xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision 5016ae894be01e501342a67035ea848043662a45)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright 2020 Joyent, Inc.
27  * Copyright 2024 MNX Cloud, Inc.
28  */
29 
30 /*
31  * Virtual Device Labels
32  * ---------------------
33  *
34  * The vdev label serves several distinct purposes:
35  *
36  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
37  *	   identity within the pool.
38  *
39  *	2. Verify that all the devices given in a configuration are present
40  *         within the pool.
41  *
42  *	3. Determine the uberblock for the pool.
43  *
44  *	4. In case of an import operation, determine the configuration of the
45  *         toplevel vdev of which it is a part.
46  *
47  *	5. If an import operation cannot find all the devices in the pool,
48  *         provide enough information to the administrator to determine which
49  *         devices are missing.
50  *
51  * It is important to note that while the kernel is responsible for writing the
52  * label, it only consumes the information in the first three cases.  The
53  * latter information is only consumed in userland when determining the
54  * configuration to import a pool.
55  *
56  *
57  * Label Organization
58  * ------------------
59  *
60  * Before describing the contents of the label, it's important to understand how
61  * the labels are written and updated with respect to the uberblock.
62  *
63  * When the pool configuration is altered, either because it was newly created
64  * or a device was added, we want to update all the labels such that we can deal
65  * with fatal failure at any point.  To this end, each disk has two labels which
66  * are updated before and after the uberblock is synced.  Assuming we have
67  * labels and an uberblock with the following transaction groups:
68  *
69  *              L1          UB          L2
70  *           +------+    +------+    +------+
71  *           |      |    |      |    |      |
72  *           | t10  |    | t10  |    | t10  |
73  *           |      |    |      |    |      |
74  *           +------+    +------+    +------+
75  *
76  * In this stable state, the labels and the uberblock were all updated within
77  * the same transaction group (10).  Each label is mirrored and checksummed, so
78  * that we can detect when we fail partway through writing the label.
79  *
80  * In order to identify which labels are valid, the labels are written in the
81  * following manner:
82  *
83  *	1. For each vdev, update 'L1' to the new label
84  *	2. Update the uberblock
85  *	3. For each vdev, update 'L2' to the new label
86  *
87  * Given arbitrary failure, we can determine the correct label to use based on
88  * the transaction group.  If we fail after updating L1 but before updating the
89  * UB, we will notice that L1's transaction group is greater than the uberblock,
90  * so L2 must be valid.  If we fail after writing the uberblock but before
91  * writing L2, we will notice that L2's transaction group is less than L1, and
92  * therefore L1 is valid.
93  *
94  * Another added complexity is that not every label is updated when the config
95  * is synced.  If we add a single device, we do not want to have to re-write
96  * every label for every device in the pool.  This means that both L1 and L2 may
97  * be older than the pool uberblock, because the necessary information is stored
98  * on another vdev.
99  *
100  *
101  * On-disk Format
102  * --------------
103  *
104  * The vdev label consists of two distinct parts, and is wrapped within the
105  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
106  * VTOC disk labels, but is otherwise ignored.
107  *
108  * The first half of the label is a packed nvlist which contains pool wide
109  * properties, per-vdev properties, and configuration information.  It is
110  * described in more detail below.
111  *
112  * The latter half of the label consists of a redundant array of uberblocks.
113  * These uberblocks are updated whenever a transaction group is committed,
114  * or when the configuration is updated.  When a pool is loaded, we scan each
115  * vdev for the 'best' uberblock.
116  *
117  *
118  * Configuration Information
119  * -------------------------
120  *
121  * The nvlist describing the pool and vdev contains the following elements:
122  *
123  *	version		ZFS on-disk version
124  *	name		Pool name
125  *	state		Pool state
126  *	txg		Transaction group in which this label was written
127  *	pool_guid	Unique identifier for this pool
128  *	vdev_tree	An nvlist describing vdev tree.
129  *	features_for_read
130  *			An nvlist of the features necessary for reading the MOS.
131  *
132  * Each leaf device label also contains the following:
133  *
134  *	top_guid	Unique ID for top-level vdev in which this is contained
135  *	guid		Unique ID for the leaf vdev
136  *
137  * The 'vs' configuration follows the format described in 'spa_config.c'.
138  */
139 
140 #include <sys/zfs_context.h>
141 #include <sys/spa.h>
142 #include <sys/spa_impl.h>
143 #include <sys/dmu.h>
144 #include <sys/zap.h>
145 #include <sys/vdev.h>
146 #include <sys/vdev_impl.h>
147 #include <sys/uberblock_impl.h>
148 #include <sys/metaslab.h>
149 #include <sys/metaslab_impl.h>
150 #include <sys/zio.h>
151 #include <sys/dsl_scan.h>
152 #include <sys/abd.h>
153 #include <sys/fs/zfs.h>
154 #include <sys/byteorder.h>
155 #include <sys/zfs_bootenv.h>
156 
157 /*
158  * Basic routines to read and write from a vdev label.
159  * Used throughout the rest of this file.
160  */
161 uint64_t
162 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
163 {
164 	ASSERT(offset < sizeof (vdev_label_t));
165 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
166 
167 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
168 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
169 }
170 
171 /*
172  * Returns back the vdev label associated with the passed in offset.
173  */
174 int
175 vdev_label_number(uint64_t psize, uint64_t offset)
176 {
177 	int l;
178 
179 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
180 		offset -= psize - VDEV_LABEL_END_SIZE;
181 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
182 	}
183 	l = offset / sizeof (vdev_label_t);
184 	return (l < VDEV_LABELS ? l : -1);
185 }
186 
187 static void
188 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
189     uint64_t size, zio_done_func_t *done, void *private, int flags)
190 {
191 	ASSERT(
192 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
193 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
194 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
195 
196 	zio_nowait(zio_read_phys(zio, vd,
197 	    vdev_label_offset(vd->vdev_psize, l, offset),
198 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
199 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
200 }
201 
202 void
203 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
204     uint64_t size, zio_done_func_t *done, void *private, int flags)
205 {
206 	ASSERT(
207 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
208 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
209 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
210 
211 	zio_nowait(zio_write_phys(zio, vd,
212 	    vdev_label_offset(vd->vdev_psize, l, offset),
213 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
214 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
215 }
216 
217 /*
218  * Generate the nvlist representing this vdev's stats
219  */
220 void
221 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
222 {
223 	nvlist_t *nvx;
224 	vdev_stat_t *vs;
225 	vdev_stat_ex_t *vsx;
226 
227 	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
228 	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
229 
230 	vdev_get_stats_ex(vd, vs, vsx);
231 	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
232 	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
233 
234 	/*
235 	 * Add extended stats into a special extended stats nvlist.  This keeps
236 	 * all the extended stats nicely grouped together.  The extended stats
237 	 * nvlist is then added to the main nvlist.
238 	 */
239 	nvx = fnvlist_alloc();
240 
241 	/* ZIOs in flight to disk */
242 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
243 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
244 
245 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
246 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
247 
248 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
249 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
250 
251 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
252 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
253 
254 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
255 	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
256 
257 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
258 	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
259 
260 	/* ZIOs pending */
261 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
262 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
263 
264 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
265 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
266 
267 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
268 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
269 
270 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
271 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
272 
273 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
274 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
275 
276 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
277 	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
278 
279 	/* Histograms */
280 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
281 	    vsx->vsx_total_histo[ZIO_TYPE_READ],
282 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
283 
284 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
285 	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
286 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
287 
288 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
289 	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
290 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
291 
292 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
293 	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
294 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
295 
296 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
297 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
298 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
299 
300 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
301 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
302 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
303 
304 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
305 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
306 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
307 
308 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
309 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
310 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
311 
312 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
313 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
314 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
315 
316 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
317 	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
318 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
319 
320 	/* Request sizes */
321 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
322 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
323 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
324 
325 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
326 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
327 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
328 
329 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
330 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
331 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
332 
333 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
334 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
335 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
336 
337 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
338 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
339 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
340 
341 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
342 	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
343 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
344 
345 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
346 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
347 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
348 
349 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
350 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
351 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
352 
353 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
354 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
355 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
356 
357 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
358 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
359 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
360 
361 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
362 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
363 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
364 
365 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
366 	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
367 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
368 
369 	/* IO delays */
370 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
371 
372 	/* Add extended stats nvlist to main nvlist */
373 	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
374 
375 	nvlist_free(nvx);
376 	kmem_free(vs, sizeof (*vs));
377 	kmem_free(vsx, sizeof (*vsx));
378 }
379 
380 static void
381 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
382 {
383 	spa_t *spa = vd->vdev_spa;
384 
385 	if (vd != spa->spa_root_vdev)
386 		return;
387 
388 	/* provide either current or previous scan information */
389 	pool_scan_stat_t ps;
390 	if (spa_scan_get_stats(spa, &ps) == 0) {
391 		fnvlist_add_uint64_array(nvl,
392 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
393 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
394 	}
395 
396 	pool_removal_stat_t prs;
397 	if (spa_removal_get_stats(spa, &prs) == 0) {
398 		fnvlist_add_uint64_array(nvl,
399 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
400 		    sizeof (prs) / sizeof (uint64_t));
401 	}
402 
403 	pool_checkpoint_stat_t pcs;
404 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
405 		fnvlist_add_uint64_array(nvl,
406 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
407 		    sizeof (pcs) / sizeof (uint64_t));
408 	}
409 }
410 
411 /*
412  * Generate the nvlist representing this vdev's config.
413  */
414 nvlist_t *
415 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
416     vdev_config_flag_t flags)
417 {
418 	nvlist_t *nv = NULL;
419 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
420 
421 	nv = fnvlist_alloc();
422 
423 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
424 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
425 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
426 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
427 
428 	if (vd->vdev_path != NULL)
429 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
430 
431 	if (vd->vdev_devid != NULL)
432 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
433 
434 	if (vd->vdev_physpath != NULL)
435 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
436 		    vd->vdev_physpath);
437 
438 	if (vd->vdev_fru != NULL)
439 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
440 
441 	if (vd->vdev_nparity != 0) {
442 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
443 		    VDEV_TYPE_RAIDZ) == 0);
444 
445 		/*
446 		 * Make sure someone hasn't managed to sneak a fancy new vdev
447 		 * into a crufty old storage pool.
448 		 */
449 		ASSERT(vd->vdev_nparity == 1 ||
450 		    (vd->vdev_nparity <= 2 &&
451 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
452 		    (vd->vdev_nparity <= 3 &&
453 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
454 
455 		/*
456 		 * Note that we'll add the nparity tag even on storage pools
457 		 * that only support a single parity device -- older software
458 		 * will just ignore it.
459 		 */
460 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
461 	}
462 
463 	if (vd->vdev_wholedisk != -1ULL)
464 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
465 		    vd->vdev_wholedisk);
466 
467 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
468 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
469 
470 	if (vd->vdev_isspare)
471 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
472 
473 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
474 	    vd == vd->vdev_top) {
475 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
476 		    vd->vdev_ms_array);
477 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
478 		    vd->vdev_ms_shift);
479 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
480 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
481 		    vd->vdev_asize);
482 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
483 		if (vd->vdev_removing) {
484 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
485 			    vd->vdev_removing);
486 		}
487 
488 		/* zpool command expects alloc class data */
489 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
490 			const char *bias = NULL;
491 
492 			switch (vd->vdev_alloc_bias) {
493 			case VDEV_BIAS_LOG:
494 				bias = VDEV_ALLOC_BIAS_LOG;
495 				break;
496 			case VDEV_BIAS_SPECIAL:
497 				bias = VDEV_ALLOC_BIAS_SPECIAL;
498 				break;
499 			case VDEV_BIAS_DEDUP:
500 				bias = VDEV_ALLOC_BIAS_DEDUP;
501 				break;
502 			default:
503 				ASSERT3U(vd->vdev_alloc_bias, ==,
504 				    VDEV_BIAS_NONE);
505 			}
506 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
507 			    bias);
508 		}
509 	}
510 
511 	if (vd->vdev_dtl_sm != NULL) {
512 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
513 		    space_map_object(vd->vdev_dtl_sm));
514 	}
515 
516 	if (vic->vic_mapping_object != 0) {
517 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
518 		    vic->vic_mapping_object);
519 	}
520 
521 	if (vic->vic_births_object != 0) {
522 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
523 		    vic->vic_births_object);
524 	}
525 
526 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
527 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
528 		    vic->vic_prev_indirect_vdev);
529 	}
530 
531 	if (vd->vdev_crtxg)
532 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
533 
534 	if (flags & VDEV_CONFIG_MOS) {
535 		if (vd->vdev_leaf_zap != 0) {
536 			ASSERT(vd->vdev_ops->vdev_op_leaf);
537 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
538 			    vd->vdev_leaf_zap);
539 		}
540 
541 		if (vd->vdev_top_zap != 0) {
542 			ASSERT(vd == vd->vdev_top);
543 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
544 			    vd->vdev_top_zap);
545 		}
546 
547 		if (vd->vdev_resilver_deferred) {
548 			ASSERT(vd->vdev_ops->vdev_op_leaf);
549 			ASSERT(spa->spa_resilver_deferred);
550 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
551 		}
552 	}
553 
554 	if (getstats) {
555 		vdev_config_generate_stats(vd, nv);
556 
557 		root_vdev_actions_getprogress(vd, nv);
558 
559 		/*
560 		 * Note: this can be called from open context
561 		 * (spa_get_stats()), so we need the rwlock to prevent
562 		 * the mapping from being changed by condensing.
563 		 */
564 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
565 		if (vd->vdev_indirect_mapping != NULL) {
566 			ASSERT(vd->vdev_indirect_births != NULL);
567 			vdev_indirect_mapping_t *vim =
568 			    vd->vdev_indirect_mapping;
569 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
570 			    vdev_indirect_mapping_size(vim));
571 		}
572 		rw_exit(&vd->vdev_indirect_rwlock);
573 		if (vd->vdev_mg != NULL &&
574 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
575 			/*
576 			 * Compute approximately how much memory would be used
577 			 * for the indirect mapping if this device were to
578 			 * be removed.
579 			 *
580 			 * Note: If the frag metric is invalid, then not
581 			 * enough metaslabs have been converted to have
582 			 * histograms.
583 			 */
584 			uint64_t seg_count = 0;
585 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
586 
587 			/*
588 			 * There are the same number of allocated segments
589 			 * as free segments, so we will have at least one
590 			 * entry per free segment.  However, small free
591 			 * segments (smaller than vdev_removal_max_span)
592 			 * will be combined with adjacent allocated segments
593 			 * as a single mapping.
594 			 */
595 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
596 				if (1ULL << (i + 1) < vdev_removal_max_span) {
597 					to_alloc +=
598 					    vd->vdev_mg->mg_histogram[i] <<
599 					    i + 1;
600 				} else {
601 					seg_count +=
602 					    vd->vdev_mg->mg_histogram[i];
603 				}
604 			}
605 
606 			/*
607 			 * The maximum length of a mapping is
608 			 * zfs_remove_max_segment, so we need at least one entry
609 			 * per zfs_remove_max_segment of allocated data.
610 			 */
611 			seg_count += to_alloc / zfs_remove_max_segment;
612 
613 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
614 			    seg_count *
615 			    sizeof (vdev_indirect_mapping_entry_phys_t));
616 		}
617 	}
618 
619 	if (!vd->vdev_ops->vdev_op_leaf) {
620 		nvlist_t **child;
621 		int c, idx;
622 
623 		ASSERT(!vd->vdev_ishole);
624 
625 		/*
626 		 * Indirect vdevs store the remnants of a removed vdev;
627 		 * they have no direct children, but are not leaf devices.
628 		 * The content of an indirect device is stored elsewhere
629 		 * in the pool.  We can avoid a pointless zero-length alloc
630 		 * and return early here.
631 		 */
632 		if (vd->vdev_children == 0)
633 			return (nv);
634 
635 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
636 		    KM_SLEEP);
637 
638 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
639 			vdev_t *cvd = vd->vdev_child[c];
640 
641 			/*
642 			 * If we're generating an nvlist of removing
643 			 * vdevs then skip over any device which is
644 			 * not being removed.
645 			 */
646 			if ((flags & VDEV_CONFIG_REMOVING) &&
647 			    !cvd->vdev_removing)
648 				continue;
649 
650 			child[idx++] = vdev_config_generate(spa, cvd,
651 			    getstats, flags);
652 		}
653 
654 		if (idx) {
655 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
656 			    child, idx);
657 		}
658 
659 		for (c = 0; c < idx; c++)
660 			nvlist_free(child[c]);
661 
662 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
663 
664 	} else {
665 		const char *aux = NULL;
666 
667 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
668 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
669 		if (vd->vdev_resilver_txg != 0)
670 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
671 			    vd->vdev_resilver_txg);
672 		if (vd->vdev_faulted)
673 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
674 		if (vd->vdev_degraded)
675 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
676 		if (vd->vdev_removed)
677 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
678 		if (vd->vdev_unspare)
679 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
680 		if (vd->vdev_ishole)
681 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
682 
683 		switch (vd->vdev_stat.vs_aux) {
684 		case VDEV_AUX_ERR_EXCEEDED:
685 			aux = "err_exceeded";
686 			break;
687 
688 		case VDEV_AUX_EXTERNAL:
689 			aux = "external";
690 			break;
691 		}
692 
693 		if (aux != NULL)
694 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
695 
696 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
697 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
698 			    vd->vdev_orig_guid);
699 		}
700 	}
701 
702 	return (nv);
703 }
704 
705 /*
706  * Generate a view of the top-level vdevs.  If we currently have holes
707  * in the namespace, then generate an array which contains a list of holey
708  * vdevs.  Additionally, add the number of top-level children that currently
709  * exist.
710  */
711 void
712 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
713 {
714 	vdev_t *rvd = spa->spa_root_vdev;
715 	uint64_t *array;
716 	uint_t c, idx;
717 
718 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
719 
720 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
721 		vdev_t *tvd = rvd->vdev_child[c];
722 
723 		if (tvd->vdev_ishole) {
724 			array[idx++] = c;
725 		}
726 	}
727 
728 	if (idx) {
729 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
730 		    array, idx) == 0);
731 	}
732 
733 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
734 	    rvd->vdev_children) == 0);
735 
736 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
737 }
738 
739 /*
740  * Returns the configuration from the label of the given vdev. For vdevs
741  * which don't have a txg value stored on their label (i.e. spares/cache)
742  * or have not been completely initialized (txg = 0) just return
743  * the configuration from the first valid label we find. Otherwise,
744  * find the most up-to-date label that does not exceed the specified
745  * 'txg' value.
746  */
747 nvlist_t *
748 vdev_label_read_config(vdev_t *vd, uint64_t txg)
749 {
750 	spa_t *spa = vd->vdev_spa;
751 	nvlist_t *config = NULL;
752 	vdev_phys_t *vp;
753 	abd_t *vp_abd;
754 	zio_t *zio;
755 	uint64_t best_txg = 0;
756 	uint64_t label_txg = 0;
757 	int error = 0;
758 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
759 	    ZIO_FLAG_SPECULATIVE;
760 
761 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
762 
763 	if (!vdev_readable(vd))
764 		return (NULL);
765 
766 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
767 	vp = abd_to_buf(vp_abd);
768 
769 retry:
770 	for (int l = 0; l < VDEV_LABELS; l++) {
771 		nvlist_t *label = NULL;
772 
773 		zio = zio_root(spa, NULL, NULL, flags);
774 
775 		vdev_label_read(zio, vd, l, vp_abd,
776 		    offsetof(vdev_label_t, vl_vdev_phys),
777 		    sizeof (vdev_phys_t), NULL, NULL, flags);
778 
779 		if (zio_wait(zio) == 0 &&
780 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
781 		    &label, 0) == 0) {
782 			/*
783 			 * Auxiliary vdevs won't have txg values in their
784 			 * labels and newly added vdevs may not have been
785 			 * completely initialized so just return the
786 			 * configuration from the first valid label we
787 			 * encounter.
788 			 */
789 			error = nvlist_lookup_uint64(label,
790 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
791 			if ((error || label_txg == 0) && !config) {
792 				config = label;
793 				break;
794 			} else if (label_txg <= txg && label_txg > best_txg) {
795 				best_txg = label_txg;
796 				nvlist_free(config);
797 				config = fnvlist_dup(label);
798 			}
799 		}
800 
801 		if (label != NULL) {
802 			nvlist_free(label);
803 			label = NULL;
804 		}
805 	}
806 
807 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
808 		flags |= ZIO_FLAG_TRYHARD;
809 		goto retry;
810 	}
811 
812 	/*
813 	 * We found a valid label but it didn't pass txg restrictions.
814 	 */
815 	if (config == NULL && label_txg != 0) {
816 		vdev_dbgmsg(vd, "label discarded as txg is too large "
817 		    "(%llu > %llu)", (u_longlong_t)label_txg,
818 		    (u_longlong_t)txg);
819 	}
820 
821 	abd_free(vp_abd);
822 
823 	return (config);
824 }
825 
826 /*
827  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
828  * in with the device guid if this spare is active elsewhere on the system.
829  */
830 static boolean_t
831 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
832     uint64_t *spare_guid, uint64_t *l2cache_guid)
833 {
834 	spa_t *spa = vd->vdev_spa;
835 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
836 	uint64_t vdtxg = 0;
837 	nvlist_t *label;
838 
839 	if (spare_guid)
840 		*spare_guid = 0ULL;
841 	if (l2cache_guid)
842 		*l2cache_guid = 0ULL;
843 
844 	/*
845 	 * Read the label, if any, and perform some basic sanity checks.
846 	 */
847 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
848 		return (B_FALSE);
849 
850 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
851 	    &vdtxg);
852 
853 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
854 	    &state) != 0 ||
855 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
856 	    &device_guid) != 0) {
857 		nvlist_free(label);
858 		return (B_FALSE);
859 	}
860 
861 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
862 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
863 	    &pool_guid) != 0 ||
864 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
865 	    &txg) != 0)) {
866 		nvlist_free(label);
867 		return (B_FALSE);
868 	}
869 
870 	nvlist_free(label);
871 
872 	/*
873 	 * Check to see if this device indeed belongs to the pool it claims to
874 	 * be a part of.  The only way this is allowed is if the device is a hot
875 	 * spare (which we check for later on).
876 	 */
877 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
878 	    !spa_guid_exists(pool_guid, device_guid) &&
879 	    !spa_spare_exists(device_guid, NULL, NULL) &&
880 	    !spa_l2cache_exists(device_guid, NULL))
881 		return (B_FALSE);
882 
883 	/*
884 	 * If the transaction group is zero, then this an initialized (but
885 	 * unused) label.  This is only an error if the create transaction
886 	 * on-disk is the same as the one we're using now, in which case the
887 	 * user has attempted to add the same vdev multiple times in the same
888 	 * transaction.
889 	 */
890 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
891 	    txg == 0 && vdtxg == crtxg)
892 		return (B_TRUE);
893 
894 	/*
895 	 * Check to see if this is a spare device.  We do an explicit check for
896 	 * spa_has_spare() here because it may be on our pending list of spares
897 	 * to add.  We also check if it is an l2cache device.
898 	 */
899 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
900 	    spa_has_spare(spa, device_guid)) {
901 		if (spare_guid)
902 			*spare_guid = device_guid;
903 
904 		switch (reason) {
905 		case VDEV_LABEL_CREATE:
906 		case VDEV_LABEL_L2CACHE:
907 			return (B_TRUE);
908 
909 		case VDEV_LABEL_REPLACE:
910 			return (!spa_has_spare(spa, device_guid) ||
911 			    spare_pool != 0ULL);
912 
913 		case VDEV_LABEL_SPARE:
914 			return (spa_has_spare(spa, device_guid));
915 		}
916 	}
917 
918 	/*
919 	 * Check to see if this is an l2cache device.
920 	 */
921 	if (spa_l2cache_exists(device_guid, NULL))
922 		return (B_TRUE);
923 
924 	/*
925 	 * We can't rely on a pool's state if it's been imported
926 	 * read-only.  Instead we look to see if the pools is marked
927 	 * read-only in the namespace and set the state to active.
928 	 */
929 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
930 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
931 	    spa_mode(spa) == FREAD)
932 		state = POOL_STATE_ACTIVE;
933 
934 	/*
935 	 * If the device is marked ACTIVE, then this device is in use by another
936 	 * pool on the system.
937 	 */
938 	return (state == POOL_STATE_ACTIVE);
939 }
940 
941 /*
942  * Initialize a vdev label.  We check to make sure each leaf device is not in
943  * use, and writable.  We put down an initial label which we will later
944  * overwrite with a complete label.  Note that it's important to do this
945  * sequentially, not in parallel, so that we catch cases of multiple use of the
946  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
947  * itself.
948  */
949 int
950 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
951 {
952 	spa_t *spa = vd->vdev_spa;
953 	nvlist_t *label;
954 	vdev_phys_t *vp;
955 	abd_t *vp_abd;
956 	abd_t *bootenv;
957 	uberblock_t *ub;
958 	abd_t *ub_abd;
959 	zio_t *zio;
960 	char *buf;
961 	size_t buflen;
962 	int error;
963 	uint64_t spare_guid = 0, l2cache_guid = 0;
964 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
965 
966 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
967 
968 	for (int c = 0; c < vd->vdev_children; c++)
969 		if ((error = vdev_label_init(vd->vdev_child[c],
970 		    crtxg, reason)) != 0)
971 			return (error);
972 
973 	/* Track the creation time for this vdev */
974 	vd->vdev_crtxg = crtxg;
975 
976 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
977 		return (0);
978 
979 	/*
980 	 * Dead vdevs cannot be initialized.
981 	 */
982 	if (vdev_is_dead(vd))
983 		return (SET_ERROR(EIO));
984 
985 	/*
986 	 * Determine if the vdev is in use.
987 	 */
988 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
989 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
990 		return (SET_ERROR(EBUSY));
991 
992 	/*
993 	 * If this is a request to add or replace a spare or l2cache device
994 	 * that is in use elsewhere on the system, then we must update the
995 	 * guid (which was initialized to a random value) to reflect the
996 	 * actual GUID (which is shared between multiple pools).
997 	 */
998 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
999 	    spare_guid != 0ULL) {
1000 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
1001 
1002 		vd->vdev_guid += guid_delta;
1003 
1004 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1005 			pvd->vdev_guid_sum += guid_delta;
1006 
1007 		/*
1008 		 * If this is a replacement, then we want to fallthrough to the
1009 		 * rest of the code.  If we're adding a spare, then it's already
1010 		 * labeled appropriately and we can just return.
1011 		 */
1012 		if (reason == VDEV_LABEL_SPARE)
1013 			return (0);
1014 		ASSERT(reason == VDEV_LABEL_REPLACE ||
1015 		    reason == VDEV_LABEL_SPLIT);
1016 	}
1017 
1018 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1019 	    l2cache_guid != 0ULL) {
1020 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1021 
1022 		vd->vdev_guid += guid_delta;
1023 
1024 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1025 			pvd->vdev_guid_sum += guid_delta;
1026 
1027 		/*
1028 		 * If this is a replacement, then we want to fallthrough to the
1029 		 * rest of the code.  If we're adding an l2cache, then it's
1030 		 * already labeled appropriately and we can just return.
1031 		 */
1032 		if (reason == VDEV_LABEL_L2CACHE)
1033 			return (0);
1034 		ASSERT(reason == VDEV_LABEL_REPLACE);
1035 	}
1036 
1037 	/*
1038 	 * Initialize its label.
1039 	 */
1040 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1041 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1042 	vp = abd_to_buf(vp_abd);
1043 
1044 	/*
1045 	 * Generate a label describing the pool and our top-level vdev.
1046 	 * We mark it as being from txg 0 to indicate that it's not
1047 	 * really part of an active pool just yet.  The labels will
1048 	 * be written again with a meaningful txg by spa_sync().
1049 	 */
1050 	if (reason == VDEV_LABEL_SPARE ||
1051 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1052 		/*
1053 		 * For inactive hot spares, we generate a special label that
1054 		 * identifies as a mutually shared hot spare.  We write the
1055 		 * label if we are adding a hot spare, or if we are removing an
1056 		 * active hot spare (in which case we want to revert the
1057 		 * labels).
1058 		 */
1059 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1060 
1061 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1062 		    spa_version(spa)) == 0);
1063 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1064 		    POOL_STATE_SPARE) == 0);
1065 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1066 		    vd->vdev_guid) == 0);
1067 	} else if (reason == VDEV_LABEL_L2CACHE ||
1068 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1069 		/*
1070 		 * For level 2 ARC devices, add a special label.
1071 		 */
1072 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1073 
1074 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1075 		    spa_version(spa)) == 0);
1076 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1077 		    POOL_STATE_L2CACHE) == 0);
1078 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1079 		    vd->vdev_guid) == 0);
1080 	} else {
1081 		uint64_t txg = 0ULL;
1082 
1083 		if (reason == VDEV_LABEL_SPLIT)
1084 			txg = spa->spa_uberblock.ub_txg;
1085 		label = spa_config_generate(spa, vd, txg, B_FALSE);
1086 
1087 		/*
1088 		 * Add our creation time.  This allows us to detect multiple
1089 		 * vdev uses as described above, and automatically expires if we
1090 		 * fail.
1091 		 */
1092 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1093 		    crtxg) == 0);
1094 	}
1095 
1096 	buf = vp->vp_nvlist;
1097 	buflen = sizeof (vp->vp_nvlist);
1098 
1099 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1100 	if (error != 0) {
1101 		nvlist_free(label);
1102 		abd_free(vp_abd);
1103 		/* EFAULT means nvlist_pack ran out of room */
1104 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
1105 	}
1106 
1107 	/*
1108 	 * Initialize uberblock template.
1109 	 */
1110 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1111 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1112 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1113 	ub = abd_to_buf(ub_abd);
1114 	ub->ub_txg = 0;
1115 
1116 	/* Initialize the 2nd padding area. */
1117 	bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1118 	abd_zero(bootenv, VDEV_PAD_SIZE);
1119 
1120 	/*
1121 	 * Write everything in parallel.
1122 	 */
1123 retry:
1124 	zio = zio_root(spa, NULL, NULL, flags);
1125 
1126 	for (int l = 0; l < VDEV_LABELS; l++) {
1127 
1128 		vdev_label_write(zio, vd, l, vp_abd,
1129 		    offsetof(vdev_label_t, vl_vdev_phys),
1130 		    sizeof (vdev_phys_t), NULL, NULL, flags);
1131 
1132 		/*
1133 		 * Skip the 1st padding area.
1134 		 * Zero out the 2nd padding area where it might have
1135 		 * left over data from previous filesystem format.
1136 		 */
1137 		vdev_label_write(zio, vd, l, bootenv,
1138 		    offsetof(vdev_label_t, vl_be),
1139 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1140 
1141 		vdev_label_write(zio, vd, l, ub_abd,
1142 		    offsetof(vdev_label_t, vl_uberblock),
1143 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1144 	}
1145 
1146 	error = zio_wait(zio);
1147 
1148 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1149 		flags |= ZIO_FLAG_TRYHARD;
1150 		goto retry;
1151 	}
1152 
1153 	nvlist_free(label);
1154 	abd_free(bootenv);
1155 	abd_free(ub_abd);
1156 	abd_free(vp_abd);
1157 
1158 	/*
1159 	 * If this vdev hasn't been previously identified as a spare, then we
1160 	 * mark it as such only if a) we are labeling it as a spare, or b) it
1161 	 * exists as a spare elsewhere in the system.  Do the same for
1162 	 * level 2 ARC devices.
1163 	 */
1164 	if (error == 0 && !vd->vdev_isspare &&
1165 	    (reason == VDEV_LABEL_SPARE ||
1166 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1167 		spa_spare_add(vd);
1168 
1169 	if (error == 0 && !vd->vdev_isl2cache &&
1170 	    (reason == VDEV_LABEL_L2CACHE ||
1171 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1172 		spa_l2cache_add(vd);
1173 
1174 	return (error);
1175 }
1176 
1177 /*
1178  * Done callback for vdev_label_read_bootenv_impl. If this is the first
1179  * callback to finish, store our abd in the callback pointer. Otherwise, we
1180  * just free our abd and return.
1181  */
1182 static void
1183 vdev_label_read_bootenv_done(zio_t *zio)
1184 {
1185 	zio_t *rio = zio->io_private;
1186 	abd_t **cbp = rio->io_private;
1187 
1188 	ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1189 
1190 	if (zio->io_error == 0) {
1191 		mutex_enter(&rio->io_lock);
1192 		if (*cbp == NULL) {
1193 			/* Will free this buffer in vdev_label_read_bootenv. */
1194 			*cbp = zio->io_abd;
1195 		} else {
1196 			abd_free(zio->io_abd);
1197 		}
1198 		mutex_exit(&rio->io_lock);
1199 	} else {
1200 		abd_free(zio->io_abd);
1201 	}
1202 }
1203 
1204 static void
1205 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1206 {
1207 	for (int c = 0; c < vd->vdev_children; c++)
1208 		vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1209 
1210 	/*
1211 	 * We just use the first label that has a correct checksum; the
1212 	 * bootloader should have rewritten them all to be the same on boot,
1213 	 * and any changes we made since boot have been the same across all
1214 	 * labels.
1215 	 */
1216 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1217 		for (int l = 0; l < VDEV_LABELS; l++) {
1218 			vdev_label_read(zio, vd, l,
1219 			    abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1220 			    offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1221 			    vdev_label_read_bootenv_done, zio, flags);
1222 		}
1223 	}
1224 }
1225 
1226 int
1227 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
1228 {
1229 	nvlist_t *config;
1230 	spa_t *spa = rvd->vdev_spa;
1231 	abd_t *abd = NULL;
1232 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1233 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1234 
1235 	ASSERT(bootenv);
1236 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1237 
1238 	zio_t *zio = zio_root(spa, NULL, &abd, flags);
1239 	vdev_label_read_bootenv_impl(zio, rvd, flags);
1240 	int err = zio_wait(zio);
1241 
1242 	if (abd != NULL) {
1243 		char *buf;
1244 		vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1245 
1246 		vbe->vbe_version = ntohll(vbe->vbe_version);
1247 		switch (vbe->vbe_version) {
1248 		case VB_RAW:
1249 			/*
1250 			 * if we have textual data in vbe_bootenv, create nvlist
1251 			 * with key "envmap".
1252 			 */
1253 			fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1254 			vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1255 			fnvlist_add_string(bootenv, GRUB_ENVMAP,
1256 			    vbe->vbe_bootenv);
1257 			break;
1258 
1259 		case VB_NVLIST:
1260 			err = nvlist_unpack(vbe->vbe_bootenv,
1261 			    sizeof (vbe->vbe_bootenv), &config, 0);
1262 			if (err == 0) {
1263 				fnvlist_merge(bootenv, config);
1264 				nvlist_free(config);
1265 				break;
1266 			}
1267 			/* FALLTHROUGH */
1268 		default:
1269 			/* Check for FreeBSD zfs bootonce command string */
1270 			buf = abd_to_buf(abd);
1271 			if (*buf == '\0') {
1272 				fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1273 				    VB_NVLIST);
1274 				break;
1275 			}
1276 			fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
1277 		}
1278 
1279 		/*
1280 		 * abd was allocated in vdev_label_read_bootenv_impl()
1281 		 */
1282 		abd_free(abd);
1283 		/*
1284 		 * If we managed to read any successfully,
1285 		 * return success.
1286 		 */
1287 		return (0);
1288 	}
1289 	return (err);
1290 }
1291 
1292 int
1293 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
1294 {
1295 	zio_t *zio;
1296 	spa_t *spa = vd->vdev_spa;
1297 	vdev_boot_envblock_t *bootenv;
1298 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1299 	int error;
1300 	size_t nvsize;
1301 	char *nvbuf;
1302 
1303 	error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1304 	if (error != 0)
1305 		return (SET_ERROR(error));
1306 
1307 	if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
1308 		return (SET_ERROR(E2BIG));
1309 	}
1310 
1311 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1312 
1313 	error = ENXIO;
1314 	for (int c = 0; c < vd->vdev_children; c++) {
1315 		int child_err;
1316 
1317 		child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
1318 		/*
1319 		 * As long as any of the disks managed to write all of their
1320 		 * labels successfully, return success.
1321 		 */
1322 		if (child_err == 0)
1323 			error = child_err;
1324 	}
1325 
1326 	if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1327 	    !vdev_writeable(vd)) {
1328 		return (error);
1329 	}
1330 	ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1331 	abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1332 	abd_zero(abd, VDEV_PAD_SIZE);
1333 
1334 	bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1335 	nvbuf = bootenv->vbe_bootenv;
1336 	nvsize = sizeof (bootenv->vbe_bootenv);
1337 
1338 	bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1339 	switch (bootenv->vbe_version) {
1340 	case VB_RAW:
1341 		if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) {
1342 			(void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize);
1343 		}
1344 		error = 0;
1345 		break;
1346 
1347 	case VB_NVLIST:
1348 		error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1349 		    KM_SLEEP);
1350 		break;
1351 
1352 	default:
1353 		error = EINVAL;
1354 		break;
1355 	}
1356 
1357 	if (error == 0) {
1358 		bootenv->vbe_version = htonll(bootenv->vbe_version);
1359 		abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1360 	} else {
1361 		abd_free(abd);
1362 		return (SET_ERROR(error));
1363 	}
1364 
1365 retry:
1366 	zio = zio_root(spa, NULL, NULL, flags);
1367 	for (int l = 0; l < VDEV_LABELS; l++) {
1368 		vdev_label_write(zio, vd, l, abd,
1369 		    offsetof(vdev_label_t, vl_be),
1370 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1371 	}
1372 
1373 	error = zio_wait(zio);
1374 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1375 		flags |= ZIO_FLAG_TRYHARD;
1376 		goto retry;
1377 	}
1378 
1379 	abd_free(abd);
1380 	return (error);
1381 }
1382 
1383 /*
1384  * ==========================================================================
1385  * uberblock load/sync
1386  * ==========================================================================
1387  */
1388 
1389 /*
1390  * Consider the following situation: txg is safely synced to disk.  We've
1391  * written the first uberblock for txg + 1, and then we lose power.  When we
1392  * come back up, we fail to see the uberblock for txg + 1 because, say,
1393  * it was on a mirrored device and the replica to which we wrote txg + 1
1394  * is now offline.  If we then make some changes and sync txg + 1, and then
1395  * the missing replica comes back, then for a few seconds we'll have two
1396  * conflicting uberblocks on disk with the same txg.  The solution is simple:
1397  * among uberblocks with equal txg, choose the one with the latest timestamp.
1398  */
1399 static int
1400 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1401 {
1402 	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1403 
1404 	if (likely(cmp))
1405 		return (cmp);
1406 
1407 	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1408 	if (likely(cmp))
1409 		return (cmp);
1410 
1411 	/*
1412 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1413 	 * ZFS, e.g. zfsonlinux >= 0.7.
1414 	 *
1415 	 * If one ub has MMP and the other does not, they were written by
1416 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1417 	 * a 0 value.
1418 	 *
1419 	 * Since timestamp and txg are the same if we get this far, either is
1420 	 * acceptable for importing the pool.
1421 	 */
1422 	unsigned int seq1 = 0;
1423 	unsigned int seq2 = 0;
1424 
1425 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1426 		seq1 = MMP_SEQ(ub1);
1427 
1428 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1429 		seq2 = MMP_SEQ(ub2);
1430 
1431 	return (TREE_CMP(seq1, seq2));
1432 }
1433 
1434 struct ubl_cbdata {
1435 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1436 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1437 };
1438 
1439 static void
1440 vdev_uberblock_load_done(zio_t *zio)
1441 {
1442 	vdev_t *vd = zio->io_vd;
1443 	spa_t *spa = zio->io_spa;
1444 	zio_t *rio = zio->io_private;
1445 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1446 	struct ubl_cbdata *cbp = rio->io_private;
1447 
1448 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1449 
1450 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1451 		mutex_enter(&rio->io_lock);
1452 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1453 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1454 			/*
1455 			 * Keep track of the vdev in which this uberblock
1456 			 * was found. We will use this information later
1457 			 * to obtain the config nvlist associated with
1458 			 * this uberblock.
1459 			 */
1460 			*cbp->ubl_ubbest = *ub;
1461 			cbp->ubl_vd = vd;
1462 		}
1463 		mutex_exit(&rio->io_lock);
1464 	}
1465 
1466 	abd_free(zio->io_abd);
1467 }
1468 
1469 static void
1470 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1471     struct ubl_cbdata *cbp)
1472 {
1473 	for (int c = 0; c < vd->vdev_children; c++)
1474 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1475 
1476 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1477 		for (int l = 0; l < VDEV_LABELS; l++) {
1478 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1479 				vdev_label_read(zio, vd, l,
1480 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1481 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1482 				    VDEV_UBERBLOCK_SIZE(vd),
1483 				    vdev_uberblock_load_done, zio, flags);
1484 			}
1485 		}
1486 	}
1487 }
1488 
1489 /*
1490  * Reads the 'best' uberblock from disk along with its associated
1491  * configuration. First, we read the uberblock array of each label of each
1492  * vdev, keeping track of the uberblock with the highest txg in each array.
1493  * Then, we read the configuration from the same vdev as the best uberblock.
1494  */
1495 void
1496 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1497 {
1498 	zio_t *zio;
1499 	spa_t *spa = rvd->vdev_spa;
1500 	struct ubl_cbdata cb;
1501 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1502 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1503 
1504 	ASSERT(ub);
1505 	ASSERT(config);
1506 
1507 	bzero(ub, sizeof (uberblock_t));
1508 	*config = NULL;
1509 
1510 	cb.ubl_ubbest = ub;
1511 	cb.ubl_vd = NULL;
1512 
1513 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1514 	zio = zio_root(spa, NULL, &cb, flags);
1515 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1516 	(void) zio_wait(zio);
1517 
1518 	/*
1519 	 * It's possible that the best uberblock was discovered on a label
1520 	 * that has a configuration which was written in a future txg.
1521 	 * Search all labels on this vdev to find the configuration that
1522 	 * matches the txg for our uberblock.
1523 	 */
1524 	if (cb.ubl_vd != NULL) {
1525 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1526 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1527 
1528 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1529 		if (*config == NULL && spa->spa_extreme_rewind) {
1530 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1531 			    "Trying again without txg restrictions.");
1532 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1533 		}
1534 		if (*config == NULL) {
1535 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1536 		}
1537 	}
1538 	spa_config_exit(spa, SCL_ALL, FTAG);
1539 }
1540 
1541 /*
1542  * On success, increment root zio's count of good writes.
1543  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1544  */
1545 static void
1546 vdev_uberblock_sync_done(zio_t *zio)
1547 {
1548 	uint64_t *good_writes = zio->io_private;
1549 
1550 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1551 		atomic_inc_64(good_writes);
1552 }
1553 
1554 /*
1555  * Write the uberblock to all labels of all leaves of the specified vdev.
1556  */
1557 static void
1558 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1559     uberblock_t *ub, vdev_t *vd, int flags)
1560 {
1561 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1562 		vdev_uberblock_sync(zio, good_writes,
1563 		    ub, vd->vdev_child[c], flags);
1564 	}
1565 
1566 	if (!vd->vdev_ops->vdev_op_leaf)
1567 		return;
1568 
1569 	if (!vdev_writeable(vd))
1570 		return;
1571 
1572 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1573 	int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1574 
1575 	/* Copy the uberblock_t into the ABD */
1576 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1577 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1578 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1579 
1580 	for (int l = 0; l < VDEV_LABELS; l++)
1581 		vdev_label_write(zio, vd, l, ub_abd,
1582 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1583 		    vdev_uberblock_sync_done, good_writes,
1584 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1585 
1586 	abd_free(ub_abd);
1587 }
1588 
1589 /* Sync the uberblocks to all vdevs in svd[] */
1590 int
1591 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1592 {
1593 	spa_t *spa = svd[0]->vdev_spa;
1594 	zio_t *zio;
1595 	uint64_t good_writes = 0;
1596 
1597 	zio = zio_root(spa, NULL, NULL, flags);
1598 
1599 	for (int v = 0; v < svdcount; v++)
1600 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1601 
1602 	(void) zio_wait(zio);
1603 
1604 	/*
1605 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1606 	 * are no longer needed (because the new uberblocks and the even
1607 	 * labels are safely on disk), so it is safe to overwrite them.
1608 	 */
1609 	zio = zio_root(spa, NULL, NULL, flags);
1610 
1611 	for (int v = 0; v < svdcount; v++) {
1612 		if (vdev_writeable(svd[v])) {
1613 			zio_flush(zio, svd[v]);
1614 		}
1615 	}
1616 
1617 	(void) zio_wait(zio);
1618 
1619 	return (good_writes >= 1 ? 0 : EIO);
1620 }
1621 
1622 /*
1623  * On success, increment the count of good writes for our top-level vdev.
1624  */
1625 static void
1626 vdev_label_sync_done(zio_t *zio)
1627 {
1628 	uint64_t *good_writes = zio->io_private;
1629 
1630 	if (zio->io_error == 0)
1631 		atomic_inc_64(good_writes);
1632 }
1633 
1634 /*
1635  * If there weren't enough good writes, indicate failure to the parent.
1636  */
1637 static void
1638 vdev_label_sync_top_done(zio_t *zio)
1639 {
1640 	uint64_t *good_writes = zio->io_private;
1641 
1642 	if (*good_writes == 0)
1643 		zio->io_error = SET_ERROR(EIO);
1644 
1645 	kmem_free(good_writes, sizeof (uint64_t));
1646 }
1647 
1648 /*
1649  * We ignore errors for log and cache devices, simply free the private data.
1650  */
1651 static void
1652 vdev_label_sync_ignore_done(zio_t *zio)
1653 {
1654 	kmem_free(zio->io_private, sizeof (uint64_t));
1655 }
1656 
1657 /*
1658  * Write all even or odd labels to all leaves of the specified vdev.
1659  */
1660 static void
1661 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1662     vdev_t *vd, int l, uint64_t txg, int flags)
1663 {
1664 	nvlist_t *label;
1665 	vdev_phys_t *vp;
1666 	abd_t *vp_abd;
1667 	char *buf;
1668 	size_t buflen;
1669 
1670 	for (int c = 0; c < vd->vdev_children; c++) {
1671 		vdev_label_sync(zio, good_writes,
1672 		    vd->vdev_child[c], l, txg, flags);
1673 	}
1674 
1675 	if (!vd->vdev_ops->vdev_op_leaf)
1676 		return;
1677 
1678 	if (!vdev_writeable(vd))
1679 		return;
1680 
1681 	/*
1682 	 * Generate a label describing the top-level config to which we belong.
1683 	 */
1684 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1685 
1686 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1687 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1688 	vp = abd_to_buf(vp_abd);
1689 
1690 	buf = vp->vp_nvlist;
1691 	buflen = sizeof (vp->vp_nvlist);
1692 
1693 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1694 		for (; l < VDEV_LABELS; l += 2) {
1695 			vdev_label_write(zio, vd, l, vp_abd,
1696 			    offsetof(vdev_label_t, vl_vdev_phys),
1697 			    sizeof (vdev_phys_t),
1698 			    vdev_label_sync_done, good_writes,
1699 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1700 		}
1701 	}
1702 
1703 	abd_free(vp_abd);
1704 	nvlist_free(label);
1705 }
1706 
1707 int
1708 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1709 {
1710 	list_t *dl = &spa->spa_config_dirty_list;
1711 	vdev_t *vd;
1712 	zio_t *zio;
1713 	int error;
1714 
1715 	/*
1716 	 * Write the new labels to disk.
1717 	 */
1718 	zio = zio_root(spa, NULL, NULL, flags);
1719 
1720 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1721 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1722 		    KM_SLEEP);
1723 
1724 		ASSERT(!vd->vdev_ishole);
1725 
1726 		zio_t *vio = zio_null(zio, spa, NULL,
1727 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1728 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1729 		    good_writes, flags);
1730 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1731 		zio_nowait(vio);
1732 	}
1733 
1734 	error = zio_wait(zio);
1735 
1736 	/*
1737 	 * Flush the new labels to disk.
1738 	 */
1739 	zio = zio_root(spa, NULL, NULL, flags);
1740 
1741 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1742 		zio_flush(zio, vd);
1743 
1744 	(void) zio_wait(zio);
1745 
1746 	return (error);
1747 }
1748 
1749 /*
1750  * Sync the uberblock and any changes to the vdev configuration.
1751  *
1752  * The order of operations is carefully crafted to ensure that
1753  * if the system panics or loses power at any time, the state on disk
1754  * is still transactionally consistent.  The in-line comments below
1755  * describe the failure semantics at each stage.
1756  *
1757  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1758  * at any time, you can just call it again, and it will resume its work.
1759  */
1760 int
1761 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1762 {
1763 	spa_t *spa = svd[0]->vdev_spa;
1764 	uberblock_t *ub = &spa->spa_uberblock;
1765 	int error = 0;
1766 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1767 
1768 	ASSERT(svdcount != 0);
1769 retry:
1770 	/*
1771 	 * Normally, we don't want to try too hard to write every label and
1772 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1773 	 * sync process to block while we retry.  But if we can't write a
1774 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1775 	 * bailing out and declaring the pool faulted.
1776 	 */
1777 	if (error != 0) {
1778 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1779 			return (error);
1780 		flags |= ZIO_FLAG_TRYHARD;
1781 	}
1782 
1783 	ASSERT(ub->ub_txg <= txg);
1784 
1785 	/*
1786 	 * If this isn't a resync due to I/O errors,
1787 	 * and nothing changed in this transaction group,
1788 	 * and the vdev configuration hasn't changed,
1789 	 * then there's nothing to do.
1790 	 */
1791 	if (ub->ub_txg < txg) {
1792 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1793 		    txg, spa->spa_mmp.mmp_delay);
1794 
1795 		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1796 			return (0);
1797 	}
1798 
1799 	if (txg > spa_freeze_txg(spa))
1800 		return (0);
1801 
1802 	ASSERT(txg <= spa->spa_final_txg);
1803 
1804 	/*
1805 	 * Flush the write cache of every disk that's been written to
1806 	 * in this transaction group.  This ensures that all blocks
1807 	 * written in this txg will be committed to stable storage
1808 	 * before any uberblock that references them.
1809 	 */
1810 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1811 
1812 	for (vdev_t *vd =
1813 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1814 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1815 		zio_flush(zio, vd);
1816 
1817 	(void) zio_wait(zio);
1818 
1819 	/*
1820 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1821 	 * system dies in the middle of this process, that's OK: all of the
1822 	 * even labels that made it to disk will be newer than any uberblock,
1823 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1824 	 * which have not yet been touched, will still be valid.  We flush
1825 	 * the new labels to disk to ensure that all even-label updates
1826 	 * are committed to stable storage before the uberblock update.
1827 	 */
1828 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1829 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1830 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1831 			    "for pool '%s' when syncing out the even labels "
1832 			    "of dirty vdevs", error, spa_name(spa));
1833 		}
1834 		goto retry;
1835 	}
1836 
1837 	/*
1838 	 * Sync the uberblocks to all vdevs in svd[].
1839 	 * If the system dies in the middle of this step, there are two cases
1840 	 * to consider, and the on-disk state is consistent either way:
1841 	 *
1842 	 * (1)	If none of the new uberblocks made it to disk, then the
1843 	 *	previous uberblock will be the newest, and the odd labels
1844 	 *	(which had not yet been touched) will be valid with respect
1845 	 *	to that uberblock.
1846 	 *
1847 	 * (2)	If one or more new uberblocks made it to disk, then they
1848 	 *	will be the newest, and the even labels (which had all
1849 	 *	been successfully committed) will be valid with respect
1850 	 *	to the new uberblocks.
1851 	 */
1852 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1853 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1854 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1855 			    "%d for pool '%s'", error, spa_name(spa));
1856 		}
1857 		goto retry;
1858 	}
1859 
1860 	if (spa_multihost(spa))
1861 		mmp_update_uberblock(spa, ub);
1862 
1863 	/*
1864 	 * Sync out odd labels for every dirty vdev.  If the system dies
1865 	 * in the middle of this process, the even labels and the new
1866 	 * uberblocks will suffice to open the pool.  The next time
1867 	 * the pool is opened, the first thing we'll do -- before any
1868 	 * user data is modified -- is mark every vdev dirty so that
1869 	 * all labels will be brought up to date.  We flush the new labels
1870 	 * to disk to ensure that all odd-label updates are committed to
1871 	 * stable storage before the next transaction group begins.
1872 	 */
1873 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1874 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1875 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1876 			    "for pool '%s' when syncing out the odd labels of "
1877 			    "dirty vdevs", error, spa_name(spa));
1878 		}
1879 		goto retry;
1880 	}
1881 
1882 	return (0);
1883 }
1884