since boot have been the same across all 1214 * labels. 1215 */ 1216 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1217 for (int l = 0; l < VDEV_LABELS; l++) { 1218 vdev_label_read(zio, vd, l, 1219 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1220 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1221 vdev_label_read_bootenv_done, zio, flags); 1222 } 1223 } 1224 } 1225 1226 int 1227 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1228 { 1229 nvlist_t *config; 1230 spa_t *spa = rvd->vdev_spa; 1231 abd_t *abd = NULL; 1232 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1233 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1234 1235 ASSERT(bootenv); 1236 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1237 1238 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1239 vdev_label_read_bootenv_impl(zio, rvd, flags); 1240 int err = zio_wait(zio); 1241 1242 if (abd != NULL) { 1243 char *buf; 1244 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1245 1246 vbe->vbe_version = ntohll(vbe->vbe_version); 1247 switch (vbe->vbe_version) { 1248 case VB_RAW: 1249 /* 1250 * if we have textual data in vbe_bootenv, create nvlist 1251 * with key "envmap". 1252 */ 1253 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1254 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1255 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1256 vbe->vbe_bootenv); 1257 break; 1258 1259 case VB_NVLIST: 1260 err = nvlist_unpack(vbe->vbe_bootenv, 1261 sizeof (vbe->vbe_bootenv), &config, 0); 1262 if (err == 0) { 1263 fnvlist_merge(bootenv, config); 1264 nvlist_free(config); 1265 break; 1266 } 1267 /* FALLTHROUGH */ 1268 default: 1269 /* Check for FreeBSD zfs bootonce command string */ 1270 buf = abd_to_buf(abd); 1271 if (*buf == '\0') { 1272 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1273 VB_NVLIST); 1274 break; 1275 } 1276 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1277 } 1278 1279 /* 1280 * abd was allocated in vdev_label_read_bootenv_impl() 1281 */ 1282 abd_free(abd); 1283 /* 1284 * If we managed to read any successfully, 1285 * return success. 1286 */ 1287 return (0); 1288 } 1289 return (err); 1290 } 1291 1292 int 1293 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1294 { 1295 zio_t *zio; 1296 spa_t *spa = vd->vdev_spa; 1297 vdev_boot_envblock_t *bootenv; 1298 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1299 int error; 1300 size_t nvsize; 1301 char *nvbuf; 1302 1303 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1304 if (error != 0) 1305 return (SET_ERROR(error)); 1306 1307 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1308 return (SET_ERROR(E2BIG)); 1309 } 1310 1311 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1312 1313 error = ENXIO; 1314 for (int c = 0; c < vd->vdev_children; c++) { 1315 int child_err; 1316 1317 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1318 /* 1319 * As long as any of the disks managed to write all of their 1320 * labels successfully, return success. 1321 */ 1322 if (child_err == 0) 1323 error = child_err; 1324 } 1325 1326 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1327 !vdev_writeable(vd)) { 1328 return (error); 1329 } 1330 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1331 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1332 abd_zero(abd, VDEV_PAD_SIZE); 1333 1334 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1335 nvbuf = bootenv->vbe_bootenv; 1336 nvsize = sizeof (bootenv->vbe_bootenv); 1337 1338 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1339 switch (bootenv->vbe_version) { 1340 case VB_RAW: 1341 if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) { 1342 (void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize); 1343 } 1344 error = 0; 1345 break; 1346 1347 case VB_NVLIST: 1348 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1349 KM_SLEEP); 1350 break; 1351 1352 default: 1353 error = EINVAL; 1354 break; 1355 } 1356 1357 if (error == 0) { 1358 bootenv->vbe_version = htonll(bootenv->vbe_version); 1359 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1360 } else { 1361 abd_free(abd); 1362 return (SET_ERROR(error)); 1363 } 1364 1365 retry: 1366 zio = zio_root(spa, NULL, NULL, flags); 1367 for (int l = 0; l < VDEV_LABELS; l++) { 1368 vdev_label_write(zio, vd, l, abd, 1369 offsetof(vdev_label_t, vl_be), 1370 VDEV_PAD_SIZE, NULL, NULL, flags); 1371 } 1372 1373 error = zio_wait(zio); 1374 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1375 flags |= ZIO_FLAG_TRYHARD; 1376 goto retry; 1377 } 1378 1379 abd_free(abd); 1380 return (error); 1381 } 1382 1383 /* 1384 * ========================================================================== 1385 * uberblock load/sync 1386 * ========================================================================== 1387 */ 1388 1389 /* 1390 * Consider the following situation: txg is safely synced to disk. We've 1391 * written the first uberblock for txg + 1, and then we lose power. When we 1392 * come back up, we fail to see the uberblock for txg + 1 because, say, 1393 * it was on a mirrored device and the replica to which we wrote txg + 1 1394 * is now offline. If we then make some changes and sync txg + 1, and then 1395 * the missing replica comes back, then for a few seconds we'll have two 1396 * conflicting uberblocks on disk with the same txg. The solution is simple: 1397 * among uberblocks with equal txg, choose the one with the latest timestamp. 1398 */ 1399 static int 1400 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1401 { 1402 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1403 1404 if (likely(cmp)) 1405 return (cmp); 1406 1407 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1408 if (likely(cmp)) 1409 return (cmp); 1410 1411 /* 1412 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1413 * ZFS, e.g. zfsonlinux >= 0.7. 1414 * 1415 * If one ub has MMP and the other does not, they were written by 1416 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1417 * a 0 value. 1418 * 1419 * Since timestamp and txg are the same if we get this far, either is 1420 * acceptable for importing the pool. 1421 */ 1422 unsigned int seq1 = 0; 1423 unsigned int seq2 = 0; 1424 1425 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1426 seq1 = MMP_SEQ(ub1); 1427 1428 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1429 seq2 = MMP_SEQ(ub2); 1430 1431 return (TREE_CMP(seq1, seq2)); 1432 } 1433 1434 struct ubl_cbdata { 1435 uberblock_t *ubl_ubbest; /* Best uberblock */ 1436 vdev_t *ubl_vd; /* vdev associated with the above */ 1437 }; 1438 1439 static void 1440 vdev_uberblock_load_done(zio_t *zio) 1441 { 1442 vdev_t *vd = zio->io_vd; 1443 spa_t *spa = zio->io_spa; 1444 zio_t *rio = zio->io_private; 1445 uberblock_t *ub = abd_to_buf(zio->io_abd); 1446 struct ubl_cbdata *cbp = rio->io_private; 1447 1448 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1449 1450 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1451 mutex_enter(&rio->io_lock); 1452 if (ub->ub_txg <= spa->spa_load_max_txg && 1453 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1454 /* 1455 * Keep track of the vdev in which this uberblock 1456 * was found. We will use this information later 1457 * to obtain the config nvlist associated with 1458 * this uberblock. 1459 */ 1460 *cbp->ubl_ubbest = *ub; 1461 cbp->ubl_vd = vd; 1462 } 1463 mutex_exit(&rio->io_lock); 1464 } 1465 1466 abd_free(zio->io_abd); 1467 } 1468 1469 static void 1470 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1471 struct ubl_cbdata *cbp) 1472 { 1473 for (int c = 0; c < vd->vdev_children; c++) 1474 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1475 1476 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1477 for (int l = 0; l < VDEV_LABELS; l++) { 1478 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1479 vdev_label_read(zio, vd, l, 1480 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1481 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1482 VDEV_UBERBLOCK_SIZE(vd), 1483 vdev_uberblock_load_done, zio, flags); 1484 } 1485 } 1486 } 1487 } 1488 1489 /* 1490 * Reads the 'best' uberblock from disk along with its associated 1491 * configuration. First, we read the uberblock array of each label of each 1492 * vdev, keeping track of the uberblock with the highest txg in each array. 1493 * Then, we read the configuration from the same vdev as the best uberblock. 1494 */ 1495 void 1496 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1497 { 1498 zio_t *zio; 1499 spa_t *spa = rvd->vdev_spa; 1500 struct ubl_cbdata cb; 1501 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1502 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1503 1504 ASSERT(ub); 1505 ASSERT(config); 1506 1507 bzero(ub, sizeof (uberblock_t)); 1508 *config = NULL; 1509 1510 cb.ubl_ubbest = ub; 1511 cb.ubl_vd = NULL; 1512 1513 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1514 zio = zio_root(spa, NULL, &cb, flags); 1515 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1516 (void) zio_wait(zio); 1517 1518 /* 1519 * It's possible that the best uberblock was discovered on a label 1520 * that has a configuration which was written in a future txg. 1521 * Search all labels on this vdev to find the configuration that 1522 * matches the txg for our uberblock. 1523 */ 1524 if (cb.ubl_vd != NULL) { 1525 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1526 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1527 1528 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1529 if (*config == NULL && spa->spa_extreme_rewind) { 1530 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1531 "Trying again without txg restrictions."); 1532 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1533 } 1534 if (*config == NULL) { 1535 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1536 } 1537 } 1538 spa_config_exit(spa, SCL_ALL, FTAG); 1539 } 1540 1541 /* 1542 * On success, increment root zio's count of good writes. 1543 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1544 */ 1545 static void 1546 vdev_uberblock_sync_done(zio_t *zio) 1547 { 1548 uint64_t *good_writes = zio->io_private; 1549 1550 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1551 atomic_inc_64(good_writes); 1552 } 1553 1554 /* 1555 * Write the uberblock to all labels of all leaves of the specified vdev. 1556 */ 1557 static void 1558 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1559 uberblock_t *ub, vdev_t *vd, int flags) 1560 { 1561 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1562 vdev_uberblock_sync(zio, good_writes, 1563 ub, vd->vdev_child[c], flags); 1564 } 1565 1566 if (!vd->vdev_ops->vdev_op_leaf) 1567 return; 1568 1569 if (!vdev_writeable(vd)) 1570 return; 1571 1572 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1573 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m); 1574 1575 /* Copy the uberblock_t into the ABD */ 1576 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1577 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1578 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1579 1580 for (int l = 0; l < VDEV_LABELS; l++) 1581 vdev_label_write(zio, vd, l, ub_abd, 1582 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1583 vdev_uberblock_sync_done, good_writes, 1584 flags | ZIO_FLAG_DONT_PROPAGATE); 1585 1586 abd_free(ub_abd); 1587 } 1588 1589 /* Sync the uberblocks to all vdevs in svd[] */ 1590 int 1591 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1592 { 1593 spa_t *spa = svd[0]->vdev_spa; 1594 zio_t *zio; 1595 uint64_t good_writes = 0; 1596 1597 zio = zio_root(spa, NULL, NULL, flags); 1598 1599 for (int v = 0; v < svdcount; v++) 1600 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1601 1602 (void) zio_wait(zio); 1603 1604 /* 1605 * Flush the uberblocks to disk. This ensures that the odd labels 1606 * are no longer needed (because the new uberblocks and the even 1607 * labels are safely on disk), so it is safe to overwrite them. 1608 */ 1609 zio = zio_root(spa, NULL, NULL, flags); 1610 1611 for (int v = 0; v < svdcount; v++) { 1612 if (vdev_writeable(svd[v])) { 1613 zio_flush(zio, svd[v]); 1614 } 1615 } 1616 1617 (void) zio_wait(zio); 1618 1619 return (good_writes >= 1 ? 0 : EIO); 1620 } 1621 1622 /* 1623 * On success, increment the count of good writes for our top-level vdev. 1624 */ 1625 static void 1626 vdev_label_sync_done(zio_t *zio) 1627 { 1628 uint64_t *good_writes = zio->io_private; 1629 1630 if (zio->io_error == 0) 1631 atomic_inc_64(good_writes); 1632 } 1633 1634 /* 1635 * If there weren't enough good writes, indicate failure to the parent. 1636 */ 1637 static void 1638 vdev_label_sync_top_done(zio_t *zio) 1639 { 1640 uint64_t *good_writes = zio->io_private; 1641 1642 if (*good_writes == 0) 1643 zio->io_error = SET_ERROR(EIO); 1644 1645 kmem_free(good_writes, sizeof (uint64_t)); 1646 } 1647 1648 /* 1649 * We ignore errors for log and cache devices, simply free the private data. 1650 */ 1651 static void 1652 vdev_label_sync_ignore_done(zio_t *zio) 1653 { 1654 kmem_free(zio->io_private, sizeof (uint64_t)); 1655 } 1656 1657 /* 1658 * Write all even or odd labels to all leaves of the specified vdev. 1659 */ 1660 static void 1661 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1662 vdev_t *vd, int l, uint64_t txg, int flags) 1663 { 1664 nvlist_t *label; 1665 vdev_phys_t *vp; 1666 abd_t *vp_abd; 1667 char *buf; 1668 size_t buflen; 1669 1670 for (int c = 0; c < vd->vdev_children; c++) { 1671 vdev_label_sync(zio, good_writes, 1672 vd->vdev_child[c], l, txg, flags); 1673 } 1674 1675 if (!vd->vdev_ops->vdev_op_leaf) 1676 return; 1677 1678 if (!vdev_writeable(vd)) 1679 return; 1680 1681 /* 1682 * Generate a label describing the top-level config to which we belong. 1683 */ 1684 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1685 1686 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1687 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1688 vp = abd_to_buf(vp_abd); 1689 1690 buf = vp->vp_nvlist; 1691 buflen = sizeof (vp->vp_nvlist); 1692 1693 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1694 for (; l < VDEV_LABELS; l += 2) { 1695 vdev_label_write(zio, vd, l, vp_abd, 1696 offsetof(vdev_label_t, vl_vdev_phys), 1697 sizeof (vdev_phys_t), 1698 vdev_label_sync_done, good_writes, 1699 flags | ZIO_FLAG_DONT_PROPAGATE); 1700 } 1701 } 1702 1703 abd_free(vp_abd); 1704 nvlist_free(label); 1705 } 1706 1707 int 1708 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1709 { 1710 list_t *dl = &spa->spa_config_dirty_list; 1711 vdev_t *vd; 1712 zio_t *zio; 1713 int error; 1714 1715 /* 1716 * Write the new labels to disk. 1717 */ 1718 zio = zio_root(spa, NULL, NULL, flags); 1719 1720 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1721 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1722 KM_SLEEP); 1723 1724 ASSERT(!vd->vdev_ishole); 1725 1726 zio_t *vio = zio_null(zio, spa, NULL, 1727 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1728 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1729 good_writes, flags); 1730 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1731 zio_nowait(vio); 1732 } 1733 1734 error = zio_wait(zio); 1735 1736 /* 1737 * Flush the new labels to disk. 1738 */ 1739 zio = zio_root(spa, NULL, NULL, flags); 1740 1741 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1742 zio_flush(zio, vd); 1743 1744 (void) zio_wait(zio); 1745 1746 return (error); 1747 } 1748 1749 /* 1750 * Sync the uberblock and any changes to the vdev configuration. 1751 * 1752 * The order of operations is carefully crafted to ensure that 1753 * if the system panics or loses power at any time, the state on disk 1754 * is still transactionally consistent. The in-line comments below 1755 * describe the failure semantics at each stage. 1756 * 1757 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1758 * at any time, you can just call it again, and it will resume its work. 1759 */ 1760 int 1761 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1762 { 1763 spa_t *spa = svd[0]->vdev_spa; 1764 uberblock_t *ub = &spa->spa_uberblock; 1765 int error = 0; 1766 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1767 1768 ASSERT(svdcount != 0); 1769 retry: 1770 /* 1771 * Normally, we don't want to try too hard to write every label and 1772 * uberblock. If there is a flaky disk, we don't want the rest of the 1773 * sync process to block while we retry. But if we can't write a 1774 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1775 * bailing out and declaring the pool faulted. 1776 */ 1777 if (error != 0) { 1778 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1779 return (error); 1780 flags |= ZIO_FLAG_TRYHARD; 1781 } 1782 1783 ASSERT(ub->ub_txg <= txg); 1784 1785 /* 1786 * If this isn't a resync due to I/O errors, 1787 * and nothing changed in this transaction group, 1788 * and the vdev configuration hasn't changed, 1789 * then there's nothing to do. 1790 */ 1791 if (ub->ub_txg < txg) { 1792 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 1793 txg, spa->spa_mmp.mmp_delay); 1794 1795 if (!changed && list_is_empty(&spa->spa_config_dirty_list)) 1796 return (0); 1797 } 1798 1799 if (txg > spa_freeze_txg(spa)) 1800 return (0); 1801 1802 ASSERT(txg <= spa->spa_final_txg); 1803 1804 /* 1805 * Flush the write cache of every disk that's been written to 1806 * in this transaction group. This ensures that all blocks 1807 * written in this txg will be committed to stable storage 1808 * before any uberblock that references them. 1809 */ 1810 zio_t *zio = zio_root(spa, NULL, NULL, flags); 1811 1812 for (vdev_t *vd = 1813 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 1814 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1815 zio_flush(zio, vd); 1816 1817 (void) zio_wait(zio); 1818 1819 /* 1820 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1821 * system dies in the middle of this process, that's OK: all of the 1822 * even labels that made it to disk will be newer than any uberblock, 1823 * and will therefore be considered invalid. The odd labels (L1, L3), 1824 * which have not yet been touched, will still be valid. We flush 1825 * the new labels to disk to ensure that all even-label updates 1826 * are committed to stable storage before the uberblock update. 1827 */ 1828 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 1829 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1830 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1831 "for pool '%s' when syncing out the even labels " 1832 "of dirty vdevs", error, spa_name(spa)); 1833 } 1834 goto retry; 1835 } 1836 1837 /* 1838 * Sync the uberblocks to all vdevs in svd[]. 1839 * If the system dies in the middle of this step, there are two cases 1840 * to consider, and the on-disk state is consistent either way: 1841 * 1842 * (1) If none of the new uberblocks made it to disk, then the 1843 * previous uberblock will be the newest, and the odd labels 1844 * (which had not yet been touched) will be valid with respect 1845 * to that uberblock. 1846 * 1847 * (2) If one or more new uberblocks made it to disk, then they 1848 * will be the newest, and the even labels (which had all 1849 * been successfully committed) will be valid with respect 1850 * to the new uberblocks. 1851 */ 1852 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 1853 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1854 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 1855 "%d for pool '%s'", error, spa_name(spa)); 1856 } 1857 goto retry; 1858 } 1859 1860 if (spa_multihost(spa)) 1861 mmp_update_uberblock(spa, ub); 1862 1863 /* 1864 * Sync out odd labels for every dirty vdev. If the system dies 1865 * in the middle of this process, the even labels and the new 1866 * uberblocks will suffice to open the pool. The next time 1867 * the pool is opened, the first thing we'll do -- before any 1868 * user data is modified -- is mark every vdev dirty so that 1869 * all labels will be brought up to date. We flush the new labels 1870 * to disk to ensure that all odd-label updates are committed to 1871 * stable storage before the next transaction group begins. 1872 */ 1873 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 1874 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1875 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1876 "for pool '%s' when syncing out the odd labels of " 1877 "dirty vdevs", error, spa_name(spa)); 1878 } 1879 goto retry; 1880 } 1881 1882 return (0); 1883 } 1884