1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transacation groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * 128 * Each leaf device label also contains the following: 129 * 130 * top_guid Unique ID for top-level vdev in which this is contained 131 * guid Unique ID for the leaf vdev 132 * 133 * The 'vs' configuration follows the format described in 'spa_config.c'. 134 */ 135 136 #include <sys/zfs_context.h> 137 #include <sys/spa.h> 138 #include <sys/spa_impl.h> 139 #include <sys/dmu.h> 140 #include <sys/zap.h> 141 #include <sys/vdev.h> 142 #include <sys/vdev_impl.h> 143 #include <sys/uberblock_impl.h> 144 #include <sys/metaslab.h> 145 #include <sys/zio.h> 146 #include <sys/fs/zfs.h> 147 148 /* 149 * Basic routines to read and write from a vdev label. 150 * Used throughout the rest of this file. 151 */ 152 uint64_t 153 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 154 { 155 ASSERT(offset < sizeof (vdev_label_t)); 156 157 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 158 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 159 } 160 161 static void 162 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 163 uint64_t size, zio_done_func_t *done, void *private) 164 { 165 ASSERT(vd->vdev_children == 0); 166 167 zio_nowait(zio_read_phys(zio, vd, 168 vdev_label_offset(vd->vdev_psize, l, offset), 169 size, buf, ZIO_CHECKSUM_LABEL, done, private, 170 ZIO_PRIORITY_SYNC_READ, 171 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE)); 172 } 173 174 static void 175 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 176 uint64_t size, zio_done_func_t *done, void *private) 177 { 178 ASSERT(vd->vdev_children == 0); 179 180 zio_nowait(zio_write_phys(zio, vd, 181 vdev_label_offset(vd->vdev_psize, l, offset), 182 size, buf, ZIO_CHECKSUM_LABEL, done, private, 183 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL)); 184 } 185 186 /* 187 * Generate the nvlist representing this vdev's config. 188 */ 189 nvlist_t * 190 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 191 boolean_t isspare) 192 { 193 nvlist_t *nv = NULL; 194 195 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 196 197 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 198 vd->vdev_ops->vdev_op_type) == 0); 199 if (!isspare) 200 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 201 == 0); 202 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 203 204 if (vd->vdev_path != NULL) 205 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 206 vd->vdev_path) == 0); 207 208 if (vd->vdev_devid != NULL) 209 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 210 vd->vdev_devid) == 0); 211 212 if (vd->vdev_nparity != 0) { 213 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 214 VDEV_TYPE_RAIDZ) == 0); 215 216 /* 217 * Make sure someone hasn't managed to sneak a fancy new vdev 218 * into a crufty old storage pool. 219 */ 220 ASSERT(vd->vdev_nparity == 1 || 221 (vd->vdev_nparity == 2 && 222 spa_version(spa) >= ZFS_VERSION_RAID6)); 223 224 /* 225 * Note that we'll add the nparity tag even on storage pools 226 * that only support a single parity device -- older software 227 * will just ignore it. 228 */ 229 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 230 vd->vdev_nparity) == 0); 231 } 232 233 if (vd->vdev_wholedisk != -1ULL) 234 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 235 vd->vdev_wholedisk) == 0); 236 237 if (vd->vdev_not_present) 238 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 239 240 if (vd->vdev_isspare) 241 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 242 243 if (!isspare && vd == vd->vdev_top) { 244 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 245 vd->vdev_ms_array) == 0); 246 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 247 vd->vdev_ms_shift) == 0); 248 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 249 vd->vdev_ashift) == 0); 250 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 251 vd->vdev_asize) == 0); 252 } 253 254 if (vd->vdev_dtl.smo_object != 0) 255 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 256 vd->vdev_dtl.smo_object) == 0); 257 258 if (getstats) { 259 vdev_stat_t vs; 260 vdev_get_stats(vd, &vs); 261 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 262 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 263 } 264 265 if (!vd->vdev_ops->vdev_op_leaf) { 266 nvlist_t **child; 267 int c; 268 269 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 270 KM_SLEEP); 271 272 for (c = 0; c < vd->vdev_children; c++) 273 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 274 getstats, isspare); 275 276 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 277 child, vd->vdev_children) == 0); 278 279 for (c = 0; c < vd->vdev_children; c++) 280 nvlist_free(child[c]); 281 282 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 283 284 } else { 285 if (vd->vdev_offline && !vd->vdev_tmpoffline) 286 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 287 B_TRUE) == 0); 288 else 289 (void) nvlist_remove(nv, ZPOOL_CONFIG_OFFLINE, 290 DATA_TYPE_UINT64); 291 } 292 293 return (nv); 294 } 295 296 nvlist_t * 297 vdev_label_read_config(vdev_t *vd) 298 { 299 spa_t *spa = vd->vdev_spa; 300 nvlist_t *config = NULL; 301 vdev_phys_t *vp; 302 zio_t *zio; 303 int l; 304 305 ASSERT(spa_config_held(spa, RW_READER)); 306 307 if (vdev_is_dead(vd)) 308 return (NULL); 309 310 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 311 312 for (l = 0; l < VDEV_LABELS; l++) { 313 314 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | 315 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD); 316 317 vdev_label_read(zio, vd, l, vp, 318 offsetof(vdev_label_t, vl_vdev_phys), 319 sizeof (vdev_phys_t), NULL, NULL); 320 321 if (zio_wait(zio) == 0 && 322 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 323 &config, 0) == 0) 324 break; 325 326 if (config != NULL) { 327 nvlist_free(config); 328 config = NULL; 329 } 330 } 331 332 zio_buf_free(vp, sizeof (vdev_phys_t)); 333 334 return (config); 335 } 336 337 /* 338 * Determine if a device is in use. The 'spare_guid' parameter will be filled 339 * in with the device guid if this spare is active elsewhere on the system. 340 */ 341 static boolean_t 342 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 343 uint64_t *spare_guid) 344 { 345 spa_t *spa = vd->vdev_spa; 346 uint64_t state, pool_guid, device_guid, txg, spare_pool; 347 uint64_t vdtxg = 0; 348 nvlist_t *label; 349 350 if (spare_guid) 351 *spare_guid = 0ULL; 352 353 /* 354 * Read the label, if any, and perform some basic sanity checks. 355 */ 356 if ((label = vdev_label_read_config(vd)) == NULL) 357 return (B_FALSE); 358 359 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 360 &vdtxg); 361 362 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 363 &state) != 0 || 364 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 365 &device_guid) != 0) { 366 nvlist_free(label); 367 return (B_FALSE); 368 } 369 370 if (state != POOL_STATE_SPARE && 371 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 372 &pool_guid) != 0 || 373 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 374 &txg) != 0)) { 375 nvlist_free(label); 376 return (B_FALSE); 377 } 378 379 nvlist_free(label); 380 381 /* 382 * Check to see if this device indeed belongs to the pool it claims to 383 * be a part of. The only way this is allowed is if the device is a hot 384 * spare (which we check for later on). 385 */ 386 if (state != POOL_STATE_SPARE && 387 !spa_guid_exists(pool_guid, device_guid) && 388 !spa_spare_exists(device_guid, NULL)) 389 return (B_FALSE); 390 391 /* 392 * If the transaction group is zero, then this an initialized (but 393 * unused) label. This is only an error if the create transaction 394 * on-disk is the same as the one we're using now, in which case the 395 * user has attempted to add the same vdev multiple times in the same 396 * transaction. 397 */ 398 if (state != POOL_STATE_SPARE && txg == 0 && vdtxg == crtxg) 399 return (B_TRUE); 400 401 /* 402 * Check to see if this is a spare device. We do an explicit check for 403 * spa_has_spare() here because it may be on our pending list of spares 404 * to add. 405 */ 406 if (spa_spare_exists(device_guid, &spare_pool) || 407 spa_has_spare(spa, device_guid)) { 408 if (spare_guid) 409 *spare_guid = device_guid; 410 411 switch (reason) { 412 case VDEV_LABEL_CREATE: 413 return (B_TRUE); 414 415 case VDEV_LABEL_REPLACE: 416 return (!spa_has_spare(spa, device_guid) || 417 spare_pool != 0ULL); 418 419 case VDEV_LABEL_SPARE: 420 return (spa_has_spare(spa, device_guid)); 421 } 422 } 423 424 /* 425 * If the device is marked ACTIVE, then this device is in use by another 426 * pool on the system. 427 */ 428 return (state == POOL_STATE_ACTIVE); 429 } 430 431 /* 432 * Initialize a vdev label. We check to make sure each leaf device is not in 433 * use, and writable. We put down an initial label which we will later 434 * overwrite with a complete label. Note that it's important to do this 435 * sequentially, not in parallel, so that we catch cases of multiple use of the 436 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 437 * itself. 438 */ 439 int 440 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 441 { 442 spa_t *spa = vd->vdev_spa; 443 nvlist_t *label; 444 vdev_phys_t *vp; 445 vdev_boot_header_t *vb; 446 uberblock_t *ub; 447 zio_t *zio; 448 int l, c, n; 449 char *buf; 450 size_t buflen; 451 int error; 452 uint64_t spare_guid; 453 454 ASSERT(spa_config_held(spa, RW_WRITER)); 455 456 for (c = 0; c < vd->vdev_children; c++) 457 if ((error = vdev_label_init(vd->vdev_child[c], 458 crtxg, reason)) != 0) 459 return (error); 460 461 if (!vd->vdev_ops->vdev_op_leaf) 462 return (0); 463 464 /* 465 * Dead vdevs cannot be initialized. 466 */ 467 if (vdev_is_dead(vd)) 468 return (EIO); 469 470 /* 471 * Determine if the vdev is in use. 472 */ 473 if (reason != VDEV_LABEL_REMOVE && 474 vdev_inuse(vd, crtxg, reason, &spare_guid)) 475 return (EBUSY); 476 477 ASSERT(reason != VDEV_LABEL_REMOVE || 478 vdev_inuse(vd, crtxg, reason, NULL)); 479 480 /* 481 * If this is a request to add or replace a spare that is in use 482 * elsewhere on the system, then we must update the guid (which was 483 * initialized to a random value) to reflect the actual GUID (which is 484 * shared between multiple pools). 485 */ 486 if (reason != VDEV_LABEL_REMOVE && spare_guid != 0ULL) { 487 vdev_t *pvd = vd->vdev_parent; 488 489 for (; pvd != NULL; pvd = pvd->vdev_parent) { 490 pvd->vdev_guid_sum -= vd->vdev_guid; 491 pvd->vdev_guid_sum += spare_guid; 492 } 493 494 vd->vdev_guid = vd->vdev_guid_sum = spare_guid; 495 496 /* 497 * If this is a replacement, then we want to fallthrough to the 498 * rest of the code. If we're adding a spare, then it's already 499 * labelled appropriately and we can just return. 500 */ 501 if (reason == VDEV_LABEL_SPARE) 502 return (0); 503 ASSERT(reason == VDEV_LABEL_REPLACE); 504 } 505 506 /* 507 * Initialize its label. 508 */ 509 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 510 bzero(vp, sizeof (vdev_phys_t)); 511 512 /* 513 * Generate a label describing the pool and our top-level vdev. 514 * We mark it as being from txg 0 to indicate that it's not 515 * really part of an active pool just yet. The labels will 516 * be written again with a meaningful txg by spa_sync(). 517 */ 518 if (reason == VDEV_LABEL_SPARE || 519 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 520 /* 521 * For inactive hot spares, we generate a special label that 522 * identifies as a mutually shared hot spare. We write the 523 * label if we are adding a hot spare, or if we are removing an 524 * active hot spare (in which case we want to revert the 525 * labels). 526 */ 527 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 528 529 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 530 spa_version(spa)) == 0); 531 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 532 POOL_STATE_SPARE) == 0); 533 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 534 vd->vdev_guid) == 0); 535 } else { 536 label = spa_config_generate(spa, vd, 0ULL, B_FALSE); 537 538 /* 539 * Add our creation time. This allows us to detect multiple 540 * vdev uses as described above, and automatically expires if we 541 * fail. 542 */ 543 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 544 crtxg) == 0); 545 } 546 547 buf = vp->vp_nvlist; 548 buflen = sizeof (vp->vp_nvlist); 549 550 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) != 0) { 551 nvlist_free(label); 552 zio_buf_free(vp, sizeof (vdev_phys_t)); 553 return (EINVAL); 554 } 555 556 /* 557 * Initialize boot block header. 558 */ 559 vb = zio_buf_alloc(sizeof (vdev_boot_header_t)); 560 bzero(vb, sizeof (vdev_boot_header_t)); 561 vb->vb_magic = VDEV_BOOT_MAGIC; 562 vb->vb_version = VDEV_BOOT_VERSION; 563 vb->vb_offset = VDEV_BOOT_OFFSET; 564 vb->vb_size = VDEV_BOOT_SIZE; 565 566 /* 567 * Initialize uberblock template. 568 */ 569 ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 570 bzero(ub, VDEV_UBERBLOCK_SIZE(vd)); 571 *ub = spa->spa_uberblock; 572 ub->ub_txg = 0; 573 574 /* 575 * Write everything in parallel. 576 */ 577 zio = zio_root(spa, NULL, NULL, 578 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 579 580 for (l = 0; l < VDEV_LABELS; l++) { 581 582 vdev_label_write(zio, vd, l, vp, 583 offsetof(vdev_label_t, vl_vdev_phys), 584 sizeof (vdev_phys_t), NULL, NULL); 585 586 vdev_label_write(zio, vd, l, vb, 587 offsetof(vdev_label_t, vl_boot_header), 588 sizeof (vdev_boot_header_t), NULL, NULL); 589 590 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 591 vdev_label_write(zio, vd, l, ub, 592 VDEV_UBERBLOCK_OFFSET(vd, n), 593 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL); 594 } 595 } 596 597 error = zio_wait(zio); 598 599 nvlist_free(label); 600 zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd)); 601 zio_buf_free(vb, sizeof (vdev_boot_header_t)); 602 zio_buf_free(vp, sizeof (vdev_phys_t)); 603 604 /* 605 * If this vdev hasn't been previously identified as a spare, then we 606 * mark it as such only if a) we are labelling it as a spare, or b) it 607 * exists as a spare elsewhere in the system. 608 */ 609 if (error == 0 && !vd->vdev_isspare && 610 (reason == VDEV_LABEL_SPARE || 611 spa_spare_exists(vd->vdev_guid, NULL))) 612 spa_spare_add(vd); 613 614 return (error); 615 } 616 617 /* 618 * ========================================================================== 619 * uberblock load/sync 620 * ========================================================================== 621 */ 622 623 /* 624 * Consider the following situation: txg is safely synced to disk. We've 625 * written the first uberblock for txg + 1, and then we lose power. When we 626 * come back up, we fail to see the uberblock for txg + 1 because, say, 627 * it was on a mirrored device and the replica to which we wrote txg + 1 628 * is now offline. If we then make some changes and sync txg + 1, and then 629 * the missing replica comes back, then for a new seconds we'll have two 630 * conflicting uberblocks on disk with the same txg. The solution is simple: 631 * among uberblocks with equal txg, choose the one with the latest timestamp. 632 */ 633 static int 634 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 635 { 636 if (ub1->ub_txg < ub2->ub_txg) 637 return (-1); 638 if (ub1->ub_txg > ub2->ub_txg) 639 return (1); 640 641 if (ub1->ub_timestamp < ub2->ub_timestamp) 642 return (-1); 643 if (ub1->ub_timestamp > ub2->ub_timestamp) 644 return (1); 645 646 return (0); 647 } 648 649 static void 650 vdev_uberblock_load_done(zio_t *zio) 651 { 652 uberblock_t *ub = zio->io_data; 653 uberblock_t *ubbest = zio->io_private; 654 spa_t *spa = zio->io_spa; 655 656 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 657 658 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 659 mutex_enter(&spa->spa_uberblock_lock); 660 if (vdev_uberblock_compare(ub, ubbest) > 0) 661 *ubbest = *ub; 662 mutex_exit(&spa->spa_uberblock_lock); 663 } 664 665 zio_buf_free(zio->io_data, zio->io_size); 666 } 667 668 void 669 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 670 { 671 int l, c, n; 672 673 for (c = 0; c < vd->vdev_children; c++) 674 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 675 676 if (!vd->vdev_ops->vdev_op_leaf) 677 return; 678 679 if (vdev_is_dead(vd)) 680 return; 681 682 for (l = 0; l < VDEV_LABELS; l++) { 683 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 684 vdev_label_read(zio, vd, l, 685 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 686 VDEV_UBERBLOCK_OFFSET(vd, n), 687 VDEV_UBERBLOCK_SIZE(vd), 688 vdev_uberblock_load_done, ubbest); 689 } 690 } 691 } 692 693 /* 694 * Write the uberblock to both labels of all leaves of the specified vdev. 695 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 696 */ 697 static void 698 vdev_uberblock_sync_done(zio_t *zio) 699 { 700 uint64_t *good_writes = zio->io_root->io_private; 701 702 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 703 atomic_add_64(good_writes, 1); 704 } 705 706 static void 707 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, uint64_t txg) 708 { 709 int l, c, n; 710 711 for (c = 0; c < vd->vdev_children; c++) 712 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], txg); 713 714 if (!vd->vdev_ops->vdev_op_leaf) 715 return; 716 717 if (vdev_is_dead(vd)) 718 return; 719 720 n = txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 721 722 ASSERT(ub->ub_txg == txg); 723 724 for (l = 0; l < VDEV_LABELS; l++) 725 vdev_label_write(zio, vd, l, ub, 726 VDEV_UBERBLOCK_OFFSET(vd, n), 727 VDEV_UBERBLOCK_SIZE(vd), 728 vdev_uberblock_sync_done, NULL); 729 730 dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg); 731 } 732 733 static int 734 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *vd, uint64_t txg) 735 { 736 uberblock_t *ubbuf; 737 size_t size = vd->vdev_top ? VDEV_UBERBLOCK_SIZE(vd) : SPA_MAXBLOCKSIZE; 738 uint64_t *good_writes; 739 zio_t *zio; 740 int error; 741 742 ubbuf = zio_buf_alloc(size); 743 bzero(ubbuf, size); 744 *ubbuf = *ub; 745 746 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 747 748 zio = zio_root(spa, NULL, good_writes, 749 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 750 751 vdev_uberblock_sync(zio, ubbuf, vd, txg); 752 753 error = zio_wait(zio); 754 755 if (error && *good_writes != 0) { 756 dprintf("partial success: good_writes = %llu\n", *good_writes); 757 error = 0; 758 } 759 760 /* 761 * It's possible to have no good writes and no error if every vdev is in 762 * the CANT_OPEN state. 763 */ 764 if (*good_writes == 0 && error == 0) 765 error = EIO; 766 767 kmem_free(good_writes, sizeof (uint64_t)); 768 zio_buf_free(ubbuf, size); 769 770 return (error); 771 } 772 773 /* 774 * Sync out an individual vdev. 775 */ 776 static void 777 vdev_sync_label_done(zio_t *zio) 778 { 779 uint64_t *good_writes = zio->io_root->io_private; 780 781 if (zio->io_error == 0) 782 atomic_add_64(good_writes, 1); 783 } 784 785 static void 786 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg) 787 { 788 nvlist_t *label; 789 vdev_phys_t *vp; 790 char *buf; 791 size_t buflen; 792 int c; 793 794 for (c = 0; c < vd->vdev_children; c++) 795 vdev_sync_label(zio, vd->vdev_child[c], l, txg); 796 797 if (!vd->vdev_ops->vdev_op_leaf) 798 return; 799 800 if (vdev_is_dead(vd)) 801 return; 802 803 /* 804 * Generate a label describing the top-level config to which we belong. 805 */ 806 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 807 808 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 809 bzero(vp, sizeof (vdev_phys_t)); 810 811 buf = vp->vp_nvlist; 812 buflen = sizeof (vp->vp_nvlist); 813 814 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) 815 vdev_label_write(zio, vd, l, vp, 816 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 817 vdev_sync_label_done, NULL); 818 819 zio_buf_free(vp, sizeof (vdev_phys_t)); 820 nvlist_free(label); 821 822 dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg); 823 } 824 825 static int 826 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg) 827 { 828 uint64_t *good_writes; 829 zio_t *zio; 830 int error; 831 832 ASSERT(vd == vd->vdev_top); 833 834 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 835 836 zio = zio_root(vd->vdev_spa, NULL, good_writes, 837 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 838 839 /* 840 * Recursively kick off writes to all labels. 841 */ 842 vdev_sync_label(zio, vd, l, txg); 843 844 error = zio_wait(zio); 845 846 if (error && *good_writes != 0) { 847 dprintf("partial success: good_writes = %llu\n", *good_writes); 848 error = 0; 849 } 850 851 if (*good_writes == 0 && error == 0) 852 error = ENODEV; 853 854 kmem_free(good_writes, sizeof (uint64_t)); 855 856 return (error); 857 } 858 859 /* 860 * Sync the entire vdev configuration. 861 * 862 * The order of operations is carefully crafted to ensure that 863 * if the system panics or loses power at any time, the state on disk 864 * is still transactionally consistent. The in-line comments below 865 * describe the failure semantics at each stage. 866 * 867 * Moreover, it is designed to be idempotent: if spa_sync_labels() fails 868 * at any time, you can just call it again, and it will resume its work. 869 */ 870 int 871 vdev_config_sync(vdev_t *uvd, uint64_t txg) 872 { 873 spa_t *spa = uvd->vdev_spa; 874 uberblock_t *ub = &spa->spa_uberblock; 875 vdev_t *rvd = spa->spa_root_vdev; 876 vdev_t *vd; 877 zio_t *zio; 878 int l, error; 879 880 ASSERT(ub->ub_txg <= txg); 881 882 /* 883 * If this isn't a resync due to I/O errors, and nothing changed 884 * in this transaction group, and the vdev configuration hasn't changed, 885 * then there's nothing to do. 886 */ 887 if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE && 888 list_is_empty(&spa->spa_dirty_list)) { 889 dprintf("nothing to sync in %s in txg %llu\n", 890 spa_name(spa), txg); 891 return (0); 892 } 893 894 if (txg > spa_freeze_txg(spa)) 895 return (0); 896 897 ASSERT(txg <= spa->spa_final_txg); 898 899 dprintf("syncing %s txg %llu\n", spa_name(spa), txg); 900 901 /* 902 * Flush the write cache of every disk that's been written to 903 * in this transaction group. This ensures that all blocks 904 * written in this txg will be committed to stable storage 905 * before any uberblock that references them. 906 */ 907 zio = zio_root(spa, NULL, NULL, 908 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 909 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 910 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) { 911 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 912 NULL, NULL, ZIO_PRIORITY_NOW, 913 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 914 } 915 (void) zio_wait(zio); 916 917 /* 918 * Sync out the even labels (L0, L2) for every dirty vdev. If the 919 * system dies in the middle of this process, that's OK: all of the 920 * even labels that made it to disk will be newer than any uberblock, 921 * and will therefore be considered invalid. The odd labels (L1, L3), 922 * which have not yet been touched, will still be valid. 923 */ 924 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 925 vd = list_next(&spa->spa_dirty_list, vd)) { 926 for (l = 0; l < VDEV_LABELS; l++) { 927 if (l & 1) 928 continue; 929 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 930 return (error); 931 } 932 } 933 934 /* 935 * Flush the new labels to disk. This ensures that all even-label 936 * updates are committed to stable storage before the uberblock update. 937 */ 938 zio = zio_root(spa, NULL, NULL, 939 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 940 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 941 vd = list_next(&spa->spa_dirty_list, vd)) { 942 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 943 NULL, NULL, ZIO_PRIORITY_NOW, 944 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 945 } 946 (void) zio_wait(zio); 947 948 /* 949 * Sync the uberblocks to all vdevs in the tree specified by uvd. 950 * If the system dies in the middle of this step, there are two cases 951 * to consider, and the on-disk state is consistent either way: 952 * 953 * (1) If none of the new uberblocks made it to disk, then the 954 * previous uberblock will be the newest, and the odd labels 955 * (which had not yet been touched) will be valid with respect 956 * to that uberblock. 957 * 958 * (2) If one or more new uberblocks made it to disk, then they 959 * will be the newest, and the even labels (which had all 960 * been successfully committed) will be valid with respect 961 * to the new uberblocks. 962 */ 963 if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0) 964 return (error); 965 966 /* 967 * Flush the uberblocks to disk. This ensures that the odd labels 968 * are no longer needed (because the new uberblocks and the even 969 * labels are safely on disk), so it is safe to overwrite them. 970 */ 971 (void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE, 972 NULL, NULL, ZIO_PRIORITY_NOW, 973 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 974 975 /* 976 * Sync out odd labels for every dirty vdev. If the system dies 977 * in the middle of this process, the even labels and the new 978 * uberblocks will suffice to open the pool. The next time 979 * the pool is opened, the first thing we'll do -- before any 980 * user data is modified -- is mark every vdev dirty so that 981 * all labels will be brought up to date. 982 */ 983 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 984 vd = list_next(&spa->spa_dirty_list, vd)) { 985 for (l = 0; l < VDEV_LABELS; l++) { 986 if ((l & 1) == 0) 987 continue; 988 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 989 return (error); 990 } 991 } 992 993 /* 994 * Flush the new labels to disk. This ensures that all odd-label 995 * updates are committed to stable storage before the next 996 * transaction group begins. 997 */ 998 zio = zio_root(spa, NULL, NULL, 999 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 1000 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 1001 vd = list_next(&spa->spa_dirty_list, vd)) { 1002 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 1003 NULL, NULL, ZIO_PRIORITY_NOW, 1004 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 1005 } 1006 (void) zio_wait(zio); 1007 1008 return (0); 1009 } 1010