1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Virtual Device Labels 29 * --------------------- 30 * 31 * The vdev label serves several distinct purposes: 32 * 33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 34 * identity within the pool. 35 * 36 * 2. Verify that all the devices given in a configuration are present 37 * within the pool. 38 * 39 * 3. Determine the uberblock for the pool. 40 * 41 * 4. In case of an import operation, determine the configuration of the 42 * toplevel vdev of which it is a part. 43 * 44 * 5. If an import operation cannot find all the devices in the pool, 45 * provide enough information to the administrator to determine which 46 * devices are missing. 47 * 48 * It is important to note that while the kernel is responsible for writing the 49 * label, it only consumes the information in the first three cases. The 50 * latter information is only consumed in userland when determining the 51 * configuration to import a pool. 52 * 53 * 54 * Label Organization 55 * ------------------ 56 * 57 * Before describing the contents of the label, it's important to understand how 58 * the labels are written and updated with respect to the uberblock. 59 * 60 * When the pool configuration is altered, either because it was newly created 61 * or a device was added, we want to update all the labels such that we can deal 62 * with fatal failure at any point. To this end, each disk has two labels which 63 * are updated before and after the uberblock is synced. Assuming we have 64 * labels and an uberblock with the following transaction groups: 65 * 66 * L1 UB L2 67 * +------+ +------+ +------+ 68 * | | | | | | 69 * | t10 | | t10 | | t10 | 70 * | | | | | | 71 * +------+ +------+ +------+ 72 * 73 * In this stable state, the labels and the uberblock were all updated within 74 * the same transaction group (10). Each label is mirrored and checksummed, so 75 * that we can detect when we fail partway through writing the label. 76 * 77 * In order to identify which labels are valid, the labels are written in the 78 * following manner: 79 * 80 * 1. For each vdev, update 'L1' to the new label 81 * 2. Update the uberblock 82 * 3. For each vdev, update 'L2' to the new label 83 * 84 * Given arbitrary failure, we can determine the correct label to use based on 85 * the transaction group. If we fail after updating L1 but before updating the 86 * UB, we will notice that L1's transaction group is greater than the uberblock, 87 * so L2 must be valid. If we fail after writing the uberblock but before 88 * writing L2, we will notice that L2's transaction group is less than L1, and 89 * therefore L1 is valid. 90 * 91 * Another added complexity is that not every label is updated when the config 92 * is synced. If we add a single device, we do not want to have to re-write 93 * every label for every device in the pool. This means that both L1 and L2 may 94 * be older than the pool uberblock, because the necessary information is stored 95 * on another vdev. 96 * 97 * 98 * On-disk Format 99 * -------------- 100 * 101 * The vdev label consists of two distinct parts, and is wrapped within the 102 * vdev_label_t structure. The label includes 8k of padding to permit legacy 103 * VTOC disk labels, but is otherwise ignored. 104 * 105 * The first half of the label is a packed nvlist which contains pool wide 106 * properties, per-vdev properties, and configuration information. It is 107 * described in more detail below. 108 * 109 * The latter half of the label consists of a redundant array of uberblocks. 110 * These uberblocks are updated whenever a transaction group is committed, 111 * or when the configuration is updated. When a pool is loaded, we scan each 112 * vdev for the 'best' uberblock. 113 * 114 * 115 * Configuration Information 116 * ------------------------- 117 * 118 * The nvlist describing the pool and vdev contains the following elements: 119 * 120 * version ZFS on-disk version 121 * name Pool name 122 * state Pool state 123 * txg Transaction group in which this label was written 124 * pool_guid Unique identifier for this pool 125 * vdev_tree An nvlist describing vdev tree. 126 * features_for_read 127 * An nvlist of the features necessary for reading the MOS. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/zio.h> 147 #include <sys/dsl_scan.h> 148 #include <sys/fs/zfs.h> 149 150 /* 151 * Basic routines to read and write from a vdev label. 152 * Used throughout the rest of this file. 153 */ 154 uint64_t 155 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 156 { 157 ASSERT(offset < sizeof (vdev_label_t)); 158 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 159 160 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 161 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 162 } 163 164 /* 165 * Returns back the vdev label associated with the passed in offset. 166 */ 167 int 168 vdev_label_number(uint64_t psize, uint64_t offset) 169 { 170 int l; 171 172 if (offset >= psize - VDEV_LABEL_END_SIZE) { 173 offset -= psize - VDEV_LABEL_END_SIZE; 174 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 175 } 176 l = offset / sizeof (vdev_label_t); 177 return (l < VDEV_LABELS ? l : -1); 178 } 179 180 static void 181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 182 uint64_t size, zio_done_func_t *done, void *private, int flags) 183 { 184 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 185 SCL_STATE_ALL); 186 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 187 188 zio_nowait(zio_read_phys(zio, vd, 189 vdev_label_offset(vd->vdev_psize, l, offset), 190 size, buf, ZIO_CHECKSUM_LABEL, done, private, 191 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 192 } 193 194 static void 195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 196 uint64_t size, zio_done_func_t *done, void *private, int flags) 197 { 198 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 199 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 200 (SCL_CONFIG | SCL_STATE) && 201 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 202 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 203 204 zio_nowait(zio_write_phys(zio, vd, 205 vdev_label_offset(vd->vdev_psize, l, offset), 206 size, buf, ZIO_CHECKSUM_LABEL, done, private, 207 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 208 } 209 210 /* 211 * Generate the nvlist representing this vdev's config. 212 */ 213 nvlist_t * 214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 215 vdev_config_flag_t flags) 216 { 217 nvlist_t *nv = NULL; 218 219 nv = fnvlist_alloc(); 220 221 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 222 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 223 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 224 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 225 226 if (vd->vdev_path != NULL) 227 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 228 229 if (vd->vdev_devid != NULL) 230 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 231 232 if (vd->vdev_physpath != NULL) 233 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 234 vd->vdev_physpath); 235 236 if (vd->vdev_fru != NULL) 237 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 238 239 if (vd->vdev_nparity != 0) { 240 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 241 VDEV_TYPE_RAIDZ) == 0); 242 243 /* 244 * Make sure someone hasn't managed to sneak a fancy new vdev 245 * into a crufty old storage pool. 246 */ 247 ASSERT(vd->vdev_nparity == 1 || 248 (vd->vdev_nparity <= 2 && 249 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 250 (vd->vdev_nparity <= 3 && 251 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 252 253 /* 254 * Note that we'll add the nparity tag even on storage pools 255 * that only support a single parity device -- older software 256 * will just ignore it. 257 */ 258 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 259 } 260 261 if (vd->vdev_wholedisk != -1ULL) 262 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 263 vd->vdev_wholedisk); 264 265 if (vd->vdev_not_present) 266 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 267 268 if (vd->vdev_isspare) 269 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 270 271 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 272 vd == vd->vdev_top) { 273 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 274 vd->vdev_ms_array); 275 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 276 vd->vdev_ms_shift); 277 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 278 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 279 vd->vdev_asize); 280 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 281 if (vd->vdev_removing) 282 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 283 vd->vdev_removing); 284 } 285 286 if (vd->vdev_dtl_sm != NULL) { 287 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 288 space_map_object(vd->vdev_dtl_sm)); 289 } 290 291 if (vd->vdev_crtxg) 292 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 293 294 if (flags & VDEV_CONFIG_MOS) { 295 if (vd->vdev_leaf_zap != 0) { 296 ASSERT(vd->vdev_ops->vdev_op_leaf); 297 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 298 vd->vdev_leaf_zap); 299 } 300 301 if (vd->vdev_top_zap != 0) { 302 ASSERT(vd == vd->vdev_top); 303 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 304 vd->vdev_top_zap); 305 } 306 } 307 308 if (getstats) { 309 vdev_stat_t vs; 310 pool_scan_stat_t ps; 311 312 vdev_get_stats(vd, &vs); 313 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 314 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)); 315 316 /* provide either current or previous scan information */ 317 if (spa_scan_get_stats(spa, &ps) == 0) { 318 fnvlist_add_uint64_array(nv, 319 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 320 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 321 } 322 } 323 324 if (!vd->vdev_ops->vdev_op_leaf) { 325 nvlist_t **child; 326 int c, idx; 327 328 ASSERT(!vd->vdev_ishole); 329 330 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 331 KM_SLEEP); 332 333 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 334 vdev_t *cvd = vd->vdev_child[c]; 335 336 /* 337 * If we're generating an nvlist of removing 338 * vdevs then skip over any device which is 339 * not being removed. 340 */ 341 if ((flags & VDEV_CONFIG_REMOVING) && 342 !cvd->vdev_removing) 343 continue; 344 345 child[idx++] = vdev_config_generate(spa, cvd, 346 getstats, flags); 347 } 348 349 if (idx) { 350 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 351 child, idx); 352 } 353 354 for (c = 0; c < idx; c++) 355 nvlist_free(child[c]); 356 357 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 358 359 } else { 360 const char *aux = NULL; 361 362 if (vd->vdev_offline && !vd->vdev_tmpoffline) 363 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 364 if (vd->vdev_resilver_txg != 0) 365 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 366 vd->vdev_resilver_txg); 367 if (vd->vdev_faulted) 368 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 369 if (vd->vdev_degraded) 370 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 371 if (vd->vdev_removed) 372 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 373 if (vd->vdev_unspare) 374 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 375 if (vd->vdev_ishole) 376 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 377 378 switch (vd->vdev_stat.vs_aux) { 379 case VDEV_AUX_ERR_EXCEEDED: 380 aux = "err_exceeded"; 381 break; 382 383 case VDEV_AUX_EXTERNAL: 384 aux = "external"; 385 break; 386 } 387 388 if (aux != NULL) 389 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 390 391 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 392 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 393 vd->vdev_orig_guid); 394 } 395 } 396 397 return (nv); 398 } 399 400 /* 401 * Generate a view of the top-level vdevs. If we currently have holes 402 * in the namespace, then generate an array which contains a list of holey 403 * vdevs. Additionally, add the number of top-level children that currently 404 * exist. 405 */ 406 void 407 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 408 { 409 vdev_t *rvd = spa->spa_root_vdev; 410 uint64_t *array; 411 uint_t c, idx; 412 413 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 414 415 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 416 vdev_t *tvd = rvd->vdev_child[c]; 417 418 if (tvd->vdev_ishole) 419 array[idx++] = c; 420 } 421 422 if (idx) { 423 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 424 array, idx) == 0); 425 } 426 427 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 428 rvd->vdev_children) == 0); 429 430 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 431 } 432 433 /* 434 * Returns the configuration from the label of the given vdev. For vdevs 435 * which don't have a txg value stored on their label (i.e. spares/cache) 436 * or have not been completely initialized (txg = 0) just return 437 * the configuration from the first valid label we find. Otherwise, 438 * find the most up-to-date label that does not exceed the specified 439 * 'txg' value. 440 */ 441 nvlist_t * 442 vdev_label_read_config(vdev_t *vd, uint64_t txg) 443 { 444 spa_t *spa = vd->vdev_spa; 445 nvlist_t *config = NULL; 446 vdev_phys_t *vp; 447 zio_t *zio; 448 uint64_t best_txg = 0; 449 int error = 0; 450 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 451 ZIO_FLAG_SPECULATIVE; 452 453 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 454 455 if (!vdev_readable(vd)) 456 return (NULL); 457 458 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 459 460 retry: 461 for (int l = 0; l < VDEV_LABELS; l++) { 462 nvlist_t *label = NULL; 463 464 zio = zio_root(spa, NULL, NULL, flags); 465 466 vdev_label_read(zio, vd, l, vp, 467 offsetof(vdev_label_t, vl_vdev_phys), 468 sizeof (vdev_phys_t), NULL, NULL, flags); 469 470 if (zio_wait(zio) == 0 && 471 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 472 &label, 0) == 0) { 473 uint64_t label_txg = 0; 474 475 /* 476 * Auxiliary vdevs won't have txg values in their 477 * labels and newly added vdevs may not have been 478 * completely initialized so just return the 479 * configuration from the first valid label we 480 * encounter. 481 */ 482 error = nvlist_lookup_uint64(label, 483 ZPOOL_CONFIG_POOL_TXG, &label_txg); 484 if ((error || label_txg == 0) && !config) { 485 config = label; 486 break; 487 } else if (label_txg <= txg && label_txg > best_txg) { 488 best_txg = label_txg; 489 nvlist_free(config); 490 config = fnvlist_dup(label); 491 } 492 } 493 494 if (label != NULL) { 495 nvlist_free(label); 496 label = NULL; 497 } 498 } 499 500 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 501 flags |= ZIO_FLAG_TRYHARD; 502 goto retry; 503 } 504 505 zio_buf_free(vp, sizeof (vdev_phys_t)); 506 507 return (config); 508 } 509 510 /* 511 * Determine if a device is in use. The 'spare_guid' parameter will be filled 512 * in with the device guid if this spare is active elsewhere on the system. 513 */ 514 static boolean_t 515 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 516 uint64_t *spare_guid, uint64_t *l2cache_guid) 517 { 518 spa_t *spa = vd->vdev_spa; 519 uint64_t state, pool_guid, device_guid, txg, spare_pool; 520 uint64_t vdtxg = 0; 521 nvlist_t *label; 522 523 if (spare_guid) 524 *spare_guid = 0ULL; 525 if (l2cache_guid) 526 *l2cache_guid = 0ULL; 527 528 /* 529 * Read the label, if any, and perform some basic sanity checks. 530 */ 531 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 532 return (B_FALSE); 533 534 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 535 &vdtxg); 536 537 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 538 &state) != 0 || 539 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 540 &device_guid) != 0) { 541 nvlist_free(label); 542 return (B_FALSE); 543 } 544 545 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 546 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 547 &pool_guid) != 0 || 548 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 549 &txg) != 0)) { 550 nvlist_free(label); 551 return (B_FALSE); 552 } 553 554 nvlist_free(label); 555 556 /* 557 * Check to see if this device indeed belongs to the pool it claims to 558 * be a part of. The only way this is allowed is if the device is a hot 559 * spare (which we check for later on). 560 */ 561 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 562 !spa_guid_exists(pool_guid, device_guid) && 563 !spa_spare_exists(device_guid, NULL, NULL) && 564 !spa_l2cache_exists(device_guid, NULL)) 565 return (B_FALSE); 566 567 /* 568 * If the transaction group is zero, then this an initialized (but 569 * unused) label. This is only an error if the create transaction 570 * on-disk is the same as the one we're using now, in which case the 571 * user has attempted to add the same vdev multiple times in the same 572 * transaction. 573 */ 574 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 575 txg == 0 && vdtxg == crtxg) 576 return (B_TRUE); 577 578 /* 579 * Check to see if this is a spare device. We do an explicit check for 580 * spa_has_spare() here because it may be on our pending list of spares 581 * to add. We also check if it is an l2cache device. 582 */ 583 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 584 spa_has_spare(spa, device_guid)) { 585 if (spare_guid) 586 *spare_guid = device_guid; 587 588 switch (reason) { 589 case VDEV_LABEL_CREATE: 590 case VDEV_LABEL_L2CACHE: 591 return (B_TRUE); 592 593 case VDEV_LABEL_REPLACE: 594 return (!spa_has_spare(spa, device_guid) || 595 spare_pool != 0ULL); 596 597 case VDEV_LABEL_SPARE: 598 return (spa_has_spare(spa, device_guid)); 599 } 600 } 601 602 /* 603 * Check to see if this is an l2cache device. 604 */ 605 if (spa_l2cache_exists(device_guid, NULL)) 606 return (B_TRUE); 607 608 /* 609 * We can't rely on a pool's state if it's been imported 610 * read-only. Instead we look to see if the pools is marked 611 * read-only in the namespace and set the state to active. 612 */ 613 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 614 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 615 spa_mode(spa) == FREAD) 616 state = POOL_STATE_ACTIVE; 617 618 /* 619 * If the device is marked ACTIVE, then this device is in use by another 620 * pool on the system. 621 */ 622 return (state == POOL_STATE_ACTIVE); 623 } 624 625 /* 626 * Initialize a vdev label. We check to make sure each leaf device is not in 627 * use, and writable. We put down an initial label which we will later 628 * overwrite with a complete label. Note that it's important to do this 629 * sequentially, not in parallel, so that we catch cases of multiple use of the 630 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 631 * itself. 632 */ 633 int 634 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 635 { 636 spa_t *spa = vd->vdev_spa; 637 nvlist_t *label; 638 vdev_phys_t *vp; 639 char *pad2; 640 uberblock_t *ub; 641 zio_t *zio; 642 char *buf; 643 size_t buflen; 644 int error; 645 uint64_t spare_guid, l2cache_guid; 646 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 647 648 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 649 650 for (int c = 0; c < vd->vdev_children; c++) 651 if ((error = vdev_label_init(vd->vdev_child[c], 652 crtxg, reason)) != 0) 653 return (error); 654 655 /* Track the creation time for this vdev */ 656 vd->vdev_crtxg = crtxg; 657 658 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 659 return (0); 660 661 /* 662 * Dead vdevs cannot be initialized. 663 */ 664 if (vdev_is_dead(vd)) 665 return (SET_ERROR(EIO)); 666 667 /* 668 * Determine if the vdev is in use. 669 */ 670 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 671 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 672 return (SET_ERROR(EBUSY)); 673 674 /* 675 * If this is a request to add or replace a spare or l2cache device 676 * that is in use elsewhere on the system, then we must update the 677 * guid (which was initialized to a random value) to reflect the 678 * actual GUID (which is shared between multiple pools). 679 */ 680 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 681 spare_guid != 0ULL) { 682 uint64_t guid_delta = spare_guid - vd->vdev_guid; 683 684 vd->vdev_guid += guid_delta; 685 686 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 687 pvd->vdev_guid_sum += guid_delta; 688 689 /* 690 * If this is a replacement, then we want to fallthrough to the 691 * rest of the code. If we're adding a spare, then it's already 692 * labeled appropriately and we can just return. 693 */ 694 if (reason == VDEV_LABEL_SPARE) 695 return (0); 696 ASSERT(reason == VDEV_LABEL_REPLACE || 697 reason == VDEV_LABEL_SPLIT); 698 } 699 700 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 701 l2cache_guid != 0ULL) { 702 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 703 704 vd->vdev_guid += guid_delta; 705 706 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 707 pvd->vdev_guid_sum += guid_delta; 708 709 /* 710 * If this is a replacement, then we want to fallthrough to the 711 * rest of the code. If we're adding an l2cache, then it's 712 * already labeled appropriately and we can just return. 713 */ 714 if (reason == VDEV_LABEL_L2CACHE) 715 return (0); 716 ASSERT(reason == VDEV_LABEL_REPLACE); 717 } 718 719 /* 720 * Initialize its label. 721 */ 722 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 723 bzero(vp, sizeof (vdev_phys_t)); 724 725 /* 726 * Generate a label describing the pool and our top-level vdev. 727 * We mark it as being from txg 0 to indicate that it's not 728 * really part of an active pool just yet. The labels will 729 * be written again with a meaningful txg by spa_sync(). 730 */ 731 if (reason == VDEV_LABEL_SPARE || 732 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 733 /* 734 * For inactive hot spares, we generate a special label that 735 * identifies as a mutually shared hot spare. We write the 736 * label if we are adding a hot spare, or if we are removing an 737 * active hot spare (in which case we want to revert the 738 * labels). 739 */ 740 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 741 742 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 743 spa_version(spa)) == 0); 744 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 745 POOL_STATE_SPARE) == 0); 746 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 747 vd->vdev_guid) == 0); 748 } else if (reason == VDEV_LABEL_L2CACHE || 749 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 750 /* 751 * For level 2 ARC devices, add a special label. 752 */ 753 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 754 755 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 756 spa_version(spa)) == 0); 757 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 758 POOL_STATE_L2CACHE) == 0); 759 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 760 vd->vdev_guid) == 0); 761 } else { 762 uint64_t txg = 0ULL; 763 764 if (reason == VDEV_LABEL_SPLIT) 765 txg = spa->spa_uberblock.ub_txg; 766 label = spa_config_generate(spa, vd, txg, B_FALSE); 767 768 /* 769 * Add our creation time. This allows us to detect multiple 770 * vdev uses as described above, and automatically expires if we 771 * fail. 772 */ 773 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 774 crtxg) == 0); 775 } 776 777 buf = vp->vp_nvlist; 778 buflen = sizeof (vp->vp_nvlist); 779 780 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 781 if (error != 0) { 782 nvlist_free(label); 783 zio_buf_free(vp, sizeof (vdev_phys_t)); 784 /* EFAULT means nvlist_pack ran out of room */ 785 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 786 } 787 788 /* 789 * Initialize uberblock template. 790 */ 791 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 792 bzero(ub, VDEV_UBERBLOCK_RING); 793 *ub = spa->spa_uberblock; 794 ub->ub_txg = 0; 795 796 /* Initialize the 2nd padding area. */ 797 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 798 bzero(pad2, VDEV_PAD_SIZE); 799 800 /* 801 * Write everything in parallel. 802 */ 803 retry: 804 zio = zio_root(spa, NULL, NULL, flags); 805 806 for (int l = 0; l < VDEV_LABELS; l++) { 807 808 vdev_label_write(zio, vd, l, vp, 809 offsetof(vdev_label_t, vl_vdev_phys), 810 sizeof (vdev_phys_t), NULL, NULL, flags); 811 812 /* 813 * Skip the 1st padding area. 814 * Zero out the 2nd padding area where it might have 815 * left over data from previous filesystem format. 816 */ 817 vdev_label_write(zio, vd, l, pad2, 818 offsetof(vdev_label_t, vl_pad2), 819 VDEV_PAD_SIZE, NULL, NULL, flags); 820 821 vdev_label_write(zio, vd, l, ub, 822 offsetof(vdev_label_t, vl_uberblock), 823 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 824 } 825 826 error = zio_wait(zio); 827 828 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 829 flags |= ZIO_FLAG_TRYHARD; 830 goto retry; 831 } 832 833 nvlist_free(label); 834 zio_buf_free(pad2, VDEV_PAD_SIZE); 835 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 836 zio_buf_free(vp, sizeof (vdev_phys_t)); 837 838 /* 839 * If this vdev hasn't been previously identified as a spare, then we 840 * mark it as such only if a) we are labeling it as a spare, or b) it 841 * exists as a spare elsewhere in the system. Do the same for 842 * level 2 ARC devices. 843 */ 844 if (error == 0 && !vd->vdev_isspare && 845 (reason == VDEV_LABEL_SPARE || 846 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 847 spa_spare_add(vd); 848 849 if (error == 0 && !vd->vdev_isl2cache && 850 (reason == VDEV_LABEL_L2CACHE || 851 spa_l2cache_exists(vd->vdev_guid, NULL))) 852 spa_l2cache_add(vd); 853 854 return (error); 855 } 856 857 /* 858 * ========================================================================== 859 * uberblock load/sync 860 * ========================================================================== 861 */ 862 863 /* 864 * Consider the following situation: txg is safely synced to disk. We've 865 * written the first uberblock for txg + 1, and then we lose power. When we 866 * come back up, we fail to see the uberblock for txg + 1 because, say, 867 * it was on a mirrored device and the replica to which we wrote txg + 1 868 * is now offline. If we then make some changes and sync txg + 1, and then 869 * the missing replica comes back, then for a few seconds we'll have two 870 * conflicting uberblocks on disk with the same txg. The solution is simple: 871 * among uberblocks with equal txg, choose the one with the latest timestamp. 872 */ 873 static int 874 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 875 { 876 if (ub1->ub_txg < ub2->ub_txg) 877 return (-1); 878 if (ub1->ub_txg > ub2->ub_txg) 879 return (1); 880 881 if (ub1->ub_timestamp < ub2->ub_timestamp) 882 return (-1); 883 if (ub1->ub_timestamp > ub2->ub_timestamp) 884 return (1); 885 886 return (0); 887 } 888 889 struct ubl_cbdata { 890 uberblock_t *ubl_ubbest; /* Best uberblock */ 891 vdev_t *ubl_vd; /* vdev associated with the above */ 892 }; 893 894 static void 895 vdev_uberblock_load_done(zio_t *zio) 896 { 897 vdev_t *vd = zio->io_vd; 898 spa_t *spa = zio->io_spa; 899 zio_t *rio = zio->io_private; 900 uberblock_t *ub = zio->io_data; 901 struct ubl_cbdata *cbp = rio->io_private; 902 903 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 904 905 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 906 mutex_enter(&rio->io_lock); 907 if (ub->ub_txg <= spa->spa_load_max_txg && 908 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 909 /* 910 * Keep track of the vdev in which this uberblock 911 * was found. We will use this information later 912 * to obtain the config nvlist associated with 913 * this uberblock. 914 */ 915 *cbp->ubl_ubbest = *ub; 916 cbp->ubl_vd = vd; 917 } 918 mutex_exit(&rio->io_lock); 919 } 920 921 zio_buf_free(zio->io_data, zio->io_size); 922 } 923 924 static void 925 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 926 struct ubl_cbdata *cbp) 927 { 928 for (int c = 0; c < vd->vdev_children; c++) 929 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 930 931 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 932 for (int l = 0; l < VDEV_LABELS; l++) { 933 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 934 vdev_label_read(zio, vd, l, 935 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 936 VDEV_UBERBLOCK_OFFSET(vd, n), 937 VDEV_UBERBLOCK_SIZE(vd), 938 vdev_uberblock_load_done, zio, flags); 939 } 940 } 941 } 942 } 943 944 /* 945 * Reads the 'best' uberblock from disk along with its associated 946 * configuration. First, we read the uberblock array of each label of each 947 * vdev, keeping track of the uberblock with the highest txg in each array. 948 * Then, we read the configuration from the same vdev as the best uberblock. 949 */ 950 void 951 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 952 { 953 zio_t *zio; 954 spa_t *spa = rvd->vdev_spa; 955 struct ubl_cbdata cb; 956 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 957 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 958 959 ASSERT(ub); 960 ASSERT(config); 961 962 bzero(ub, sizeof (uberblock_t)); 963 *config = NULL; 964 965 cb.ubl_ubbest = ub; 966 cb.ubl_vd = NULL; 967 968 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 969 zio = zio_root(spa, NULL, &cb, flags); 970 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 971 (void) zio_wait(zio); 972 973 /* 974 * It's possible that the best uberblock was discovered on a label 975 * that has a configuration which was written in a future txg. 976 * Search all labels on this vdev to find the configuration that 977 * matches the txg for our uberblock. 978 */ 979 if (cb.ubl_vd != NULL) 980 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 981 spa_config_exit(spa, SCL_ALL, FTAG); 982 } 983 984 /* 985 * On success, increment root zio's count of good writes. 986 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 987 */ 988 static void 989 vdev_uberblock_sync_done(zio_t *zio) 990 { 991 uint64_t *good_writes = zio->io_private; 992 993 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 994 atomic_inc_64(good_writes); 995 } 996 997 /* 998 * Write the uberblock to all labels of all leaves of the specified vdev. 999 */ 1000 static void 1001 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 1002 { 1003 uberblock_t *ubbuf; 1004 int n; 1005 1006 for (int c = 0; c < vd->vdev_children; c++) 1007 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 1008 1009 if (!vd->vdev_ops->vdev_op_leaf) 1010 return; 1011 1012 if (!vdev_writeable(vd)) 1013 return; 1014 1015 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 1016 1017 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 1018 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1019 *ubbuf = *ub; 1020 1021 for (int l = 0; l < VDEV_LABELS; l++) 1022 vdev_label_write(zio, vd, l, ubbuf, 1023 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1024 vdev_uberblock_sync_done, zio->io_private, 1025 flags | ZIO_FLAG_DONT_PROPAGATE); 1026 1027 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1028 } 1029 1030 /* Sync the uberblocks to all vdevs in svd[] */ 1031 int 1032 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1033 { 1034 spa_t *spa = svd[0]->vdev_spa; 1035 zio_t *zio; 1036 uint64_t good_writes = 0; 1037 1038 zio = zio_root(spa, NULL, &good_writes, flags); 1039 1040 for (int v = 0; v < svdcount; v++) 1041 vdev_uberblock_sync(zio, ub, svd[v], flags); 1042 1043 (void) zio_wait(zio); 1044 1045 /* 1046 * Flush the uberblocks to disk. This ensures that the odd labels 1047 * are no longer needed (because the new uberblocks and the even 1048 * labels are safely on disk), so it is safe to overwrite them. 1049 */ 1050 zio = zio_root(spa, NULL, NULL, flags); 1051 1052 for (int v = 0; v < svdcount; v++) 1053 zio_flush(zio, svd[v]); 1054 1055 (void) zio_wait(zio); 1056 1057 return (good_writes >= 1 ? 0 : EIO); 1058 } 1059 1060 /* 1061 * On success, increment the count of good writes for our top-level vdev. 1062 */ 1063 static void 1064 vdev_label_sync_done(zio_t *zio) 1065 { 1066 uint64_t *good_writes = zio->io_private; 1067 1068 if (zio->io_error == 0) 1069 atomic_inc_64(good_writes); 1070 } 1071 1072 /* 1073 * If there weren't enough good writes, indicate failure to the parent. 1074 */ 1075 static void 1076 vdev_label_sync_top_done(zio_t *zio) 1077 { 1078 uint64_t *good_writes = zio->io_private; 1079 1080 if (*good_writes == 0) 1081 zio->io_error = SET_ERROR(EIO); 1082 1083 kmem_free(good_writes, sizeof (uint64_t)); 1084 } 1085 1086 /* 1087 * We ignore errors for log and cache devices, simply free the private data. 1088 */ 1089 static void 1090 vdev_label_sync_ignore_done(zio_t *zio) 1091 { 1092 kmem_free(zio->io_private, sizeof (uint64_t)); 1093 } 1094 1095 /* 1096 * Write all even or odd labels to all leaves of the specified vdev. 1097 */ 1098 static void 1099 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 1100 { 1101 nvlist_t *label; 1102 vdev_phys_t *vp; 1103 char *buf; 1104 size_t buflen; 1105 1106 for (int c = 0; c < vd->vdev_children; c++) 1107 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 1108 1109 if (!vd->vdev_ops->vdev_op_leaf) 1110 return; 1111 1112 if (!vdev_writeable(vd)) 1113 return; 1114 1115 /* 1116 * Generate a label describing the top-level config to which we belong. 1117 */ 1118 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1119 1120 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 1121 bzero(vp, sizeof (vdev_phys_t)); 1122 1123 buf = vp->vp_nvlist; 1124 buflen = sizeof (vp->vp_nvlist); 1125 1126 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1127 for (; l < VDEV_LABELS; l += 2) { 1128 vdev_label_write(zio, vd, l, vp, 1129 offsetof(vdev_label_t, vl_vdev_phys), 1130 sizeof (vdev_phys_t), 1131 vdev_label_sync_done, zio->io_private, 1132 flags | ZIO_FLAG_DONT_PROPAGATE); 1133 } 1134 } 1135 1136 zio_buf_free(vp, sizeof (vdev_phys_t)); 1137 nvlist_free(label); 1138 } 1139 1140 int 1141 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1142 { 1143 list_t *dl = &spa->spa_config_dirty_list; 1144 vdev_t *vd; 1145 zio_t *zio; 1146 int error; 1147 1148 /* 1149 * Write the new labels to disk. 1150 */ 1151 zio = zio_root(spa, NULL, NULL, flags); 1152 1153 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1154 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1155 KM_SLEEP); 1156 1157 ASSERT(!vd->vdev_ishole); 1158 1159 zio_t *vio = zio_null(zio, spa, NULL, 1160 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1161 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1162 good_writes, flags); 1163 vdev_label_sync(vio, vd, l, txg, flags); 1164 zio_nowait(vio); 1165 } 1166 1167 error = zio_wait(zio); 1168 1169 /* 1170 * Flush the new labels to disk. 1171 */ 1172 zio = zio_root(spa, NULL, NULL, flags); 1173 1174 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1175 zio_flush(zio, vd); 1176 1177 (void) zio_wait(zio); 1178 1179 return (error); 1180 } 1181 1182 /* 1183 * Sync the uberblock and any changes to the vdev configuration. 1184 * 1185 * The order of operations is carefully crafted to ensure that 1186 * if the system panics or loses power at any time, the state on disk 1187 * is still transactionally consistent. The in-line comments below 1188 * describe the failure semantics at each stage. 1189 * 1190 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1191 * at any time, you can just call it again, and it will resume its work. 1192 */ 1193 int 1194 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1195 { 1196 spa_t *spa = svd[0]->vdev_spa; 1197 uberblock_t *ub = &spa->spa_uberblock; 1198 vdev_t *vd; 1199 zio_t *zio; 1200 int error = 0; 1201 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1202 1203 retry: 1204 /* 1205 * Normally, we don't want to try too hard to write every label and 1206 * uberblock. If there is a flaky disk, we don't want the rest of the 1207 * sync process to block while we retry. But if we can't write a 1208 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1209 * bailing out and declaring the pool faulted. 1210 */ 1211 if (error != 0) { 1212 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1213 return (error); 1214 flags |= ZIO_FLAG_TRYHARD; 1215 } 1216 1217 ASSERT(ub->ub_txg <= txg); 1218 1219 /* 1220 * If this isn't a resync due to I/O errors, 1221 * and nothing changed in this transaction group, 1222 * and the vdev configuration hasn't changed, 1223 * then there's nothing to do. 1224 */ 1225 if (ub->ub_txg < txg && 1226 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1227 list_is_empty(&spa->spa_config_dirty_list)) 1228 return (0); 1229 1230 if (txg > spa_freeze_txg(spa)) 1231 return (0); 1232 1233 ASSERT(txg <= spa->spa_final_txg); 1234 1235 /* 1236 * Flush the write cache of every disk that's been written to 1237 * in this transaction group. This ensures that all blocks 1238 * written in this txg will be committed to stable storage 1239 * before any uberblock that references them. 1240 */ 1241 zio = zio_root(spa, NULL, NULL, flags); 1242 1243 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1244 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1245 zio_flush(zio, vd); 1246 1247 (void) zio_wait(zio); 1248 1249 /* 1250 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1251 * system dies in the middle of this process, that's OK: all of the 1252 * even labels that made it to disk will be newer than any uberblock, 1253 * and will therefore be considered invalid. The odd labels (L1, L3), 1254 * which have not yet been touched, will still be valid. We flush 1255 * the new labels to disk to ensure that all even-label updates 1256 * are committed to stable storage before the uberblock update. 1257 */ 1258 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1259 goto retry; 1260 1261 /* 1262 * Sync the uberblocks to all vdevs in svd[]. 1263 * If the system dies in the middle of this step, there are two cases 1264 * to consider, and the on-disk state is consistent either way: 1265 * 1266 * (1) If none of the new uberblocks made it to disk, then the 1267 * previous uberblock will be the newest, and the odd labels 1268 * (which had not yet been touched) will be valid with respect 1269 * to that uberblock. 1270 * 1271 * (2) If one or more new uberblocks made it to disk, then they 1272 * will be the newest, and the even labels (which had all 1273 * been successfully committed) will be valid with respect 1274 * to the new uberblocks. 1275 */ 1276 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1277 goto retry; 1278 1279 /* 1280 * Sync out odd labels for every dirty vdev. If the system dies 1281 * in the middle of this process, the even labels and the new 1282 * uberblocks will suffice to open the pool. The next time 1283 * the pool is opened, the first thing we'll do -- before any 1284 * user data is modified -- is mark every vdev dirty so that 1285 * all labels will be brought up to date. We flush the new labels 1286 * to disk to ensure that all odd-label updates are committed to 1287 * stable storage before the next transaction group begins. 1288 */ 1289 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) 1290 goto retry; 1291 1292 return (0); 1293 } 1294